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We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spec-
trum of the system features two flat bands formed from S and Px,y photonic orbitals, into which we
trigger bosonic condensation under high power excitation. The symmetry of the orbital wave func-
tions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin
texture in the flat band condensates. Our work shows the potential of polariton lattices for emulating
flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom and interactions.

Two-dimensional lattices with flat energy bands at-
tract keen research interest as a platform to study exotic
many-body effects including itinerant ferromagnetism [1],
Wigner crystallization [2] and fractional quantum Hall
phases [3]. A notable example of a flat-band system is
the Lieb lattice [4], a decorated square lattice found in
nature in the cuprates exhibiting high-Tc superconduc-
tivity [5] and studied extensively in recent years for its
topologically nontrivial phases [6–16]. In bosonic sys-
tems, models of particles in two-dimensional Lieb lattice
potentials with flat energy bands are a highly valuable
tool for researchers, having recently been experimentally
realized in photonic waveguide arrays [17–20] and ultra-
cold atoms in optical lattices [21]. Particularly fasci-
nating prospects which remain unexplored in Lieb lat-
tice models are many-body interactions, spin-orbit cou-
pling (SOC) terms and orbital structure. With such fea-
tures the flat bands are predicted to support nonlinear
compactons [22, 23] and interaction-induced topological
phases [16]. More generally, these lattices allow one to
study the interplay between fundamental nonlinear, spin
and orbital phenomena in a topological system.

Exciton-polariton (polariton) gases confined in lat-
tice potentials have recently emerged as an attractive
candidate for emulating nonlinear lattice Hamiltonians
[24]. Microcavity polaritons are the mixed light-matter
eigenmodes characterized by a small effective mass, al-
lowing both quasi-equilibrium and nonequilibrium Bose-
Einstein condensation at elevated temperatures [25–28].
Giant exciton-mediated Kerr nonlinearity, which is 3–4
orders of magnitude larger than light-matter systems in
the weak-coupling regime [29], has enabled the obser-
vation of ultra-low power solitons [30] and vortices [31],
and more recently driven-dissipative phase transitions as-
sociated with quantum fluctuations [32–34]. In polari-
ton systems, straightforward optical techniques can be
used to create interacting scalar and spinor boson gases
in highly tunable lattice geometries, which can be en-

gineered through modulation of the photonic [35–37] or
excitonic [38–41] potential landscape. Furthermore, the
spatial, spectral and pseudospin (polarization) proper-
ties of the polaritonic wave functions are directly acces-
sible due to the finite cavity photon lifetime. The inher-
ently nonequilibrium nature of polariton gases also means
that higher energy orbital bands, formed from spatially-
anisotropic modes, are readily populated, as was recently
demonstrated in a honeycomb lattice [42].

One intriguing property of polaritons in lattices is
polarization-dependent tunneling [43], inherited mostly
from the photonic component and enhanced by TE-TM
splitting. It is formally analogous to SOC [43–45] in-
ducing a k-dependent effective magnetic field acting on
polariton pseudospin. The rich variety of polarization
phenomena exhibited by polaritons in both noninteract-
ing and interacting regimes [46] remains unexplored in
two-dimensional periodic potentials, and is inaccessible
in the inherently asymmetric one-dimensional case [47].

In this Letter we study a two-dimensional (2D) array of
coupled micropillars arranged in a Lieb lattice. The crys-
tal structure comprises three square sublattices (denoted
A, B and C) each contributing one atom to the unit cell
[Fig. S11(a)]. This lattice topology, in which the sites on
different sublattices have different connectivity, results in
localized states residing on dispersionless energy bands
[48]. Here we explore the bands formed by evanescent
coupling of both the ground and first excited states of the
pillars, which are 2D photonic orbitals with S and P like
wave functions. We excite the system quasi-resonantly
to optically load polaritons into the periodic potential,
triggering condensation into three separate modes of the
lattice – S and P flat (non-bonding) bands and the max-
ima of the S anti-bonding (AB) band. Resolving the
near-field emission in energy and polarization above the
threshold for polariton condensation we see that the flat
band condensates show novel pseudospin textures aris-
ing from a polarization-dependent hopping energy, which
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FIG. 1. (a) Scanning electron microscope image of a section of
the 2D Lieb lattice. The enlarged image shows a schematic di-
agram of 1 unit cell and the 3 sublattices. (b) Lattice emission
in energy-momentum space measured under low-power non-
resonant excitation. White dotted lines correspond to bands
calculated from the tight-binding model. (c)-(e) Emission in
real space at the energies of the S flat band (c), the AB band
maxima (d) and the P flat band (e). The white squares corre-
spond to one unit cell as shown in (a) and the corresponding
energies are shown by white arrows in (b).

acts as SOC for polaritons. Significant variation in the
emission energy across real space (fragmentation) can be
seen in the flat-band condensates, which we show arises
due to the effect of many-body interactions, since the ki-
netic energy scale is quenched. This contrasts with the
condensates formed on the S AB (dispersive) band which
emit at strictly one energy.

Our 2D Lieb lattice consists of AlGaAs/GaAs mi-
cropillars of 3 µm diameter and a separation of 2.9 µm.
The lattice periodicity is α = 5.8 µm. Further de-
tails about the sample and experimental methods can
be found in Ref. [49]. The single-particle band structure
of our Lieb lattice at kx = π/α is displayed in Fig. 1(b).
It shows the energy bands associated with the two low-
est energy pillar modes, S and P (comprising degenerate
Px and Py) orbitals which have bare energies of around
1.4642 eV and 1.4662 eV respectively. Photonic coupling
results in S and P -type flat bands [(c) and (e) in Fig.
1(b)] separated by 2 meV and a forbidden energy gap
of approximately 0.8 meV between S and P dispersive
bands. The white dotted lines in Fig.S11(b) correspond
to the dispersion curves calculated from our tight-binding
(TB) model [49]. Experimentally the emission from some
of the expected folded branches of the dispersion appears
almost absent. For example, emission from the S AB
band [(d) in Fig.S11(b)] is suppressed within the first
Brillouin zone (delimited by vertical lines) whilst the S
bonding band is suppressed outside. This effect can be
attributed to a combination of far-field destructive in-
terference and varying lifetimes (due to relaxation and
losses) of different modes. This effect is well known in
honeycomb lattices [36, 50], and in Ref. [49] we solve

the 2D Schrödinger equation for a periodic potential to
confirm that this is also the case for the Lieb lattice.

