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Environment, University of Leeds, Leeds, UK;2School of Chemical and Process Engineering, University of
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Abstract

Gas flow in shale is a very complex phenomenon, currently investigated using a variety of techniques including
the analysis of transient experiments conducted on full core and crushed shale using a range of gases. A range of
gas flow mechanisms may operate in shale including continuum flow, slippage, transitional flow and Knudsen
diffusion. These processes, as well as gas sorption, need to be taken into account when interpreting experimental
data and extrapolating the results to the subsurface. Several models have been published that attempt to account
for these different processes. Unfortunately, these have a large number of unknown parameters and few studies
have assessed the extent to which transient experiments may be used to invert for the key unknowns or the errors
that are associated. Here we present a methodology in which various inversion techniques are applied to assess
the viability of deriving key unknowns which control gas flow in shale from transient experiments with a range
of noise. A finite volume method is developed for solving the model of Civan (2010, 2011a,b) of transient gas
flow in shale. The model is applicable to non-linear diffusion problems, in which the permeability and fluid density
both depend on the scalar variable, pressure. The governing equation incorporates the Knudsen number, allowing
different flow mechanisms to be addressed, as well as the gas adsorption isotherm. The method is verified for
unsteady-state problems for which analytical or numerical solutions are available. The method is then applied to
a pressure-pulse decay test. An inverse numerical formulation is generated, using a minimisation iterative
algorithm, to estimate some unknown physical parameters. Both numerically simulated noisy and experimental
data are input into the formulation of the inverse problem. Error analysis is undertaken to investigate the accuracy
of results. A good agreement between inverted and exact parameter values is obtained for several parameters.
However, it was found that the strong correlation between intrinsic permeability and tortuosity meant that it was
not possible to accurately invert simultaneously for these two parameters from the current pressure-pulse decay
model.

1. Introduction

Gas production from shales has revolutionized the USA gas market over the last decade and has been the topic of
investigations of many recent studies. However, gas flow in shale seems to be a complex phenomenon that is still
not entirely understood. The pores in shales are very small, at the scale of nanometers (Javadpour, 2009), which
means that different gas transport mechanisms occur than in rocks with larger pores. In general, either the
continuum or the molecular approaches can be used for modelling fluid flow through micro scale channels.
Macroscopic fluid properties can be found using the continuum approach. However, on a small scale of physical
systems, the validity of the standard continuum approach with no-slip boundary conditions reduces (Roy, 2003).
The degree of appropriateness of the continuum model is determined by a dimensionless parameter, the Knudsen
number,Kn, which is defined as the ratio of the fluid mean-free-path of molecules Ȝ and the macroscopic length
scale of the physical system (mean hydraulic radius for example) (Roy, 2003). In porous media, the macroscopic
length scale of the physical system is represented by an equivalent hydraulic radius, Rh, so:݊ܭ =

୦ߣܴ .																																																																						 (1)

The Knusden number represents a measure of the degree of rarefaction of gases encountered in small flows
through narrow channels. The rarefaction effects become more pronounced with an increase inKn, and eventually
the continuum assumption breaks down (Roy, 2003). The fluid flow regimes can be classified, depending on the
Knudsen number, into continuum, slip, transitional and free-molecule (Knudsen) flow (Roy, 2003). Continuum
flow is characterised byKn<0.01; the ideal gas constant, Darcy’s law and the continuum flow assumption all
remain  valid  in  this  case.  ForKn≥0.01, an effective permeability must be considered, to correct for Knudsen
diffusion and/or slip flow, leading to a deviation from Darcy’s law. The molecular interactions with the porous
medium lead to the dependency of the apparent permeability on pressure (Freeman et al., 2011).

Gas flow in shale is currently being investigated using a variety of laboratory techniques including the analysis of
transient experiments conducted on core plugs and crushed samples using a range of gases (helium, nitrogen or
methane). Determining the permeability of shale is one of the main objectives in experimental methods. Extremely
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low permeabilities (i.e. <1 nD) have often been reported for gas shales. For example, Luffel et al. (1993) reported
permeabilites of <0.01 nD from shale. The pulse-decay method, introduced by Brace et al. (1968), and investigated
by several other authors (Lin, 1977; Hsieh et al., 1981; Neuzil et al., 1981; Chen and Stagg, 1984; Dicker and
Smits, 1988; Luffel et al., 1993), is a well-established transient laboratory technique for measuring the
permeability of low permeability rocks. Cui et al. (2009) were the first to expand the pulse-decay method with
consideration for gas adsorption. The pulse-decay method has also been used when including the Klinkenberg
effect (Jones, 1972; Janot et al., 2007; Janot et al., 2008).

Shale gas flow has been investigated using several modelling approaches. A comparison between different
methods for quantifying non-Darcy flow in shale nanopores is presented in Swami et al. (2012). The effects of
no-slip and slip flow, Knudsen diffusion, and Langmuir desorption on shale-gas production are considered by
Shabro et al. (2011a,b). Civan et al. (2011a,b, 2012) have introduced a theoretically improved model to incorporate
all gas flow mechanisms in shale. Their model is based on the Beskok and Karniadakis (1999) unified model for
gas flow in micro-tubes, which is valid over the whole range of flow regimes. The unified model of Beskok and
Karniadakis (1999) was also used by Florence (2007) to create an improved model to estimate the Klinkenberg-
corrected permeability using single-point steady measurements of low permeability sands. Sakhaee-Pour and
Bryant (2012) investigated the implications of adsorbed layers of methane and gas slippage at pore walls on the
shale gas flow behaviour.

The increased complexity of gas flow within shales means that these models have more unknown parameters than
simply the permeability constant needed to describe the Darcy flow. This means that more experiments and more
complex inversion schemes are needed to determine key parameters that affect gas flow in shale. Overall, current
publications appear to concentrate more on developing new models for gas flow in shales and less on the
practicalities of using these models to derive the parameters needed for experimental data for forward modelling.
As a first step to addressing this imbalance, the current paper presents a methodology in which various inversion
techniques are applied to assess the viability of deriving key unknowns, which control gas flow in shale from
transient noisy measurements. The paper begins by presenting a finite volume method (FVM) to solve the
nonlinear mathematical model for gas flow in shale presented by Civan et al. (2011 a,b, 2012). The method is
applicable to non-linear diffusion problems, in which the permeability and fluid density both depend on the
pressure. The governing equation incorporates the Knudsen number, allowing different flow mechanisms to be
addressed, as well as the gas adsorption isotherm. Various methods are then presented to invert experimental data
for 1, 2 and >2 unknowns. These are first tested on synthetic numerically simulated data with varying amounts of
noise before being applied to real experimental data.

To summarise, the main novelties and highlights of our paper are as follows:

•  The  gas  shale  model  for  pressure  pulse-decay  tests  given  in  the  papers  by  Civan  et  al.  (2011a,b)  has  been
revisited. We have tried to explain the gas shale model more clearly and rigorously and to ensure that the
appropriate inverse method of minimisation is correctly applied.

• A new FVM for solving numerically the direct problem for the nonlinear parabolic diffusion equation with
pressure dependent permeability subject to boundary conditions of the fourth-kind has been developed and
tested.

• The inverse method of minimisation has employed the NAG routine E04FCF. This is robust and shows some
independence of the initial guess for the sought parameters.

• We invert for three new parameters, namely the reference coefficients characterising the shale intrinsic
permeability and tortuosity. A sensitivity study is also performed prior to inversion.

• New experimental data obtained from our laboratory tests are inverted in order to add practical significance to
our study.

2. Experimental Method Setup

Pressure-pulse decay tests are performed in this study. The equipment consists of an upstream and a downstream
reservoir and a core holder in which a cylindrical sample (core plug) oflength L(m) is placed.Figure 1 shows a
schematic diagram of a pressure pulse-decay test, see also Figure 1 of Civan et al. (2011a). TheCartesian distances
in the horizontal flow direction of the two sample ends correspond to x=0 and x=L, respectively. The upstream
and downstream reservoir volumes are denoted by Vu and Vd, respectively. The gas used in the experiments
investigated in Section 9 is Helium.
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Figure 1. Schematic diagram of a pressure pulse-decay test. L represents the sample length; Vu and Vd denote the
upstream and downstream reservoir volumes, and pu and pd denote the pressures in the upstream and downstream
reservoirs.

