This is a repository copy of *Mosquito Biting Modulates Skin Response to Virus Infection*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116248/

Version: Supplemental Material

Article:
Pingen, M orcid.org/0000-0001-5689-9076, Schmid, MA, Harris, E et al. (1 more author) (2017) Mosquito Biting Modulates Skin Response to Virus Infection. Trends in Parasitology, 33 (8). pp. 645-657. ISSN 1471-4922

https://doi.org/10.1016/j.pt.2017.04.003

© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Monocytes 6 recruitment & differentiation

Virus 4 infection of stromal cells or resident DCs/MΦs

Neutrophils 5 recruitment & orchestrate response

Monocytes-derived DCs/MΦs 7 infection

DC migration 8 to lymph nodes

Disease 10 severity

Virus 9 drainage to lymph nodes then to brain, liver, lung or other organs

Mast cells 1 degranulation

Blood vessel 2 permeability

Plasma 3 leak & edema

Virus is transmitted with mosquito saliva into the dermis

Epidermis

Dermis

mosquito saliva

virus

mast cell

macrophage (MΦ)

resident dendritic cell (DC)

neutrophil

monocyte

monocyte-derived DC

Blood vessel

Plasma

Mast cells

Epidermis

Dermis

Virus

Neutrophils

Monocytes

Monocyte-derived DCs/MΦs

DC migration

Disease

Virus