In Fig. S11(c) and (e) we show the real space distri-
bution of polariton emission intensity of the S and P
flat bands, constructed by scanning the emission across
the spectrometer slit and piecing together the energy-
resolved slices. In both cases there is highly suppressed
emission from the B sublattice, characteristic of flat
bands, indicating that polaritons are highly localized on
A and C sublattices. This results from destructive wave
interference of the A and C sublattice linear eigenmodes
due to the local lattice symmetries [51]. Interestingly,
for the P band, we see that emission from Px orbitals
dominates on the A sites and Py orbitals for the C sites
(the subscript denotes the axis to which the two lobes
lie parallel). Since orthogonal P orbitals do not inter-
fere with each other, the absence of emission from B
sites must arise from destructive interference of like P
orbitals. A qualitative explanation is that the difference
in the tunneling energies for spatially anisotropic modes
with orthogonal orientations (σ and π bonding) is off-
set by a difference in the orbital populations on the two
sites maintaining the destructive interference necessary
for flat band formation. We expand this argument in-
cluding polarization later in the text. In contrast to the
two flat bands, at the energy maxima of the dispersive
AB mode [Fig. S11(d)] the polaritons are delocalized
across all 3 sublattices as is usually expected for the lin-
ear eigenmodes of a periodic potential.

In order to study our system in the nonlinear kinetic
condensation regime we tune the pump laser to 843 nm,
resonant with high energy states of the lower polaritonic
bands (detuned roughly -1 meV from the exciton) where
a broad continuum of high energy pillar modes exists [49].
Through this channel we resonantly inject polaritons into
the lattice at normal incidence, using high irradiances to
create large populations of interacting polaritons. We use
a large pump spot (∼25 µm) which excites around 15 unit
cells of the lattice. In Fig. 2 we show the evolution of our
system with sample irradiance. Figs. 2(c)-(g) show the
momentum space emission at kx = 0. Beyond a critical
pumping intensity, macroscopic populations of particles
begin to accumulate in the P flat band as evidenced by a
superlinear increase in the emission intensity [Fig. 2(a)]
and narrowing of the linewidth [Fig. 2(b)] which sig-
nifies increased temporal coherence [27, 52]. A similar
condensation process is seen at slightly higher pumping
intensities for the S AB band maxima, which move into
the spectral gap, and the S flat band. As can be seen
in Figs. 2(f),(g) these co-existing condensates dominate
the normalized PL spectra above threshold. In the S
AB band, condensates are formed in the negative effec-
tive mass states with an energy residing in the forbidden
gap, which is reminiscent of the gap solitons previously
reported as nonlinear solutions in similarly shallow peri-
odic potentials [53, 54]. The real space distributions of
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FIG. 2. (a) Peak intensity and (b) full-width half-maximum of
the three lattice modes as a function of the sample irradiance
in the vicinity of the condensation thresholds. (c)-(g) The far-
field emission with increasing irradiance, with condensation
occurring in (f) and (g). The sample irradiances are 620 (c),
1360 (d), 2180 (e), 4030 (f) and 5630 kW cm−2 (g). The color
scale is the same as that of Fig. S11(b). (h)-(j) Real space
images of the lattice condensates.

the three condensate modes are shown in Figs. 2(h)-(j).
The dark B sites observed for the flat band cases confirm
that the condensates indeed reside on highly nondisper-
sive energy bands, in contrast to the condensates formed
at the maxima of the dispersive AB band.

Above the condensation threshold, the high density of
polaritons leads to a sizable mean-field interaction en-
ergy due to Coulomb interactions between polaritons re-
siding in the condensates as well as interactions of con-
densed polaritons with the highly populated resonantly
pumped states. For the case of flat bands, the kinetic en-
ergy scale is quenched due to an infinite effective mass,
so energy renormalization is non-trivial and cannot be
treated as a perturbation [55]. With no kinetic energy
to counterbalance the local nonlinear interaction energy
a fragmentation of the condensates into localized modes
emitting at slightly different energies is observed. Con-
versely, the AB band polaritons acquire kinetic energy
when they propagate from high to low density regions
compensating the low potential energy in low density re-
gions, resulting in a homogeneous emission energy across
the lattice in real space. Spatial maps constructed from
experimental data above threshold are shown in Fig. 3
and demonstrate the degree of spectral variation of the
three condensed modes, which is vanishing for the AB
band but pronounced for the flat bands. In Ref. [49]
we analyze the relation between the population and en-
ergy across the condensates and show correlations which
provide further evidence for the strong influence of many-
body interactions in the fragmentation of the flat energy
bands.

So far we have studied the spatial and spectral prop-
erties of polaritons in both dispersive and flat bands,
demonstrating bosonic condensation and analyzing the
effect of non-perturbative many-body interactions. Now
we consider the pseudospin degree of freedom by re-
solving the lattice emission in polarization. In Figs.
4(a) and (b) we plot the Stokes linear polarization pa-
rameter S1 for the flat band condensates, with S1 =
(IH−IV )/(IH+IV ) where IH and IV are the intensities of
the emitted light measured in the horizontal (0◦) and ver-
tical (90◦) bases respectively. Ordered pseudospin tex-
tures extended across several unit cells can be seen. The
finite spatial extent of the pump spot and the intensity-
dependent blueshift associated with its Gaussian profile
limits the size of the observed patterns.
In order to explain these polarization patterns one

needs to consider the two following features of Lieb lat-
tices and Bragg-cavity polariton systems. First, in Lieb
lattices the eigenmodes associated with the flat bands are
non-spreading modes characterized by having zero pop-
ulation on the B sites. This characteristic feature is due
to the destructive interference of particles tunneling to B
sites from the neighboring A and C sites [51]. Clearly, in
the case of different tunneling probabilities, the destruc-
tive interference can occur only if the neighboring sites
have different populations, since the number of particles
tunneling from one site to another is proportional both to
the tunneling probability and to the number of particles
on an initial site.
Second, in lattices formed from Bragg cavities, the par-

ticles’ tunneling probability from one pillar to another
has been experimentally observed [43] and theoretically
discussed [56] to be polarization-dependent, leading to
effective spin-orbit coupling. In particular, it has been
shown that the tunneling probability (τ‖) of particles
having polarization parallel to the propagation direction
is higher than the tunneling probability (τ⊥) of particles
having polarization perpendicular to the propagation di-
rection:

τ‖ > τ⊥. (1)

In the case of the Lieb lattice this means that hori-
zontally (H) polarized particles tunnel with probability
τ‖ between B and C sites and with probability τ⊥ be-
tween B and A sites, since the projection of the polar-

FIG. 3. (a) Color maps showing spatial energy variation of the
S flat band (a), AB band (b) and P flat band (c) condensate
emission constructed from experimental data above threshold.
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FIG. 4. S1 linear Stokes parameter of the real space emission
at the energies of the S (a) and P (b) flat band. The color
scale is linear with red (blue) representing H (V) polariza-
tion, depicted by arrows either side of the color bar. (c),(d)
Schematic of the nearest neighbor hopping processes for S, Px

and Py orbitals, in the case of polarization-dependent hopping
probabilities.

ization is longitudinal and transverse to the tunneling
directions respectively [see Fig. 4(c)]. This means that
the H-polarized eigenmodes of the S flat band must have
a higher population on A sites, to compensate for the
lower tunneling probability (Eq. 1). The opposite holds
for vertically (V) polarized eigenmodes, which will be
characterized by a higher population on C sites.

Finally, in our case, the quasi-resonant pump populates
both linear combinations of H-polarized eigenmodes and
linear combinations of V-polarized eigenmodes of the S
band. This, combined with the different populations of
differently-polarized particles results in a nonzero degree
of polarization on A and C sites. In order to confirm this
explanation, we developed a TB model with polarization-
dependent tunneling terms [49]. By fitting the energy
width of the S band and the degree of polarization of the
two sublattices we deduce the two hopping parameters
to be: τ‖ = 0.165 meV and τ⊥ = 0.145 meV, in agree-
ment with previous experimental results [43]. With these
values we obtain a degree of polarization of the order of
0.128, in excellent agreement with the experimental value
of 0.13.

For the P flat band the polarization pattern is quali-
tatively the same as that of the S flat band albeit with
a higher degree of polarization. It can be explained in
the same way. In this case however one also has to con-
sider that the P state of each pillar is four-fold degenerate
since, in addition to the polarization degeneracy, one also
has the mode degeneracy of the Px and Py orbitals. It
can be seen in Figs. S11(e) and 2(j) that for the P flat
band the emission predominantly has two lobes aligned
along the x direction on A sites, corresponding to Px

orbitals, while on the C sites the Py orbitals dominate.

We estimate the ratio of the orbital populations to be
about 6:1, corresponding to |ψPx

|2/|ψPy
|2 on A sites and

|ψPy
|2/|ψPx

|2 on C sites [49]. As before, one needs to
explain the suppression of emission from B sites, since
only orbitals with the same symmetry and polarization
may destructively interfere. Similarly to the previously
described polarization-dependent tunneling probability,
one can observe that particles in Px orbitals tunnel more
easily along the x direction than along the y direction,
and therefore more particles in the Px orbital of A sites
are needed to satisfy Eq. (1), and the opposite holds for
Py orbitals.

To confirm this we also developed a TB model for
the four degenerate P orbitals with tunneling amplitudes
that depend on the polarization and on the alignment of
the mode with respect to the hopping direction [49]. As
shown in Fig. 4(d) now we have four tunneling param-
eters: τa‖ , τ

a
⊥, τ

t
‖, and τ t⊥, where (a) and (t) indicate if

the hopping is for P orbitals aligned or transverse to the
propagation direction, and (‖) and (⊥) indicate, as be-
fore, if the polarization is parallel or perpendicular to
the hopping direction. Similarly to the S band also here
all four modes of each pillar will be populated by the
quasi-resonant pump but on A sites the population of Px

H-polarized particles will be the highest, since their prob-
ability to tunnel to B sites (τ t⊥) is the lowest. Conversely,
on C sites, the population of Py V-polarized particles will
be the highest. This is exactly what is observed in Fig.
4(b). By fitting the TB band structure to the experi-
mentally observed P band and degree of linear polariza-
tion the following hopping parameters can be obtained:
τa‖ = 0.375, τa⊥ = 0.125, τ t‖ = 0.100, and τ t⊥ = 0.033 meV.
Note that for the P band the difference between the hop-
ping with ⊥ and ‖ polarization is bigger than in the S
band case. This can be ascribed to the fact the P flat
band consists of harmonics with higher k values, where
polarization-dependent tunneling is expected to be en-
hanced [45]. With the values for the hopping parameters
above we obtain a degree of polarization of the order of
0.42 and ratio between the populations of Px and Py or-
bitals on A sites of 4.1 (the inverse applies to C sites), in
good agreement with the experimental values of 0.5 and
6 [49]. It should be noted that the tunneling arguments
presented here apply equally in the single-particle regime,
and as such polarization patterns are observed in the S
and P flat-band emission below threshold. The polar-
ization degree of the P flat band was considerably lower
(∼0.2) than in the condensate regime however, probably
due to contribution of the emission of the dispersive band
at the same energy [cf. Fig. 2(g)].