Initially, a uniform pressure p0 applies throughout the system. The test is initiated by applying an increased
pressure in the upstream reservoir, denoted by pu, which is greater than the pressure in the downstream reservoir,
denoted by pd. Therefore, flow occurs from the upstream gas reservoir to the downstream gas reservoir. The
upstream and downstream pressures are recorded in time using pressure transducers. A high precision transducer
(i.e. 0.01% precision) is used to record the upstream gas pressure and a regular pressure transducer (0.1%
precision) is used to record the downstream gas pressure. A confining pressure is applied to the sample; this was
set to 1000psi in this study. The confining pressure is monitored using an additional pressure transducer. The
temperature is maintained constant at 21oC.

3. Apparent Gas Permeability

When replacing the expression of the mean-free-path of moleculesȜ and ofhydraulic radius Rh in Equation (1),
theKnudsen number can be written as (Civan et al., 2011a):

݊ܭ =
ߤ
݌4 ඨ ஶܭ୥߬୦ܯ߶୥ܴܶߨ ,																																																												 (2)

whereȝ is the viscosity of gas, p is the absolute gas pressure, Rg=8314.4 J/kmol K is the universal gas constant,
T is the absolute temperature,	߶ is the porosity of porous medium,Mg is the molecularmass of gas,Ĳh is the
tortuosity andK∞ is the intrinsic permeability of the tight porous medium.

Tortuosity is a measure of the sinuosity and interconnectedness of the pore space as it influences transport
processes through porous media, and it is influenced by the different flow regimes and hence gas pressures
(Clennell, 1997).

The permeability measured based on a Darcy-type gradient law by flowing a working-fluid (e.g. He, N2 or CH4)
through low-permeability rock samples is the apparent permeability and not the intrinsic permeability (Civan et
al., 2011a). The apparent gas permeability of gas-bearing shale can be related to the intrinsic permeability via the
following relationship (Beskok and Karniadakis, 1999):ܭ = (݊ܭ)ஶ݂ܭ ,																																																																							(3)

where f(Kn) is a flow condition function given in terms of the Knudsen number, the dimensionless rarefaction
coefficientĮ and the slip coefficient b:݂(݊ܭ) = (1 + (݊ܭߙ ൬1 +

ͳ݊ܭ4 െ 																																											.൰݊ܭܾ (4)

Civan (2010) introduces an empirical correlation of the form:ߙ଴ߙ െ 1 =
஻݊ܭܣ ܣ					, > ܤ,0 > 0,																																																					(5)

where A and B are empirical fitting constants andĮ0 is an asymptotic limit value of the dimensionless rarefaction
coefficientĮ (0< Į <  Į0). The values of these empirical constants are taken in this paper to be the same as the
values used in Civan (2010), Civan et al. (2011a, b), namely:Į0=1.358, A=0.178, and B=0.4348. These fitting
constants were estimated by Civan (2010) for the special sets of data of Loyalka and Hamoodi (1990).A detailed
discussion on the determination of dimensionless rarefaction coefficientĮ is presented in Beskok and Karniadakis
(1999).
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4. Gas Adsorption

In the shale gas flow process, some of the gas remains absorbed in shale.

Themass of gas adsorbed per solid volume is given by:																																																																					ݍ =
gܯsߩ

sܸtd

L݌݌Lݍ + ݌ ,																																																																							(6)

where qL and pL are Langmuir volume and pressure, respectively,ȡs is the density of porous sample,Mg is the
molecular weight of gas, and Vstd is the molar volume of gas at standard pressure and temperature (i.e. 273.15 K
and 101,325 Pa).

5. Governing Equations

5.1. Mathematical Formulation

To derive the governing equation for shale gas single-phase flow, the conservation of mass and of momentum
equations of gas flowing through the porous formation are combined to result in, see e.g. Civan et al. (2011a):	 ݐ߲߲ ߶ߩ] + (ͳ െ [ݍ(߶ ൌ ׏ ή ൬	ߤߩ 																																				,൰݌׏ (7)

whereȡ and µ denote the density and dynamic viscosity of the flowing gas, respectively,K is  the  apparent
permeability tensor of gas shale and t is time.

We neglect the term involving the gravity in this paper, because our applications of interest involve gas flow
through small porous material samples used in laboratory tests.

The density ofthe flowing gas is given bythe real-gas equation of state:ߩ =
gܴܼܶ݌gܯ ,																																																																														 (8)

where Z is the real gas deviation factor.

Substituting Equations (6) and (8)in Equation (7) leads to:߲߲ݐ ቈቆ gܼܴgܶܯ ߶ + (ͳ െ ߶)
gܯsߩ

sܸtd

L݌Lݍ + ቇ݌ ቉݌ ൌ ׏ ή ൭ቆ 	gܴܼܶ݌gܯ ቇߤ (9)																												൱.݌׏

By denoting: ߷ ؠ gܼܴgܶܯ ߶ + (ͳ െ ߶)
gܯsߩ

sܸtd

L݌Lݍ + (10a)																																																						݌ 	
the so-called apparentflowing gas densityand byડ the so-called apparent diffusivity tensor:ડ ؠ 	gܴܼܶ݌gܯ ߤ 																																																																												 (10b) 	
Equation (9) simplifies to:

ݐ߲(݌߷)߲ ൌ ׏ ή (ડ݌׏).																																																																								(11)

The applications in this paper consider properties of samples in the direction of flow. Consequently, the
components of the vector and tensor quantities in the flow direction denoted by x are used in the following leading
to the one-dimensional form of Equation (11):߲(߷݌)߲ݐ =

ݔ߲߲ ൬Ȟ (12)																																																																				൰,ݔ߲݌߲
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where ī represents the scalar apparent diffusivity.

The governing equation obtained and the use of the conservative form of this is the main difference between the
approach introduced in this paper and the one by Civan et al. (2011a), who introduced the apparent convective flux

term and an apparent transport coefficient. This results in their governing equation being given in terms of both
డ௣డ௫

and
డమ௣డ௫మ.  In our formulation, the approach considered is different, in that we use the conservative form of Equation

(9).

Equation (12) is the governing diffusion equation with the pressure p as a primary variable to solve for. In this
equation, both the apparentflowing gas density߷	and the scalar apparent diffusivity ī depend on p.

For convenience in their formulation, Civanet al. (2011a) introduced the following individual isothermal
coefficients of compressibility of the fluid viscosity, shale porosity and intrinsic permeability, and fluid density,
respectively:

థߚ =
1߶ ݌߲߶߲ , (݌)߶ = ߶଴exp ቆන ௣݌d(݌)థߚ

௣బ ቇ																																							 (13a)

௄ಮߚ =
ஶܭ1 ݌ஶ߲ܭ߲ (݌)ஶܭ						, = ஶ଴expܭ ቆන ௣݌d(݌)௄ಮߚ

௣బ ቇ																								(13b)

ఓߚ =
ߤ1 ݌߲ߤ߲ , (݌)ߤ = ଴expߤ ቆන ௣݌d(݌)ఓߚ

௣బ ቇ																																									(13c)

ఛ౞ߚ =
1߬୦ ߲߬୦߲݌ , ߬୦(݌) = ߬୦଴exp ቆන ௣݌d(݌)ఛ౞ߚ

௣బ ቇ																																(13d)

ఘߚ =
ߩ1 ݌߲ߩ߲ =

݌1 െ 1ܼ dܼ
d݌ ,																																																																																	 (13e)

where p0represents the pressure at the initial time. These isothermal coefficients of compressibility are also used in
our formulation.