In summary, we have studied the properties of a two-
dimensional Lieb lattice for exciton-polaritons, demon-
strating bosonic condensation into two separate flat
bands formed from S and P orbitals, in addition to the
negative effective mass states at the maxima of the S
anti-bonding band. We have also revealed distinctive
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emission patterns formed by the symmetric S and asym-
metric P orbitals, which show pseudospin texture arising
from spin-orbit coupling given by polarization-dependent
tunneling between pillars. Our work shows the potential
for engineering versatile lattice Hamiltonians for polari-
tons, highlighting the ease with which spin-orbit coupling
terms and population of higher orbitals can be imple-
mented, which presents a significant advantage of this
system. Furthermore, the observation of flat-band con-
densate fragmentation demonstrates the effect of many-
body interactions in the presence of quenched kinetic en-
ergy. An intriguing future prospect is studying quantum
fluctuations as in recent polariton works [32–34], in lat-
tice environments where novel driven-dissipative phase
transitions are expected [57].
Currently the strength of polariton-polariton interac-

tions in a single lattice site (few µeV) [29] is comparable
to or less than the polariton decay rate. However, the ra-
tio of these two quantities may be further enhanced via
polariton Feshbach resonances [58] or recently developed
high-Q open-access microcavities with strong lateral con-
finement [44]. This would open the way to strongly
correlated regimes described by driven-dissipative Bose-
Hubbard models in polaritonic lattices [59]. Such regimes
are not accessible in weakly-coupled photonic systems.
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Supplementary material

SAMPLE DETAILS

Here we provide further details about our sample. Our 2D Lieb lattice was fabricated by processing (through
a combination of electron beam lithography and plasma dry etching) a λ/2 GaAs microcavity with 23 (27)
GaAs/Al0.85Ga0.15As pairs in the top (bottom) distributed Bragg reflector, and 3 In0.04Ga0.96As quantum wells
placed at the antinode of the cavity field. In Fig. S1(a) we show an angle-resolved photoluminescence (PL) spectrum
from the unetched planar region of cavity directly next to the etched lattice. The dashed white lines show the energies
of the uncoupled cavity photon and exciton modes. From fitted curves to the polariton branches we estimate a Rabi
splitting of around 4.7 meV, a Q factor of 14,000, a linewidth of around 100 µeV and a photon-exciton detuning of
-7.2 meV. In Fig. S1(b) we show the energy spectrum from the etched lattice region of the sample studied in the
main text. At high energies approaching the exciton we see a broad continuum band of higher energy pillar modes.
The dotted line marks the energy of the pulsed laser used for quasi-resonant excitation in the main text. A view of
the entire lattice can be seen in Fig. S1(c) which shows a scanning electron microscope (SEM) image. Excluding the
pillars on the left and bottom edges, the lattice covers 14× 14 unit cells. Fig. S1(d) shows an angled SEM image of
an etched lattice which has been cleaved through the center to reveal the etch depth. On the left (region I) we see
the edge of a lattice and on the right (region III) an unetched region of the wafer, between which is an etched region
with no pillars (region II). The red line indicates the position of the active layer. It can be seen that the number of
distributed Bragg reflector (DBR) pairs left after etching is inhomogeneous along this cut of the wafer, such that in
region II the wafer is etched down through the active layer, whilst in region I a few layers of the top DBR remain
intact. We estimate a top DBR thickness of 4-6 pairs in the lattice region, which we use in our Schrödinger equation
model later in the text.

EXPERIMENTAL DETAILS

In this section further details about the experiments reported in the main text are provided. Our sample is mounted
in a continuous flow cryostat held at 8K where rear and front windows with large angular access allow us to work
in both reflection and transmission geometry. For non-resonant excitation measurements, we use a continuous-wave
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FIG. S1. Angle-resolved PL spectra from the sample on a planar unetched (a) and lattice etched (b) region. (c) Arial SEM
image of the whole lattice region. (d) Angled SEM image showing a cleaved piece of wafer with both planar and lattice regions.

diode laser operating at 685 nm with a spot size of 15 µm, collecting the reflected photoluminescence (PL) through
the same N = 0.42 microscope objective (MO) which irradiates the sample.

For quasi-resonant excitation, we pump the substrate side of the sample with horizontally-polarized 100 ps pulses
generated by a mode-locked Ti:Sapphire laser with an 80 MHz repetition rate, using a camera objective with a 5 cm
focal length to focus on the sample. A schematic of the experimental setup can be seen in Fig. S2. In the excitation
path, a graduated circular neutral density filter is mounted on a motorized rotation stage placed slightly displaced
from the laser beam waist inside a 1:1 Keplerian telescope. A Glan-Thompson polarizer horizontally polarizes the
laser pulses, which are then focused onto the sample using a camera objective. The emitted photoluminescence is
collected by a microscope objective (MO), before passing through a confocal 30 cm lens and a subsequent 10 cm lens
on a flip mount. In the confocal plane between the second and third lens, two orthogonal adjustable slits allow for
real space filtering from the magnified virtual image plane. The final lens in the setup is a 15 cm scanning lens. For
Fourier space measurements, the third lens is flipped out of the optical path to project an image of the MO back
focal plane onto the spectrometer entrance slit. For real space measurements, the third lens is flipped into position,
forming near-field images with a magnification of ×45. For polarization measurements we cross-polarized a linear
polarizer to the excitation laser, and found the angles for the fast and slow axis of a half wave plate mounted on a
motorized rotation stage to resolve the emission in the horizontal-vertical basis.

FIG. S2. Schematic of the experimental setup. (a) Close-up of the substrate-side excitation scheme. (b) Arial view of the
excitation and collection paths.
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TIGHT-BINDING MODEL

In order to explain the band structure and the polarization pattern observed in our Lieb lattice we develop a tight-
binding (TB) model, for both the S and P bands, with polarization-dependent hopping amplitudes. For our model we
only consider nearest-neighbor terms, since the contribution from higher order terms is negligible [43]. As the P bands
are formed from coupling of the first excited pillar mode, which is a four-fold degenerate orbital (doubly-degenerate
due to the dipole structure and doubly-degenerate due to the polarization), we also include orientation-dependent
hopping probabilities, such that the coupling depends on whether the lobes are oriented longitudinally or transversely
to the tunneling direction [2]. Once the kernel matrices for the two TB models are found, it is possible to calculate
the polarization-resolved mode occupation on each pillar, and calculate the corresponding linear polarization degree.

S band

By defining aH,m,n and aV,m,n as the annihilation operators in the S orbital modes of the A sublattice pillars with
linear polarization along the horizontal and vertical directions respectively (and similarly for the B and C sites), the
Hamiltonian for the S band can be written as:

HS
Lieb = −

∞
∑

m,n=−∞

b†H,m,n[τ⊥(aH,m,n + aH,m−1,n) + τ‖(cH,m,n + cH,m,n−1)] +

b†V,m,n[τ‖(aV,m,n + aV,m−1,n) + τ⊥(cV,m,n + cV,m,n−1)] + h.c.,

where the hopping probabilities are τ‖, τ⊥ when the polarization is aligned along (parallel) or sideways to (perpen-
dicular) the hopping direction. The on-site S orbital energies are all equal and set to zero. Introducing the Fourier
transform of the creation and annihilation operators as:

aH,p,q =
1

N

∞
∑

m,n=−∞

aH,m,ne
+iα(kpm+kqn), a†H,p,q =

1

N

∞
∑

m,n=−∞

a†H,m,ne
−iα(kpm+kqn),

where α is the unit cell size of the TB model, and kp and kq are the x and y component of the wave-vector, respectively.
Similarly it is possible to define the Fourier transform of the operators for the B and C sites and for the V polarization,
it is possible to write the above Hamiltonian in k-space. This can be written in a compact form as:

HS
Lieb = −2

∞
∑

p,q=−∞

ψ†T

p,q

(

MS
H,p,q 0

0 MS
V,p,q

)

ψp,q,

with

ψ†T

p,q = (a†H,p,q, b
†
H,p,q, c

†
H,p,q, a

†
V,p,q, b

†
V,p,q, c

†
V,p,q)

and

MS
H,p,q =











0 τ⊥e
+

iαkq

2 cos
(

kqα

2

)

0

τ⋆⊥e
−

iαkq

2 cos
(

kqα

2

)

0 τ‖e
+

iαkp

2 cos
(

kpα

2

)

0 τ⋆‖ e
−

iαkp

2 cos
(

kpα

2

)

0











,

and

MS
V,p,q =











0 τ‖e
+

iαkq

2 cos
(

kqα

2

)

0

τ⋆‖ e
−

iαkq

2 cos
(

kqα

2

)

0 τ⊥e
+

iαkp

2 cos
(

kpα

2

)

0 τ⋆⊥e
−

iαkp

2 cos
(

kpα

2

)

0











.
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The polarized eigenvector of the S band can be easily written in terms of the function E[x, y] = −2xe−
iαy

2 cos
(

yα
2

)

,
where x is the hopping probability and y the direction of propagation:

e1 =
1

A1

{

0,−
E[τ⊥, kq]

E[τ‖, kp]
, 1, 0, 0, 0

}

e2 =
1

A2

{

−

√

|E[τ‖, kp]|2 + |E[τ⊥, kq]|2

E[τ⊥, kq]∗
,
E[τ‖, kp]

∗

E[τ⊥, kq]∗
, 1, 0, 0, 0

}

e3 =
1

A3

{

+

√

|E[τ‖, kp]|2 + |E[τ⊥, kq]|2

E[τ⊥, kq]∗
,
E[τ‖, kp]

∗

E[τ⊥, kq]∗
, 1, 0, 0, 0

}

e4 =
1

A4

{

0, 0, 0, 0,−
E[τ‖, kq]

E[τ⊥, kp]
, 1

}

e5 =
1

A5

{

0, 0, 0,−

√

|E[τ‖, kq]|2 + |E[τ⊥, kp]|2

E[τ‖, kq]∗
,
E[τ⊥, kp]

∗

E[τ‖, kq]∗
, 1

}

e6 =
1

A6

{

0, 0, 0,+

√

|E[τ‖, kq]|2 + |E[τ⊥, kp]|2

E[τ‖, kq]∗
,
E[τ⊥, kp]

∗

E[τ‖, kq]∗
, 1

}

,

where the six constants Ai are normalization constants. We see here that with these assumptions the H and V
polarized modes are completely independent since the kernel matrix is a block matrix. Each block is basically the
3× 3 kernel matrix for a single mode Lieb lattice. The main difference here is that the hopping probabilities change
depending on the polarization and on the hopping direction.
In order to reproduce and explain the experimental observations we first consider the unpolarized case (i.e. τ⊥ =

τ‖ = τ) and fit the S part of the experimental band structure. The result of this fitting is shown in the theoretical
curves overlapped to the experimental band in Fig. 1(b) of the main text and in Fig. S3. From this fitting we
obtained a value of τ = 0.165 meV. Note that since we have considered identical values for the two polarizations, the
theoretical lines overlapped to the S band in Fig. 1(b) are doubly degenerate.

FIG. S3. Experimentally-measured energy-momentum relations at kx/(π/α) = 1.3, 1.5 and 2, overlaid with curves from the
TB model (not including polarization).

Next, we lift the degeneracy between the two tunneling terms so that τ‖ = 0.165 meV and τ⊥ = 0.145 meV. With
these new values we calculate the degree of polarization (S1) of the flat-band eigenmodes, obtaining a polarization
of 0.128 (± depending on the site), in excellent agreement with the experimental value of 0.13. To obtain this value
we evaluate, at each k-point, the eigenvectors of HS

Lieb, which give us the distribution, on the three pillars forming
the unit cell, of the H and V populations. This allows the evaluation, for each k point, of the relative H and V
population. As a final step, we calculate, for each pillar, the weighted average of the H and V populations on the
entire k-space and, with these, the polarization on each pillar. (different occupations of s-type flat band modes
can be seen in experimentally measured E-k slice [Fig. 2 of the main text]). Then, in Fig. S4 we reconstruct the
experimental polarization pattern experimentally observed in the S flat-band condensate plotting on each pillar the
colour corresponding to its degree of polarization where the emission intensity is above 5%, and black (no polarization)
where the emission intensity is below this value. Such a method is justified given in the experiment the polarization
degree is measured to be zero in areas where the emission intensity is below signal to noise ratio and hence is purely
defined by a background intensity, which is about 5% of the peak signal intensity. Note that our approach assumes
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an incoherent emission from the different k points. In the condensation regime some degree of phase locking between
the amplitudes at different k points may occur, which would result in a weak modulation of intensity distribution
across the lattice on a length scale greater than the lattice period. The effect of phase locking is difficult to observe
in the experiment due to the condensate covering only 2-3 lattice periods.