When taking the isothermal coefficients of compressibilityfor porosity, permeability, viscosity and tortuosity to
have approximately constant values, the corresponding properties can be calculated using Equations (13a) − (13d),
as follows (Civan et al., 2011a): (݌)߶ = ߶଴expൣߚథ(݌ െ థߚ						,	଴)൧݌ ؆ const.																																				(14a)ܭஶ(݌) = ݌)௄ಮߚஶ଴expൣܭ െ ௄ಮߚ					,	଴)൧݌ ؆ const.																																				(14b)(݌)ߤ = ݌)ఓߚ଴expൣߤ െ ఓߚ							,	଴)൧݌ ؆ const.																																														(14c)߬୦(݌) = ߬୦଴expൣߚఛ౞(݌ െ ఛ೓ߚ							,	଴)൧݌ ؆ const.																																										(14d)

and the subscript ‘0’ of the properties indicates some reference some reference values such as defined at a reference
pressure. Substituting Equations(14a) − (14d)into Equation (2) leads to the following expression forKn:݊ܭ = ଴݊ܭ ݌଴݌ exp[ߚT(݌ െ (15)																																																										଴)],݌

where݊ܭ଴ is the Knudsen number evaluated at p0 and given by݊ܭ଴ =
଴ߤ
଴݌4 ඨ ஶ଴ܭ୥߬୦଴ܯ୥ܶ߶଴ܴߨ ,																																																												 (16	)

andȕT denotes Tߚ = ఓߚ +
1
2

൫ߚథ െ ఛ౞ߚ െ (17)																																																	௄ಮ൯.ߚ
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5.2.  Initial and Boundary Conditions

Equation (12) needs to be solved subject to initial and boundary conditions.

The initial condition specifies the pressure p everywhere on the domain0 < ݔ < at time ܮ t=0. In this case, the
pressure distribution in the sample (rock) is constant and is defined to have a reference value p0:݌ = 0						଴,݌ < ݔ < ,ܮ ݐ = 0.																																																							(18a)

We also need to specify p(0,0) and p(L,0):(0,0)݌ = (18b)																																																																																					௨଴,݌ (0,ܮ)݌	 = (18c)																																																																																					ௗ଴.݌

Dirichlet boundary conditions can be imposed on one side of the sample – either the downstream or the upstream
boundary. These are given by:݌ = ݔ						,(ݐ)୳݌ = 0, ݐ > 0,																																																													(19a) ݌	 = ݔ						,(ݐ)ୢ݌ = ,ܮ ݐ > 0.																																																													(19b) 	
At the other face of the sample, conservation of mass at the sample-reservoir interface is applied. The upstream
or the downstream mass-flux boundary conditions are given by (Lin, 1977):݀(ߩ uܸ)݀ݐ ൌ െܝߩ ή ݔ				,ሚܣܖ = ݐ							,0 > 0,																																																(20a) ߩ)݀	 dܸ)݀ݐ = + ܝߩ ή ݔ				,ሚܣܖ = ,ܮ ݐ > 0,																																																(20b)

respectively, whereu is the volumetric flux vector satisfying Darcy’s law,n represents the unit vector normal to
the open core flow surface andܣሚ = ୮ܸ Τ(ܮ߶) , where Vp is the effective pore volume of the core sample.
Rearranging Equations (20a) and (20b) and considering Vu and Vd are constant, the following relationships are
obtained: ݔ߲݌߲ = ୳ܸܣߤሚܭ (݌)ఘߚ ݐ߲݌߲	 ݔ				, = ݐ							,0 > 0																																																		(21a)

for the upstream mass-flux boundary condition, and߲ݔ߲݌ ൌ െ ܸୢ ܭሚܣߤ (݌)ఘߚ ݐ߲݌߲	 ݔ				, = ݐ							,ܮ > 0																																													(21b)

for the downstream mass-flux boundary condition.

5.3.  Non-dimensional Equations

The governing equation (12) is non-dimensionalised by introducing the following dimensionless variables:ݔҧ = ܮݔ ҧݐ						, = ଴ݐݐ , ҧ݌ = ୱ݌݌ , ߷ҧ = ߷߷଴ , Ȟത =
ȞȞ଴ ,																														 (22)

where ps is a scaling pressure, and the subscript ‘0’ of the properties indicates some reference values. In accordance
to Equations (10a) and (10b), the properties߷ and ī are calculated at the reference pressure as follows:߷଴ ؠ gܼ଴ܴgܶܯ ߶଴ + (ͳ െ ߶଴)

gܯsߩ

sܸtd

L݌Lݍ + ଴݌ 																																													 (23a)

and Ȟ଴ ؠ ଴ߤK଴	଴ܼ଴ܴgܶ݌gܯ ,																																																																											 (23b) 	
respectively.

The apparent gas permeability at the reference pressure is calculated using Equation (3) asܭ଴ = (24)																																																										.(଴݊ܭ)ஶ଴݂ܭ
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The reference value for time, t0, is given by:ݐ଴ = /	ଶܮ (Ȟ଴ ߷଴).Τ 																																																																																					 (25) 	
In non-dimensional form, Equations (12) becomes:߲(߷ҧ݌ҧ)߲ݐҧ =

ҧݔ߲߲ ൬Ȟത (26)																																																																										ҧ൰.ݔҧ߲݌߲

The initial condition given by Equations (18a) – (18c) will become:݌ҧ = ୱ݌଴݌ ,						0 < ҧݔ < 1, ҧݐ = 0,																																																	(27a)

ҧ(0,0)݌ =
ୱ݌௨଴݌ ,																																																																																						 (27b) 	

ҧ(1,0)݌ =
ୱ݌ௗ଴݌ ,																																																																																					 (27c)

The Dirichlet boundary conditions (19a) and (19b) become:݌ҧ = 	 (ݐ)ҧ୳݌ = /(ݐ)୳݌ ҧݔ						,ୱ݌ = 0, ҧݐ > 0,																																			(28a)݌ҧ = ҧୢ݌ (ݐ) = /(ݐ)ୢ݌ ҧݔ						,ୱ݌ = 1, ҧݐ > 0,																																				(28b)

and the mass-flux boundary conditions (21a) and (21b) become:߲݌ҧ߲ݔҧ = ୳ܸሺȞ଴/ ߷଴)ܣሚܮ ܭߤ (ҧ݌)ఘߚ ҧݐҧ߲݌߲ ҧݔ						, = ҧݐ							,0 > 0,																																				(29a)߲݌ҧ߲ݔҧ ൌ െ ܸୢ ሺȞ଴/ ߷଴)ܣሚܮ ܭߤ (ҧ݌)ఘߚ ҧݐҧ߲݌߲ ҧݔ					, = ҧݐ							,1 > 0.																																(29b)

6. Finite Volume Method

The finite volume method (FVM) (or control volume method, CVM) is a numerical technique well-suited for the
simulation of various types of conservation laws (Patankar, 1980). When the integral conservation law is enforced
for each control volume, a linear algebraic system is obtained by numerical integration of the conserved variables
over the volume. If we denote byݔߜ the spatial step size and byݐߜ the time step size, then the conservative finite
volume discretisation of the non-dimensional Equation (26) (when using an implicit time-stepping and dropping
the overbars for simplicity) is:

௜௡ାଵ(݌߷) െ ݐߜ௜௡(݌߷) =
ݔߜ1 ൥൬Ȟ ൰௜ାଵଶݔ߲݌߲

௡ାଵ െ ൬Ȟ ൰௜ିଵଶݔ߲݌߲
௡ାଵ		൩								

=
ݔߜ1 ቈȞ௜ାଵଶ௡ାଵ ቆ݌௜ାଵ௡ାଵ െ ݔߜ௜௡ାଵ݌ ቇ െ Ȟ୧ିଵଶ௡ାଵ ቆ݌௜௡ାଵ െ ݔߜ௜ିଵ௡ାଵ݌ ቇ		቉									

=
1

ଶ(ݔߜ) ൤Ȟ௜ାଵଶ௡ାଵ(݌௜ାଵ௡ାଵ െ (௜௡ାଵ݌ െ Ȟ୧ିଵଶ௡ାଵ(݌௜௡ାଵ െ (௜ିଵ௡ାଵ݌ 		൨ ,																																				 (30)

where the subscript i denotes a spatial step, i=1,..., Nx, and the superscript n denotes a time step, n=0,.., Nt−1, with
Nx and Nt representing the numberof control volumes, and of time steps, respectively.

The discretisation of the governing equation over the control volumes results in a non-linear system to be solved
at each time step. Therefore, an iterative non-linear solver is required at each time step. At each iteration, the
system is linearized by evaluating the pressure-dependent diffusion coefficientsȞ௜± భమ at the current pressure values.

The subsequent linearized system is solved using a tri-diagonal matrix algorithm. The coefficients are recomputed
and the system is solved again, until convergence is achieved. Furthermore, since the apparent flowing gas density߷	and the scalar apparent diffusivity ī depend on the primary variable p, both these properties are evaluated at
each iteration using the pressure value at the previous iteration (which is the initial time for the first iteration at
the first time step).