⟷

-0.10

-0.05

0

0.05

0.10

⟷

FIG. S4. Polarization pattern for the S band obtained from the TB model. In good agreement with the experiments, A (C)
sites are horizontally (vertically) polarized, with a degree of polarization of about 0.13.
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FIG. S5. Calculated S band structure of the Lieb lattice using the TB model for the S modes of each pillar. From left to right
kx/(π/α) = 1, 1.5, 2. See Fig. S7 for the part of the band obtained from the P modes.

P band

Similarly to our treatment of the S bands we define aHx, aHy, aV x, and aV y as the annihilation operators for the
P orbital modes of the pillar with H and V polarization and with the lobes aligned along the x or y directions. The
notation follows the same convention for the creation operators and for the modes on the B and C sites. With these
definitions, the Hamiltonian for the P band in real space can be written as:

HP
Lieb = −

∞
∑

m,n=−∞

b†Hxm,n
[τ t⊥(aHxm,n

+ aHxm−1,n
)− τa‖ (cHxm,n

+ cHxm,n−1
)]

−

∞
∑

m,n=−∞

b†Hym,n
[τa⊥(aHym,n

+ aHym−1,n
)− τ t‖(cHym,n

+ cHym,n−1
)]

−

∞
∑

m,n=−∞

b†V xm,n
[τ t‖(aV xm,n

+ aV xm−1,n
)− τa⊥(cV xm,n

+ cV xm,n−1
)]

−

∞
∑

m,n=−∞

b†V ym,n
[τa‖ (aV ym,n

+ aV ym−1,n
)− τ t⊥(cV ym,n

+ cV ym,n−1
)] + h.c.,
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where the hopping probabilities τa‖ , τ
t
‖, τ

a
⊥, and τ t⊥ correspond to modes hopping from one site to another having

the polarization parallel (‖) or perpendicular (⊥) to the hopping direction and the lobes of the P orbital aligned (a)
or transverse (t) to the hopping direction. As before one can introduce the Fourier transform of the creation and
annihilation operators and diagonalize the Hamiltonian in k-space. This time the kernel matrix will be 12× 12 since
there are 2 modes with 2 possible polarizations on each of the 3 pillars. In this case the Hamiltonian can be written
in a compact form as:

HP
Lieb = −2

∞
∑

p,q=−∞

ψP†T

p,q









MP
Hx,p,q 0 0 0

0 MP
Hy,p,q 0 0

0 0 MP
V x,p,q 0

0 0 0 MP
V y,p,q









ψP
p,q ,

with

ψP†T

p,q = (a†Hx,p,q, a
†
Hy,p,q, b

†
Hx,p,q, b

†
Hy,p,q, c

†
Hx,p,q, c

†
Hy,p,q, a

†
V x,p,q, a

†
V y,p,q, b

†
V x,p,q, b

†
V y,p,q, c

†
V x,p,q, c

†
V y,p,q),

and

MP
Hx,p,q =











0 τ t⊥e
+

iαkq

2 cos
(

kqα

2

)

0

τ t⋆⊥ e
−

iαkq

2 cos
(

kqα

2

)

0 τa‖ e
+

iαkp

2 cos
(

kpα

2

)

0 τa⋆‖ e−
iαkp

2 cos
(

kpα

2

)

0











,

MP
Hy,p,q =
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2 cos
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2

)
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τa⋆⊥ e−
iαkq

2 cos
(

kqα

2

)

0 τ t‖e
+

iαkp

2 cos
(

kpα

2

)

0 τ t⋆‖ e
−

iαkp

2 cos
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kpα

2

)

0
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+

iαkq

2 cos
(

kqα

2

)

0

τ t⋆‖ e
−

iαkq

2 cos
(

kqα

2

)

0 τa⊥e
+

iαkp

2 cos
(

kpα

2

)

0 τa⋆⊥ e−
iαkp

2 cos
(

kpα

2

)

0











,

MP
V x,p,q =











0 τa‖ e
+

iαkq

2 cos
(

kqα

2

)

0

τa⋆‖ e−
iαkq

2 cos
(

kqα

2

)

0 τ t⊥e
+

iαkp

2 cos
(

kpα

2

)

0 τ t⋆⊥ e
−

iαkp

2 cos
(

kpα

2

)

0











.

As before, the polarized eigenvector of the P band can be easily written in terms of the function E[x, y] =

−2xe−
iαy

2 cos
(

yα
2

)

, where x is the hopping probability and y the direction of propagation:
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e1 =
1

A1

{

0,−
E[τ t⊥, kq]

E[τa‖ , kp]
, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

}

e2 =
1

A2







−

√

|E[τa‖ , kp]|
2 + |E[τ t⊥, kq]|

2

E[τ t⊥, kq]
∗

,
E[τa‖ , kp]

∗

E[τ t⊥, kq]
∗
, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0







e3 =
1

A3







+

√

|E[τa‖ , kp]|
2 + |E[τ t⊥, kq]|

2

E[τ t⊥, kq]
∗

,
E[τa‖ , kp]

∗

E[τ t⊥, kq]
∗
, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0







e4 =
1

A4

{

0, 0, 0, 0,−
E[τa⊥, kq]

E[τ t‖, kp]
, 1, 0, 0, 0, 0, 0, 0

}

e5 =
1

A5







0, 0, 0,−

√

|E[τ t‖, kp]|
2 + |E[τa⊥, kq]|

2

E[τa⊥, kq]
∗

,
E[τ t‖, kp]

∗

E[τa⊥, kq]
∗
, 1, 0, 0, 0, 0, 0, 0







e6 =
1

A6







0, 0, 0,+

√

|E[τ t‖, kp]|
2 + |E[τa⊥, kq]|

2

E[τa⊥, kq]
∗

,
E[τ t‖, kp]

∗

E[τa⊥, kq]
∗
, 1, 0, 0, 0, 0, 0, 0







e7 =
1

A7

{

0, 0, 0, 0, 0, 0, 0,−
E[τ t‖, kq]