The real gas deviation factor Zis evaluatedin  each  control  volumes  for  each  time  step,  using  the  improved
correlation developed by Al-Anazi and Al-Quraishi (2010). The apparent flowing gas density߷ can therefore be
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calculated from Equation (10a) at each time step. To calculate the apparent scalar diffusivity ī, the value ofKn is
determined first at each time step using Equation (15), then the dimensionless rarefaction coefficientĮ can be
determined using Equation (5). This allows the calculation of the flow condition function f(Kn) at each time step,
using Equation (4) and then the apparent permeability K, using Equation (3). Therefore, the apparent scalar
apparent diffusivity ī can be calculated at each time step using Equation (10b).

The boundary conditions are also evaluated at each iteration, since they depend on the primary variable, p. The
isothermal coefficients of compressibility of fluid densityߚఘ(݌ҧ) 	needed in the mass-flux boundary conditions
(29a) and (29b) are calculated using Equation (13e), with the values of Zdetermined and the corresponding
pressure values. The resulting linearised equation is solved at each iteration and the solution p at the current time
step is used to update the properties and boundary conditions at the next time step. The procedure is repeated until
the desired time has been reached. In case of a steady-state problem, the number of time steps is taken to be one
ݐߜ) ൌ λ	leading	to	 1 Τݐߜ = 0),	and the procedure is applied only once, using several iterations to achieve
convergence.

7. Direct Solution

7.1. Verification of Numerical Approach

The developed numerical approach can also be applied for problems governed by the diffusion Equation (12), in
which the properties߷  andȞ  do not depend on the primary variablep. The boundary conditions have been
implemented to have the general form:ܣ଴݌ + ଵܣ ݔ߲݌߲ + ଶܣ ݐ߲݌߲ 	 = ଴ܤ 																																																																									(31)

with Ai, i=0,1,2 and B0 are coefficients which are either constants or variable and they can depend on p, such that
the algorithm can handle different boundary condition types.

Example 7.1.

The approach was first tested on the diffusion equation:߲ଶ݌ҧ߲ݔҧଶ =
ҧݐҧ߲݌߲ ,							0 < ҧݔ < ҧݐ						,1 > 0																																																														(32)

with initial and boundary conditions in the non-dimensional form given by:		݌ҧ = 0, 0 < ҧݔ ൑ ҧݐ					,1 = 0,																																																																									(33a)݌ҧ(0,ݐ) = 1	and		݌ҧ(1,ݐҧ) = ҧݐ			,0 > 0.																																																																(33b) 	
This problem has an analytical solution available (Al-Dhahir and Tan, 1968); mesh independence of our numerical
FVM was checked and ensured and moreover, when compared with the analytical solution, percentage error is
decreasing when using finer meshes from very early times (see Table 1).Furthermore,an excellent agreement
between the numerical and analytical solutions was obtainedfor Example 7.1 for later times (Figure 2).

Nt 25 50 100

Nx Solution Percentage
error (%)

Solution Percentage
error (%)

Solution Percentage
error (%)

51
0.0856 8.34 0.0852 7.90 0.0843 6.64

101
0.0833 5.48 0.0826 4.63 0.0815 3.12

201
0.0820 3.76 0.0811 2.70 0.0799 1.06

Analytical
0.0790 0.0790 0.0790

Table 1. Comparison between the numerical FVM solution and analytical solution for p(0.5,0.04) for various
meshes obtained using Nx=51, 101 and201 respectively, and Nt=25, 50 and 100 respectively, with the
corresponding percentage errors, for Example 7.1.
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Figure 2. Numerical and analytical solutions for Example 7.1obtained for Nx=101 and Nt=100, at the non-
dimensional timeݐҧ = 3.0	for Ͳ ൑ ҧݔ ൑ 1.

Example 7. 2

In the second example we consider solving the diffusion equation:߷ҧ ҧݐҧ߲݌߲ (ݐ,ݔ) ൌ Ȟത ߲ଶ݌ҧ߲ݔҧଶ (ҧݐ,ҧݔ)								; א (0,1) × (0,1],																																									(34)

where߷ҧ	and	Ȟത are constants, with initial and boundary conditions (in non-dimensional form) given by:݌ҧ(0,ݔ) = 0, Ͳ ൑ ҧݔ ൑ ҧݐ					,1 = (ҧݐ,1)ҧ݌(35)																																																										,0 = 0,			0 < ҧݐ 	 ൑ ҧݐҧ߲݌߲(36)																																																																																,1 (ҧݐ,0) = ௨ߥ ҧݔҧ߲݌߲ (ҧݐ,0) + 0								u,ߛ < ҧݐ 	 ൑ 1;	 uߛ							 ് 0.																							(37)

Although this problem has an analytical solution available (Esaki et al., 1996) we compare our numerical results
with those presented in Lesnic et al. (1997), who used a weighted finite difference method.Figure 2a shows the
good agreement achieved from this comparison for the pressure increase curve, p(0,t), when L= 3cm, the mean
value of the hydraulic conductivity is 1.35 x 10-6cm/s and a constant inflow rate of 1.6 x 10-3cm3/s is supplied to
the upstream reservoir (see Lesnic et al., 1997 for complete experiment data and notations). Using their data leads
to the following values for߷ҧ	and	Ȟത:߷ҧ = 1.66 × 10ିସ		and	Ȟത = 1.																																																																				(38)

The constants in the upstream boundary condition (37) become:ߥ௨ = uߛ			,5.424 = 	5.33.																																																																										(39)
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Figure 2a. Numerical results obtained by the FVM (ƇƇƇ) with Nx=101, Nt=100, and the weighted average finite-
difference method presented in Lesnic et al. (1997) (− − − −), for the pressure increase curve, p(0,t), for Example
7.2.

Example 7. 3

Other tests of the FVM include examples in which߷ҧ	and	Ȟത are constant and the boundary conditions are of the
type: (0,ݔ)ҧ݌	 = 0, 0 < ҧݔ ൑ ҧ(0,0)݌					,1 =

௦݌௨଴݌ ് ҧݐҧ߲݌߲(40)																																							,0 (ҧݐ,0) ൌ െߥ௨ ҧݔҧ߲݌߲ 0				,(ҧݐ,0) < ҧݐ 	 ൑ ҧݐҧ߲݌߲(41)																																																									,1 (ҧݐ,1) = ௗߥ ҧݔҧ߲݌߲ 0					,(ҧݐ,1) < ҧݐ 	 ൑ 1,																																																												(42)

representing a mathematical model of the transient pulse test designed by Brace et al. (1968), and investigated by
Neuzil et al. (1981). In their paper, Neuzil et al. (1981) investigated the conditions of determining hydraulic
properties of tight rocks by a graphical method based on analytical solutions to the transient pulse test presented
in Hsieh et al. (1981). Numerical results are presented for the case when hydraulic conductivity is 5.2 x 10-10 m/s
and the dimensionless parameterߚ, which denotes the ratio of compressive storage in the downstream reservoir
to compressive storage in the upstream reservoir isߚ = 0.2 (see Neuzil et al., 1981 and Hsieh et al., 1981 for
complete experiment data and notations).

Figure 3 shows the numerical results for pressure at the upstream boundary	݌ҧ(0,ݐ) (red) and downstream
boundary݌ҧ(1,ݐ) 	(blue) for this example, obtained for Nx=101 and Nt=100, in comparison to the results obtained
by the graphical method based on analytical solutions presented in Neuzil et al. (1981). A relatively good
agreement between the two sets of solutions is in evidence in this figure.
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Figure 3. Numerical results obtained by FVM (−−−−) and the graphical method based on analytical solutions
presented in Neuzil et al. (1981)  (− − − −) whenߚ = 0.2, for the pressures at the upstream and downstream
boundaries, for Example 7.3.

7.2.  Experimental Validation Under Steady-State Conditions

Example 7.4

The numerical approach was validated by comparison with the experimental results of Pong et al. (1994) on a
steady-state example. The example involves measurements of nitrogen gas pressures during flow through a micro-
channel under steady-state conditions. The experimental data are for the inlet pressures pu0 of 135kPa, 170kPa,
205kPa, 240kPa and 275kPa, and a constant outlet pressure of 100.8 kPa.