E[τa⊥, kp]
, 1, 0, 0, 0

}

e8 =
1

A8







0, 0, 0, 0, 0, 0,−

√

|E[τ t‖, kq]|
2 + |E[τa⊥, kp]|

2

E[τ t‖, kq]
∗

,
E[τa⊥, kp]

∗

E[τ t‖, kq]
∗
, 1, 0, 0, 0







e9 =
1

A9







0, 0, 0, 0, 0, 0,+

√

|E[τ t‖, kq]|
2 + |E[τa⊥, kp]|

2

E[τ t‖, kq]
∗

,
E[τa⊥, kp]

∗

E[τ t‖, kq]
∗
, 1, 0, 0, 0







e10 =
1

A10

{

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−
E[τa‖ , kq]

E[τ t⊥, kp]
, 1

}

e11 =
1

A11







0, 0, 0, 0, 0, 0, 0, 0, 0,−

√

|E[τa‖ , kq]|
2 + |E[τ t⊥, kp]|

2

E[τa‖ , kq]
∗

,
E[τ t⊥, kp]

∗

E[τa‖ , kq]
∗
, 1







e12 =
1

A12







0, 0, 0, 0, 0, 0, 0, 0, 0,+

√

|E[τa‖ , kq]|
2 + |E[τ t⊥, kp]|

2

E[τa‖ , kq]
∗

,
E[τ t⊥, kp]

∗

E[τa‖ , kq]
∗
, 1







where the twelve constants Ai are normalization constants. As for the S band, we first neglect the polarization degree
of freedom (i.e. τa‖ = τa⊥ = τa and τ t‖ = τ t⊥ = τ t) and fit the experimental P band [see Fig. 1(b) in the main text and

Fig. S3] to obtain the values τa = 0.375 meV and τ t = 0.100 meV. Next we introduce the polarization dependence:
τa‖ = 0.375, τa⊥ = 0.125, τ t‖ = 0.100 and τ t⊥ = 0.033 meV. With these values we calculate the degree of polarization

(S1) and the ratio between Px and Py orbitals of the P flat-band eigenmodes. We obtain a polarization degree of the
order of 0.4 (± depending on the sites) and ratio between Px and Py orbitals on A sites of 3.7 (the inverse applies
to C sites), in good agreement with the experimental results. To obtain these values we evaluate, at each k-point,
the eigenvectors of HP

Lieb, which give us the distribution, on the three pillars forming the unit cell, of the H and V
populations. This allows the evaluation, for each k-point, of the relative H and V population, and therefore the degree
of polarization, on each pillar. Note that, with respect to the S-band case, these eigenvalues also give us the relative
intensity of the Px and Py orbitals. As a final step, we evaluate, for each pillar, the average polarization, and the
average relative Px and Py populations on the entire k-space. As for the S band, we calculate, for each pillar, the
weighted average of the H and V populations and of the Px and Py populations on the entire k-space and, with these,
the polarization on each pillar and the ratio between the two P -like orbitals (different occupations of modes in the
P -type flat band above threshold can be seen in experimentally measured E-k slice [Fig. 2 of the main text]). Then,
in Fig. S6 we reconstruct the experimental population distribution and polarization pattern experimentally observed
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in the P flat-band condensate. For the population distribution, we use two Hermite-Gauss Px and Py modes with
the relative populations just found, for the polarization we plot on each pillar the colour corresponding to its degree
of polarization where the emission intensity is above 5%, and black (no polarization) where the emission intensity is
below this value similarly to the case of s-type flat band condensates.

0.2

0.4

0.6

0.8

1.0

⟷

-0.4

-0.2

0

0.2

0.4

⟷

FIG. S6. Calculated real space emission (left) and polarization pattern (right) for the P flat band obtained from the TB model.
In good agreement with the experiments, on the A (C) sites the polariton population is predominantly (with a ratio of 5.9) in
Px (Py) orbitals and is horizontally (vertically) polarized with a polarization degree of 0.43.

-2 -1 0 1 2

-0.5

0.0

0.5
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0.0

0.5
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-0.5

0.0

0.5

ky/(π/α)
E
[m
e
V
]

FIG. S7. Calculated band structure of the Lieb lattice using the TB model for the P modes of each pillar. From left to right
kx/(π/α) = 1, 1.5, 2. See Fig. S5 for the part of the band obtained from the S modes.

2D SCHRÖDINGER EQUATION IN A PERIODIC POTENTIAL

In addition to the TB model described in the previous section, we performed a detailed numerical study using
the Schrödinger equation in a Lieb lattice potential in order to explain the missing bands of the experimental band
structure [see Fig. 1(b) of the main text]. Moreover, in order to better reproduce the experimental data, we also
include the effect of a finite lifetime. In contrast to the TB model described above this model allows the reproduction
of the band structure and polariton emission in energy-momentum space essentially without fitting parameters. First,
we find the Bloch states and band structure of the Lieb lattice. For this we solve the stationary Schrödinger equation
on a discretized Lieb lattice cell with potential U(r) formed by microcavity pillars in a Lieb lattice. Inside the bulk of
our lattice the top DBR was only partially etched without affecting the active region [Fig. S1(d)]. Whilst the depth
of the etching is not exactly known we estimate that about 4-6 DBR pairs in the top mirror are left after etching [Fig.
S1(d)]. Using the transfer matrix method we estimate the potential landscape created by our etched pillars, which is
in the form of a circular well:

U(r) =

{

0, inside pillar

10 meV, outside pillar

We take effective mass m∗ = 5 × 10−5me estimated from the experimental data for polaritons in an unconstrained
cavity [shown in Fig. S1(a)]. The calculated band structure is shown in Fig. S8.
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We also calculate the far-field emission as a function of the wavevector k of the outgoing radiation. We assume all
Bloch states in the Brillouin zone (BZ) are equally populated. Then, the histogram for the far-field emission can be
calculated as a sum of intensities contributed by each Bloch wave function ΨK,n(r) of the first BZ at a given energy,
that is,

I(k, E) ∼
∑

En(K)=E

|F [ΨK,n(r)]|
2

where F denotes the Fourier transform and the quasimomentum K belongs to the first BZ. The predicted far-field
intensity is presented in Fig. S8 and is similar to that observed in our experiments.