Figure 4 shows the results  obtained by the FVM for  the five different  inlet  pressures,  obtained with Nx=201,
superposed on the numerical and experimental pressure profiles of Civan et al. (2011a) and Pong et al. (1994),
respectively.  A very good agreement is in evidence between our solution and the other two sets of results, with
our results being undistinguishable from the numerical results of Civan et al. (2011a).

Figure 4. Pressure profiles obtained by FVM (in colour) superposed on the numerical pressure profiles of Civan
et al. (2011a) (in black) and the experimental data of Pong et al. (1994) (with markers).
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7.3.  Numerical Results for Pressure-Pulse Decay Tests

The numerical approach was tested on two pressure-pulse decay tests (unsteady state examples).

Example 7. 5

This example is a numerical simulation of Test #2 from Civan et al. (2011b, 2012). The simulated gas used was
the same, namely nitrogen. The upstream reservoir pressure was kept constant during this test, at pu= 35atm=
3,546,375Pa, that is, (ݐ,0)݌ = ݐ					,୳݌ > 0,																																																																																	(43)

whilst the initial pressure is (0,ݔ)݌ = 0					଴,݌ < ݔ < (44)																																																																							,ܮ 	
where p0=1atm=101,325 Pa. At the downstream boundary, condition (21b) is applied.

The data was taken as in Table 1 from Civan et al. (2011b); they are also presented in SI units in Appendix A of
this paper. This example has the Langmuir gas pressure and volume equal to zero. The reference time t0 is found
from Equation (25) to be 1560.5s.

Figure 5 shows the pressure at the downstream boundary pressure versus time for this test (pressure at upstream
boundary kept constant) obtained with Nx=201 and Nt=1000, in comparison with the results presented in Figure 9
of Civan et al. (2011b)  and very good agreement can be observed.

Figure 5. Numerical results for pressure p(L,t) at the downstream boundary x=L obtained by FVM in
comparison with the results of Civan et al. (2011b) Test #2 for Example 7.5.

Pressure profiles across length of sample are shown inFigure 6. The times at which the pressure profiles were
plotted were chosen such that the pressure values at the downstream boundary were very close to those presented
by Civan et al. (2011b) in Figure 13 of their paper. However, the time levels (in minutes) necessary for the system
to reach these pressure profiles are different from the time levels indicated by Civan et al. (2011b). The difference
in times is believed to be due to the computational differences of the two approaches or perhaps some different
values for the input data. However, a reduction in the factor between the two sets of times is observed, this gets
to 1.32 for the last time level presented (79.6min in our test and 60min in Civan et al., 2011b test).
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Figure 6. Pressure profiles across the length of sample obtained for Example 7.5. In this figure, t=14.3min
corresponds to the lowest curve and the subsequent curves increase monotonically.

Example 7. 6

This example is a numerical simulation of the pressure-pulse decay test presented in Civan et al. (2011), namely
flow under transient-state conditions. The same gas is considered, namely methane. The downstream reservoir
pressure was kept constant in this example, namely to pd =101,325Pa, that is,(ݐ,ܮ)݌ = ݐ					,ୢ݌ > 0,																																																																										(45)

whilst the initial pressure is given by Equation (44) with p0=1atm=101,325Pa. At the upstream boundary(0,0)݌ ୳଴݌= = 500kPa. Condition (21a) is applied at the upstream boundary.

The other data used are shown in Appendix A of this paper (in SI units), consistent with the data given in Civan
et al. (2011a). This example has the Langmuir gas pressure݌௅ = 7.5 × 10଺Pa	 and Langmuir gas volumeݍ௅ =
0.01std	 mଷ kgΤ .	The reference time t0 is found from (25) to be 2107.78s.

Pressure profiles across length of sample obtained with Nx=201 and Nt=1000 are shown inFigure 7. These profiles
were plotted at the same times as the ones given in Civan et al. (2011a) (Figure 3 in their paper). A similar
behaviour can be noticed, however the times at which the two sets of profiles are reached are different. The
difference in times is believed to be due to some input data being different, as well as to mathematical differences
between the solution for p(0,t) when imposing the boundary condition (21a) in our paper, and the boundary
condition (57) in Civan et al. (2011a) paper.
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Figure 7. Pressure profiles across the length of sample obtained for Example 7.6 by the FVM.

8. Inverse Problem Formulation

8.1.  Known Input Parameters

When running a pressure-pulse decay test, some of the parameters needed in the governing equation are known
or can be directly determined. Some of the core sample properties (length, diameter, grain density) are known.
The remaining core sample property, the porosity, is determined separately, for example using techniques
described in Luffel et al. (1993). Once the porosity is determined, the compressibility coefficient for porosityߚథ
can be determined using the approach outlined below. A power-law relationship between pore volume
compressibility and net effective confining pressure has been experimentally determined from laboratory data
from very tight gas sandstones presented by Byrnes et al. (2009):ߚథ = 10൫ିଵ.଴ଷହା଴.ଵ଴଺/ థ೛బ.ఱ൯× ୪୭୥భబ௣೐ାସ.଼ ହ଻థ೛షబ.బయఴఱ

,																															(46)

whereߚథ is the pore volume compressibility in 106/psi,߶௣ 	 is the unconfined routine porosity (in %) and pe is the
average net effective confining pressure at whichȕɎ applies (in psi). As such, for a net effective confining pressure
of pe=5000psi, and a porosity of߶௣ = 6%, the compressibility coefficient for porosityߚథ= 1.07x10-9Pa-1.

The gas properties (gas type, molecular mass, critical temperature and critical pressure, universal gas constant,
viscosity, molar volume of gas at standard temperature and pressure) are known, while the compressibility
coefficient for fluid viscosity,ȕȝ, can be determined using Equation (13c) from the dependence of viscosity on
pressure at the prescribed temperature of the core flow tests (see Civan et al., 2011a). The pressure-pulse decay
tests conditions, namely: temperature, initial gas pressure, upstream (or downstream) gas pressure, upstream and
downstream reservoir volume are all known.

Some of the flow parameter values are also known or can be determined. The Langmuir gas pressure and Langmuir
gas volume can be determined by consideration of the adsorption/desorption effects according to Ross and Bustin
(2007).

The compressibility coefficient for intrinsic permeabilityȕK∞ can be determined using the approach outlined
below. A power-law relationship between intrinsic permeabilityܭஶ (in D), and the net stress has been
experimentally determined in our laboratory, of the form:ܭஶ(݌) = ாି݌଴ܭ ,																																																																																	(47)

whereܭ଴ = ,is the permeability (mD)	଴ா݌ஶ଴ܭ p is  the net  stress (psi)  and Eis a dimensionless constant. This
relationship has been determined for values of K0 > 0.01mD (with E<0).

Using the definition ofȕK∞, given by Equation (13b), and Equation (47) by differentiation with respect to p leads
to the following expression ofȕK∞ when K0 > 0.01mD (with E<0):ߚ௄ಮ(݌) ൌ െ ݌ܧ .																																																																																						 (48a)
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For K0 < 0.01mD, E>0 and Equation (48a) is changed to:ߚ௄ಮ(݌) =
݌ܧ ,																																																																																										 (48b)

to account for the positive sign ofȕK∞.

The dimensionless constant E has been determined to vary between [-2, 2] for K0 varying between [10-18, 10-4]D.
When choosing the range [10-18, 10-17]D for K0, the constant E is ܧ = 0.106. Then, from (48b), the value ofȕK∞
for a net stress of p=2000psi is determined to be 7.68x10-9 Pa-1.

Therefore, all parameters except the intrinsic permeability K∞0, tortuosityĲh0 and the compressibility coefficient
for tortuosityȕĲh are either known or can be determined. The values of these three parameters are obtained using
an inverse problem formulation, described in the next section.

8.2.  Inverse Problem: Determination of Unknown Parameters

An inverse problem is formulated as follows: minimise the nonlinear least-squares objective function defined as:

൫ܺ൯ܨ = ෍ൣ݌ҧ൫ܺ; ௜൯ݐ,0 െ ௜൯൧ଶெݐ,ҧ൫0݌
௜ୀଵ ,																																																										 (49)

whereܺ =( K∞0, Ĳh0, ȕĲh ) is the vector of values for the parameters to be inverted;݌൫ܺ; ݔ	௜൯ is the computed pressure at the upstream boundaryݐ,0 = 0  obtained by solving the direct problem;݌൫0,ݐ௜൯ is the given measured or numerically simulated pressure at the upstream boundary	ݔ = ௜ݐ;0  (i=1,..,M)  are instants at which the pressure is measured.

In the case of numerically simulated data, in order to avoid an inverse crime, care is taken that the direct and
inverse solver have different mesh sizes, e.g. Nxand Nx+1 discretisation points in the direct and inverse problems,
respectively.

The functionܨ൫ܺ൯ is defined for the upstream boundaryݔ = 0;  a  similar  function  can  be  defined  for  the
downstream boundaryݔ = 1.

It should be pointed out that this objective function is different from the one given in Civan et al. (2011a, b). The
sum of least squares used in their papers is defined in terms of the calculated and measured pressure gradients,
rather than the calculated and measured pressures at the sides of the core plug. The pressure gradients used in their
sum of least squares are estimated from pressure measurements using finite-difference approximations.

In the remaining of this section we investigate the retrieval of the parameters K∞0, Ĳh0and ȕĲh for the pressure-pulse
decay test described in Example 7.6. We take Nt=1000 and Nx=201.

8.2.1. Sensitivity Analysis

Prior to performing the inverse analysis of identifying all 3 unknown parameters, a sensitivity study was
undertaken, by calculating the sensitivity coefficients, as a function of time. Sensitivity coefficients are the first
derivatives of the measured quantities, i.e. upstream pressure, with respect to the unknowns, see e.g. Banks et al.
(2007). In general, the sensitivity coefficients are desired to be large and uncorrelated.

The sensitivity coefficients are calculated as:

௜ܵ(ݐҧ) =
ҧ,ܺ൯߲ݐ,൫0	ҧ݌߲ ௜ܺ =

;ҧݐ,ҧ(0݌ ଵܺ,…, ௜ܺ ൅ ȟ௜,…,ܺଷ	) െ ;ҧݐ,ҧ(0݌ ଵܺ,…, ௜ܺ,…,ܺଷ	)ȟ௜ , ݅ = 1,2,3,													(50)

whereܺ = ( ଵܺ,ܺଶ,ܺଷ) = ൫ܭஶ଴,߬୦଴,ߚఛ౞൯	andȟ௜ = 1% × ௜ܺ.
Figure 8 shows the sensitivity coefficients for K∞0, Ĳh0 andȕĲh. As it can be noticed, the sensitivity coefficients
for the three parametersare close to zero for͸ ൑ ҧݐ 	 ൑ 	10.	This indicates that on this time interval the upstream
pressure݌ҧ	(0,ݐҧ) does not depend significantly on any of the three parameters. Therefore, our inversion
investigation focuses on the initial timeͲ ൑ ҧݐ 	 ൑ 	6		which offers more useful information for retrieving the
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unknowns.

Figure 8. Sensitivity coefficients for: K∞0 (blue) andĲh0(red) (on primary axis) andȕĲh (lilac) (on secondary axis).

It is also useful to look first at the inversion of a single (Subsection 8.2.2) or a double (Subsection 8.2.3) parameter
in order to gain insight into when multiple parameters are inverted.

8.2.2. Inversion for 1 Parameter

The inverse problem was first solved for 1 parameter, i.e. considering only one of the three parameters K∞0, Ĳh0

andȕĲh to be unknown, while fixing the values of two of the others. The objective function is plotted against a
wide range of values of the corresponding parameter which is inverted in Figure 9. In each case a global minimum
is obtained at the exact value of the sought parameter.

Figure 9. Results for the inversion with 1 parameter, for: (a) K∞0; (b) Ĳh0 and (c)ȕĲh with minima corresponding
to: (a) K∞0=5.3x10-18m2; (b) Ĳh0=1.41 and (c)ȕĲh=−1.0 x10-6Pa-1, respectively.

The inverse problem was investigated also for the case when noise is added to the direct problem pressure data݌ҧ൫0,ݐ൯ in the form: ൯ݐ,ҧ୬୭୧ୱ୷൫0݌ = ൯ݐ,ҧ൫0݌ + ҧݐ												,ߝ > 0,																																															(51)

where are random variables generated from a Gaussian normal distribution with zero mean and standard ߝ
deviation given by 	%௡ߝ × max௧ҧவ଴ |(ҧݐ,0)ҧ݌| ,																																																												 (52)

whereߝ௡% represents the percentage of noise.

Figure 10 shows the solution for the non-dimensional pressure on the upstream boundary݌ҧ൫0,ݐ൯ (red stars) and
the 0.1% noisy data݌ҧ୬୭୧ୱ୷൫0,ݐ൯	(blue diamonds).
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Figure 10. Solution for the non-dimensional pressure on the upstream boundary݌ҧ൫0,ݐ൯ (red stars) and the 0.1%
noisy data݌ҧ୬୭୧ୱ୷൫0,ݐ൯ (blue diamonds).

Table 2 shows the numerical results for the inversion of a single parameter K∞0, Ĳh0 or ȕĲh obtained when adding
a noise of 0.1% into the data, using Equation (51). It can be seen from this table that a reasonable retrieval of one
of the unknowns is obtained. The retrieval of K∞0 or Ĳh0 is amplified by 5-6% for an input upstream pressure
perturbed by 0.1% noise. However, the parameterȕĲh is exactlyretrieved. We have also investigated the retrieval
of this parameter for higher levels of noise, e.g. 1%, and a good retrieval has been obtained. It means that we can
always retrieve this parameter even for higher levels of noisy data.

Parameter/unit Exact Numerical Percentageerror (%)

K∞0 (m2) 5.3x10-18 5.6x10-18 5.6
Ĳh0 1.41 1.51 6.7

ȕĲh (Pa-1) −1.0 x10-6 −1.0 x10-6 0

Table 2. Results for inversion with 0.1% noise for 1 parameter: K∞0, Ĳh0 or ȕĲh.

8.2.3. Inversion for 2 Parameters

The inverse problem was then solved for 2 parameters, i.e. considering two of the three parameters K∞0, Ĳh0 and
ȕĲh to be unknown, while fixing the value of the other. The objective function is plotted against a wide range of
values of the inverted parameters resulting in a three-dimensional surface plot. Results are shown inFigure 11
for the inversion ofĲh0 andȕĲh and one can observe that the global minimum is attained at the exact values of the
sought parameters.

Figure 11. Results for the inversion with 2 parameters for:Ĳh0 andȕĲh with minimum corresponding to:Ĳh0= 1.41
andȕĲh= −1.0 x10-6Pa-1. The z-axis shows the values of the objective function on a logarithmic scale.
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Although not illustrated, we mention that the exact values 5.3x10-18 (m2) and −1.0 x10-6(Pa-1) were also obtained
for K∞0 andȕĲh in the case of noise free data, when inverting for these two parameters. However, when the
inversion with 2 parameters is performed for K∞0 andĲh0 even in the case of noise free data, a deviation from the
exact solution is observed, namely: the values K∞0=6.5x10-18(m2) andĲh0= 1.15 are obtained, with a relative error
of 22.6% and 18.3%, respectively. This suggests that the two parameters K∞0 andĲh0are strongly correlated and
hence difficult to obtain simultaneously. However, the product between the numerical values of K∞0 and Ĳh0 is
very close in value to the product between the exact values of K∞0 andĲh0,with a relative error of 0.15%, indicating
that we can retrieve the product of K∞0 andĲh0 by the inversion with two parameters, but not the exact individual
values. In fact, from (2) and (3) one hasܭஶ଴ ஶ଴ܭ߲ܭ߲ = ܭ + ߬௛଴ ௛଴߲߬ܭ߲ 																																																																															 (53) 	
and since K is of O(10-18) small, the normalised sensitivity coefficients forܭஶ and ߬௛ will appear
indistinguishable. Another approach, proposed in Civan (2002, 2003, 2005), could be to modify the model to
relate permeability to pore connectivity using a power-law flow unit equation, however this investigation is
deferred to a future research work.

As for the inversion with 1 parameter, the inversion with 2 parameters was investigated for the case when noise
is added to the direct problem solution, in the form given by Equation (51).Table 3 shows the numerical results
for K∞0, Ĳh0 andȕĲh obtained when adding a noise of 0.1%.