FIG. S8. Band structure for Lieb lattice at ky = 0 and the expected far-field emission.

The far-field emission presented in Fig. S8 does not take into account the finite lifetime of polaritons in the real
system. To account for the damping effects we solve the time-dependent Schrödinger equation

ih̄
∂Ψ

∂t
= −

h̄2

2m∗
∆Ψ+ U(r)Ψ (S1)

where the real part of the potential Re U(r) is a Lieb lattice formed by microcavity pillars and Im U(r) accounts for
the finite polariton lifetime. We take Re U(r) as in the band structure calculation (a 10 meV well) and Im U(r) equal
to −0.1 inside pillars and −0.5 outside pillars. We take random initial conditions in the form

Ψ(r, 0) =
∑

K∈BZ

∑

n

cK,nΨK,n(r) (S2)

where random complex coefficients cK,n satisfying |cK,n| = 1 and ΨK,n(r) are Bloch wave functions found from
the stationary analysis described above. Starting from random initial conditions (S2) we evolve the time-dependent
Schrödinger equation (S1) for time sufficient for polaritons to decay due to the inherent damping. Initial conditions (S2)
imply that all zones are excited homogeneously for each K in the first BZ, as in the previous calculation. The resulting
intensity in the far-field is given by the average over the random initial phases I(k, E) ∼ 〈|F [Ψ(r, t)]|2〉ck,n

where F
denotes the Fourier transform in time and spatial coordinates. Examples of the far-field emission in the presence
of damping for different fixed in-plane wave vectors is shown in Fig. S9(b). The results are consistent with the
experimentally measured spectra shown in Fig. S9(a), where we see highly inhomogeneous emission intensity across
the full set of energy bands calculated and shown in Fig. S8.
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FIG. S9. Experimentally measured (a) and numerically calculated (b) far-field emission of the Lieb lattice at ky/(π/α) = 0.3,
0.8, 1.4, 1.9, 2.4.

ESTIMATION OF Px,y ORBITAL POPULATIONS

Fig. S10 shows the data binning technique used to estimate the relative populations of the two orthogonal P orbitals
in the P flat-band condensate. The intensity (CCD counts) detected within the left/right and top/bottom squares
delimited by the orange and green squares are attributed to the Px and Py orbitals respectively. For each pillar the
ratio of the populations of the more intense orbital to that of the less intense orbital was taken, corresponding to
|ψPx

|2/|ψPy
|2 and |ψPy

|2/|ψPx
|2 for the A and C sites respectively. The mean of the ratios gives a factor of 6.2 for

the populations between the two orbitals.

FIG. S10. The spatial distribution of the transmitted intensity at the energy of the P flat band (corresponding to Fig. 2(j) of
the main text). The orange and green squares indicate the integration area used to evaluate the polariton population attributed
to Px and Py orbitals, respectively, in the main text. The white circles show pillars constituting one unit cell.
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ENERGY FRAGMENTATION OF FLAT BAND CONDENSATES

Above the threshold for multimode condensation in our sample, the microscopic spectral properties of the polariton
condensates were studied using the protocol developed in Ref. [47] as shown in the main text. This required analysis
of the energy-resolved slices (corresponding to a narrow line of real space on the sample) of the tomographic images
taken by scanning the final lens before the spectrometer. By looking along lines of pillars, peaks in the real-space
energy spectrum were identified and attributed to underlying photonic orbitals.

FIG. S11. On-site energy (with respect to ensemble average) vs. normalized intensity of individual photonic orbitals for data
shown in Fig. 3 of main text.

In Fig. S11 we show a plot of the data presented in Fig. 3 of the main text. Each data point corresponds to the
emission from one orbital lobe (1 and 2 bright lobes for the S and P orbitals respectively). Along the horizontal axis
we see the intensity of the identified peaks, normalized to the average intensity of the ensemble (the Gaussian pump
creates a broad distribution of intensities across the sites). Along the vertical axis the energy detuning of the peaks
relative to the average condensate energy is plotted. A significant energy variation about the mean can be seen in the
case of the flat-band condensates, which is absent for the AB band condensates. A positive correlation (positive slope)
between the population (intensity) and on-site energy exists for the flat bands, as demonstrated by the solid fitted
least squares lines, whereas the AB band data points all lie at the mean energy (dashed black line). Note that the
energy fragmentation is on the order of 100-150 µeV, which lies within the spectral width of the flat-band condensates
(∼ 0.2 meV) hence enabling the destructive interference associated with flat bands.

In Ref. [47], Baboux and co-workers reported a similar fragmentation effect, which they attribute to photonic
disorder in the sample and that arising from imperfections of the fabrication process. Here we estimate that the
disorder is up to a few tens of µeV, whilst the fragmentation shown in Fig. S11 exceeds 100 µeV. Furthermore we
demonstrate a clear correlation between the energy of the condensate emission on individual lattice sites and the
population [61], suggesting that the effect of interactions on the condensate fragmentation is dominant.

DISCUSSION OF STRONG VS. WEAK COUPLING

Under the large irradiances used in our experiment polaritons undergo a significant blueshift, as can be seen in Fig.
2(c)-(g) of the main text. The threshold irradiances for condensation are approximately 1400, 2500 and 3000 kW
cm−2 for the P flat band, S flat band and AB band respectively. At these thresholds, these three modes remain 0.4,
0.52 and 0.82 meV below the energy of the corresponding cavity modes, which are estimated from the LPB-cavity
detuning in the planar region. These values correspond to blueshifts of 37%, 39% and 49% of the LPB-cavity detuning.
Beyond these thresholds the condensed modes continue to experience a blueshift with further increase of pumping
power, and at the highest irradiance studied (8930 kW cm−2) the detunings of the 3 condensates still reside 0.16, 0.33
and 0.39 meV below the cavity. Although the cavity mode may experience a significant redshift under high carrier
densities, which could lead to conventional photon lasing being mistaken for polariton lasing [60], we believe that in
our measurements the emission originates from polaritons, since photon emission is not expected to demonstrate a
continuous blueshift with power, responsible for the fragmentation of the flat-band condensates shown in Fig. S11.
Rather it is expected to show a redshift due to a change in the cavity refractive index.