Parameter
combination

Parameter/unit Exact Numerical
Percentageerror

(%)

 Ĳh0 andȕĲh
Ĳh0 1.41 1.51 6.7
ȕĲh −1.0x10-6 −1.0x10-6 0

K∞0 andȕĲh
K∞0 (m2) 5.3x10-18 7.3x10-18 37.7
ȕĲh (Pa-1) −1.0x10-6 -9.0x10-7 10

  K∞0 andĲh0
K∞0 (m2) 5.3x10-18 7.1x10-18 33.9

Ĳh0 1.41 1.12 20.4

Table 3. Results for inversion with noise for 2 parameters out of K∞0, Ĳh0 andȕĲh.

As expected, the relative error in this case is higher for both K∞0 and Ĳh0, namely itis 33.9% and 20.4%,
respectively. However, when the product between the numerical values of K∞0 and Ĳh0 is calculated, it can be
observed that the relative error between this and the product between the exact value of K∞0 and Ĳh0 is much
smaller, namely it is 6.5%.

8.2.4.  Inversion for 3 Parameters

For the inversion problem applied to 3 parameters, the previous arithmetic method of calculating the objective
function (49) becomes prohibitive. In this case the minimisation of the nonlinear least-squares objective function
(49) is performed numerically using the NAG routine E04FCF. This routine is a comprehensive algorithm for
finding an unconstrained minimum of a sum of squares of a sum of squares of M nonlinear functions in N(൑ (ܯ
variables (see Gill and Murray, 1978). No derivatives are required. In our case N=3 and hence we require thatܯ	 ൒ 3.

The NAG routine E04FCF is applicable to problems of the form:

minimise	ܨ൫ܺ൯ = ෍ൣ ௜݂(ܺ)൧ଶ		ெ
௜ୀଵ 																																																																						 (54)

whereܺ = ( ଵܺ,ܺଶ,…,ܺே) 	and	ܯ ൒ ܰ.

The functions fi(ܺ) are referred to as ‘residuals’ and are supplied as:

௜݂൫ܺ൯ = ;൫ܺ݌ ௜൯ݐ,0 െ ݅											,௜൯ݐ,൫0݌ = (55)																																										.ܯ,…,1 		
From an initial guessܺ (ଵ)  supplied by the user, the routine generates a sequence of pointsܺ(௞) , ݇ ൒ 2, given byܺ(௞ାଵ) = ܺ(௞) + ݀(௞) (௞)݌ 																																																																																(56)

intended to converge to a local minimum ofܨ൫ܺ൯, where the vector݌(௞) is a direction of search, and d(k) is chosen
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such thatܨ ቀܺ(௞) + ݀(௞) (௞)݌ ቁ is approximately a minimum with respect to d(k).

The numerical results for the inversion of the 3 parameters K∞0, Ĳh0 andȕĲh are shown inTable 4, for a couple of
initial guesses. The inversion for K∞0 was done for 5.3 and the result was multiplied by 10-18, for convenience in
computing errors. The percentage errors are very small, showing some independence on the initial guess.
However, for other initial guesses further away from the exact values, results may become trapped in a local
minimum but this is typical with gradient search methods.

Parameter/unit Exact Numerical Initial guess Percentageerror
(%)

K∞0 (m2) 5.3x10-18 5.29x10-18 7.0x10-18 0.236
5.44x10-18 3.0x10-18 2.69

Ĳh0 1.41
1.42 1.5 0.808
1.38 1 2.06

ȕĲh (Pa-1) −1.0 x10-6
−9.98x10-7 −1.5 x10-6 0.152
−9.98x10-7 −0.5 x 10-6 0.157

Table 4. Results for inversion of the 3 parameters K∞0, Ĳh0 andȕĲh for exact data.

9. Laboratory Experimental Tests

The numerical approach was applied to experimental data obtained in the Wolfson multiphase flow laboratory at
the University of Leeds for two samples: AB1 and AB2. The data for these two samples are presented in Appendix
A. The gas used in our experiments is Helium, which does not absorb to shale. Consequently, the gas desorption
data such as the Langmuir volume and pressure are set to zero. The intrinsic permeability of both these samples
is expected to be very low. The modelled boundary conditions for both these examples are of the same type as the
ones presented for Example 7.3, namely as given by (40)-(42). Laboratory results included measurements for the
pressure at both the upstream and downstream boundaries. The direct problem was solved first for samples AB1
and AB2. Results were analysed for both the upstream and downstream boundary pressures for different values
of the three unknown parameters, namely K∞, Ĳh andȕĲh, for the initial 200 minutes of the experiment for AB1 and
for the initial 60 minutes for AB2. To obtain a consistent value of the equilibrated pressure (pressure at which the
upstream and downstream pressures become equal) with the value obtained by the laboratory experiments, the
downstream volume was taken slightly smaller in the numerical calculations than in the laboratory experiments,
namely it was taken to be Vd=5.23x10-7m3 for AB1 and Vd=9.83x10-7m3 for AB2. The compressibility coefficient
for porosityߚథ 	and for intrinsic permeabilityȕK∞ were determined for each sample, as described in Section 8.1.

Figure 12 illustrates the experimental results for the pressure at the upstream and downstream boundaries, in
comparison with the numerical results obtained by solving the direct problem for K∞0= 5x10-22m2 andȕĲh = −1.0
x10-11Pa-1 when using three different values for tortuosityĲh0, namely: 2.5, 3 and 4. It is in evidence in this figure
that the best estimates are obtained forĲh0= 2.5,when analysing the results for both the upstream and downstream
boundary pressures. The fits of the pressure-pulse decay models to the experimental data are better near the initial
and final times than in the middle portion of the time interval.
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Figure 12. Upstream and downstream boundary pressures obtained experimentally and by solving the direct
problem, when using K∞0= 5x10-22m2, ȕĲh0 =−1.0 x10-11Pa-1 and߬௛଴ א {2.5,3,4}  for sample AB1, on a semi-log
plot. (The upstream and downstream boundary pressures are shown in the same colour for each case, for
consistency).

Figure 13 shows the experimental results for the pressure at the upstream and downstream boundaries for sample
AB2, in comparison with the numerical results obtained by solving the direct problem for K∞0= 3x10-20m2 and
ȕĲh=−1.0 x10-11Pa-1 when using three different values for tortuosityĲh0, namely: 3, 3.5 and 4.5. It is in evidence in
this figure that the best estimates are obtained forĲh0= 3.5,when analysing the results for both the upstream and
downstream boundary pressures. As with sample AB1, the pressure pulse-decay model fits better the experimental
data near the initial and final times than in the middle portion of the time interval.

Figure 13. Upstream and downstream boundary pressures obtained experimentally and by solving the direct
problem, when using K∞0= 3x10-20m2 andȕĲh =−1.0 x10-11Pa-1 and߬௛଴ א {3,3.5,4.5} for sample AB2, on a semi-
log plot. (The upstream and downstream boundary pressures are shown in the same colour for each case, for
consistency).

The inverse problem applied to three parameters has been investigated for samples AB1 and AB2, using the
approach presented in Section 8.2.4. The initial guesses were taken close to the values of the three unknown
parameters determined by the direct problem for the two examples. The inverse problem was first investigated
when using one single set of experimental data per sample (i.e. data generated by running one laboratory test per
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sample, using one single value for the initial upstream pressure and one for the initial downstream pressure). The
inverse problem was also investigated when using two sets of experimental data per sample (i.e. data generated
by running two different laboratory tests per sample, at different initial upstream and initial downstream
pressures). In both cases however, the results obtained so far indicate that these three parameters are very difficult
to retrieve together. This could be a result of combination of two key issues. Firstly, the nature of the relationship
between K∞0 and Ĳh0 (as mentioned earlier, they seem almost correlated and hence difficult to obtain
simultaneously) needs to be further investigated, possibly changing the permeability model, as proposed in Civan
(2002, 2003, 2005).This was somewhat expected, from the discussion presented for the inversion with noise for
two parameters and the inversion with three parameters. Secondly, most shale samples that we have tested show
evidence of a dual porosity system potentially a combination of fracture and matrix porosity. The one-dimensional
formulation presented here does not account for such heterogeneity and therefore needs extending to two- or even
three-dimensions.

10. Conclusions

A finite volume method has been developed to solve the nonlinear diffusion equation governing the pressure-
pulse decay tests subject to appropriate initial and boundary conditions. The numerical approach was tested for
different unsteady-state example problems for which analytical or numerical solutions are available and a very
good agreement has been obtained. The method was then applied for solving the pressure-pulse decay tests given
in Civan et al. (2011a, b) and a comparison with their results was made. An inverse problem was formulated to
determine the values of the unknown parameters present in the governing equation. An inverse numerical solution
has been presented for the inversion of up to three parameters. For the inversion of one and two parameters noise
was also added to the direct problem pressure data and an error analysis was made. A very good retrieval of one
of the unknowns was found for exact data. A reasonable retrieval of one of the unknowns was also obtained in the
case of noisy data. When the inversion with two parameters is performed for K∞0 andĲh0 even in the case of exact
data, a deviation from the exact solution was observed, which indicated that these two parameters are almost
correlated and hence difficult to obtain simultaneously. However, their product K∞0 Ĳh0was correctly estimated.

Finally, our approach has been applied to practical laboratory pressure-pulse decay results obtained when using
samples with very low permeability. Preliminary results, obtained by solving the direct problem and comparing
the results with the experimental results for two samples, AB1 and AB2, indicate an intrinsic permeability of
O(10-22) and O(10-20) for the samples, respectively. However, we were not able to invert for K∞0, Ĳh0 andȕĲh,
simultaneously, from laboratory pressure-pulse decay tests using samples. The failure to invert for these three
parameters potentially reflects the close correlation between K∞0 andĲh0. This is particular to the pressure-pulse
decay test performed and, more importantly, that only the boundary pressure data have been used as additional
measurement information in the inversion process. This obviously has the practical advantage that the inversion
is non-intrusive; however, if better retrieval is desired then additional intrusive measurements of the pressure at
internal ports mounted within the sample might be necessary (Lesnic et al., 1998). More general effects such as
heterogeneity and anisotropy of the sample in the gas shale model will be investigated in a future work. Overall,
the work presented in this paper may be used to test whether other gas flow models can be used to obtain the key
unknowns of flow in shale from experimental data obtained in the laboratory.
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Nomenclature

A empirical fitting constant (dimensionless)

Ai coefficient used in the general boundary condition Equation (31) (dimensionless), i=0,1,2

b slip coefficient (dimensionless)

B empirical fitting constant (dimensionless)

B0 coefficient used in the general boundary condition Equation (31) (dimensionless)

D diameter of sample (m)

f(Kn) flow condition function (dimensionless)
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g acceleration due to gravity (m2/s)

apparent permeability tensor of gas (m2)

Kn Knudsen number (dimensionless)

K∞ intrinsic permeability (m2)

L length of sample (m)

Mg molecular weight of gas (kg/kmol)

Nt numberof time steps (dimensionless)

Nx numberof control volumes (dimensionless)

n unit vector (dimensionless)

p absolute gas pressure (Pa)

pc critical pressure (Pa)

pd downstream gas pressure (Pa)

pL Langmuir gas pressure (Pa)

ps scaling pressure (Pa)

pu upstream gas pressure (Pa)݌ҧ dimensionless gas pressure݌ҧ noisy dimensionless gas pressure with added noise݌ҧnumerical numerical dimensionless gas pressure

q mass of gas adsorbed per solid volume (kg/m3)

qa standard volume of gas adsorbed per solid mass (std m3/kg)

qL Langmuir gas volume (std m3/kg)

Rg universal gas constant (8314 J/kmol K)

Si sensitivity coefficients

std denotes standard conditions (273.15K and 101,325 Pa)

t time (s)ݐҧ dimensionless time

T absolute temperature (K)

Tc critical temperature (K)

u volumetric flux vector (m3/m2/s)

Vb bulk volume of core plug (m3)

Vd downstream reservoir volume (m3)

Vp effective pore volume (m3)

Vstd molar volume of gas at standard temperature (273.15K) and pressure (101,325Pa) (std m3/kmol)

Vu upstream reservoir volume (m3)

x cartesian distance in the horizontal flow direction (m)ݔҧ dimensionless distance

Z real gas deviation factor (dimensionless)

Greek

Į dimensionless rarefaction coefficient (dimensionless)
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Įo asymptotic limit value of dimensionless rarefaction coefficient (dimensionless)ߚ ratio of compressive storage in the downstream reservoir to compressive storage in the upstream reservoir
(dimensionless)

ȕȝ isothermal coefficient of compressibility for fluid viscosity (Pa-1)ߚథ isothermal coefficient of compressibility for porosity (Pa-1)

ȕK∞ isothermal coefficient of compressibility for intrinsic permeability (Pa-1)

ȕȡ isothermal coefficient of compressibility for fuid density (Pa-1)

ȕĲh isothermal coefficient of compressibility for tortuosity (Pa-1)ߛ௨ coefficient used in upstream boundary condition equations (dimensionless)

įt time step (dimensionless)

įx spatial step (dimensionless)ߝ noise (dimensionless)ߝ௡ noise (percents)	ડ apparent diffusivity tensor (s)

ī scalar apparent diffusivity (s)Ȟത dimensionless scalar apparent diffusivity	߶ porosity of porous media (fraction)

Ȝ mean-free-path of molecules (m)

Ĳh tortuosity of porous media (dimensionless)

ȡ density (kg/m3)߷ apparent flowing gas density (s2/m2)߷ҧ dimensionless apparent flowing gas density

ȡs material density of the porous sample (kg/m3)

µ dynamic viscosity of gas (Pa s)ߥௗ coefficient used in downstream boundary condition equations (dimensionless)ߥ௨ coefficient used in upstream boundary condition equations (dimensionless)
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Appendix A

Table A1. Data used for Pressure-Pulse Decay Tests.

Test Example 7. 5 (Test
2# Civan et al.
2011b)

Example 7. 6 (Test
Civan et al. 2011a)

Experimental
Test- Sample
AB1

Experimental
Test- Sample
AB2

Core Sample Properties

Length L (m) 0.04057 0.05 0.0262 0.027077

Diameter D (m) 0.02528 0.05 0.0338 0.03657

Grain densityȡs (kg/m3) 2650 2500 2650 2650

Porosity߶ (fraction) 0.0575 0.05 0.038 0.017

Gas Properties

Gas type Nitrogen Methane Helium Helium

Viscosity µ (Pa s) 1.8x10-5 1.8x10-5 1.984x10-5 1.984x10-5

ȕȝ (Pa-1) 8.388x10-9 3.0x10-11 1.68 x10-9 1.68 x10-9
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Molecular mass Mg
(kg/kmol)

28.01 16 4 4

Critical temperature Tc
(K)

126.2 190.6 5.2 5.2

Critical pressure Pc (Pa) 3,394,387.5 4,605,697.87 228,009.62 228,009.62

Molar volume of gas at
standard temperature
(273.15K) and pressure
(101,325Pa) Vstd (std
m3/kmol)

22.414 22.414 22.414 22.414

Pressure-Pulse Decay
Tests Conditions

Temperature T (K) 303.85 298.15 294.15 294.15

Initial gas pressure p0

(Pa)
101,325 101,325 124,078.1 101,325

Upstream gas pressure pu0

(Pa)
3,546,375 500,000 1,051,753.8 1,020,879

Upstream reservoir
volume Vu (m3)

8.835 x10-6 2.1 x10-5 6.57x10-6 6.57x10-6

Downstream reservoir
volume Vd (m3)

1.1148 x10-5 Not needed 1.83x10-6 1.83x10-6

Flow parameter values

Intrinsic permeability K∞0

(m2)
1.97 x10-19 5.3 x10-18 Inverted Inverted

Langmuir gas pressure pL

(Pa)
0 7.5 x106 0 0

Langmuir gas volumeqL

(std m3/kg) 0 0.01 0 0

TortuosityĲh0

(dimensionless)
2.2 1.41 Inverted Inverted

Įo constant
(dimensionless) 1.358 1.358 1.358 1.358

A constant
(dimensionless)

0.178 0.178 0.178 0.178

B constant
(dimensionless)

0.4348 0.4348 0.4348 0.4348

Slip coefficient, b −1 −1 −1 −1
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థ (Pa-1)ߚ
9.8692 x10-12 4.0 x10-6 1.41 x10-9 2.47 x10-9

ȕK∞ (Pa-1)
3.947 x10-11 1.0 x10-6 7.61 x10-8 1.19 x10-8

ȕĲh (Pa-1) −1.9738 x10-11 −1.0 x10-6 Inverted Inverted


