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Abstract

Gas flow in shale is a very complex phenomenon, currently investigated using a variety of techniques including
the analysis of transient experiments conducted on full core and crushed shale using a range of gases. A range of
gas flow mechanisms may operate in shale including continuum flow, slippage, transitionaldléinwasen

diffusion. These processes, as well as gas sorption, need to be taken into account when interpreting experimental
data and extrapolating the results to the subsurface. Several models have been published that attempt to account
for these different processes. Unfortunately, these have a large number of unknown parameters andsfew studi
have assessed the extent to which transient experiments may be used to invert for the key unknowng®r the erro
that are associated. Here we present a methodology in which various inversion techniques are applied to assess
the viability of deriving key unknowns which control gas flow in shale from ieabhexperiments with a range

of noise. A finite volume method is developed for solving the model of Civan (2010, 2011a,b) of transient gas
flow in shale. The model is applicable to non-linear diffusion problems, in which the permeabilityicuddrisity

both depend on the scalar variable, pressure. The governing equation incorporates the Knudsen number, allowing
different flow mechanisms to be addressed, as well as the gas adsorption isotherm. The metfied ferver
unsteady-state problems for which analytical or numerical solutions are available. The methodpglibd to

a pressure-pulse decay test. An inverse numerical formulation is generated, usingnizationi iterative
algorithm, to estimate some unknown physical parameters. Both numerically simulated noisy and retaperime

data are input into the formulation of the inverse problem. Error analysis is undertaken to investigate the accuracy
of results. A good agreement between inverted and exact parameter values is obtained for several parameters.
However, it was found that the strong correlation between intrinsic permeability and tortuosity meant that it was
not possible to accurately invert simultaneously for these two parameters from the current pressure-pulse decay
model.

1. Introduction

Gas production from shales has revolutionized the USA gas market over the last decade and has been the topic of
investigations of many recent studies. However, gas flow in shale seems to be a complex phehairiersbif

not entirely understood. The pores in shales are very small, at thefscat®meters (Javadpour, 2009), which

means that different gas transport mechanisms occur than in rocks with larger pores. In general, either the
continuum or the molecular approaches can be used for modelling fluid flow through micro scale channels.
Macroscopic fluid properties can be found using the continuum approach. However, on a small scale of physical
systems, the validity of the standard continuum approach with no-slip boundary conditions reduces (Roy, 2003).
The degree of appropriateness of the continuum model is determined by a dimensionless parameter, the Knudsen
number Kn, which is defined as the ratio of the fluid mean-free-path of moletidas the macroscopic length

scale of the physical system (mean hydraulic radius for example) (Roy, 2003). In porous media, the macroscopic
length scale of the physical system is represented by an equivalent hydraulic ragios, R

I('—/1 1
n—Rh. (1)

The Knusden number represents a measure of the degree of rarefaction of gases encountered in small flows
through narrow channels. The rarefaction effects become more pronounced with an in¢teasedreventually

the continuum assumption breaks down (Roy, 2003). The fluid flow regimes can be classified, depethéing on
Knudsen number, into continuum, slip, transitional and free-molecule (Knudsen) flow (Roy, 2003). Continuum
flow is characterised bin<0.01; the ideal gas constant, Darcy's law and the continuum flow assumption all
remain valid in this case. F#n>0.01, an effective permeability must be considered, to correct for Knudsen
diffusion and/or slip flow, leading to a deviation from Darcy’s law. The molecular interactions witlorines

medium lead to the dependency of the apparent permeability on pressure (Freeman et al., 2011).

Gas flow in shale is currently being investigated using a variety of laboratory techniques including the analysis of
transient experiments conducted on core plugs and crushed samples using a range of gasest(bgkanor
methane). Determining the permeability of shale is one of the main objectives in experim#éradsntextremely



low permeabilities (i.e. <1 nD) have often been reported for gas shales. For example, Luffel et al. (1968) repor
permeabilites of <0.01 nD from shale. The pulse-decay method, introduced by Brace et al. (1968), and investigated
by several other authors (Lin, 1977; Hsieh et al., 1981; Neuzil et al., 1981; Chen and Stagg, 1984, Dicker and
Smits, 1988; Luffel et al., 1993), is a well-established transient laboratory technique for measuring the
permeability of low permeability rocks. Cui et al. (2009) were the first to expand the pulsetsbayg with
consideration for gas adsorption. The pulse-decay method has also been used when including the Klinkenberg
effect (Jones, 1972; Janot et al., 2007; Janot et al., 2008).

Shale gas flow has been investigated using several modelling approaches. A comparison between different
methods for quantifying non-Darcy flow in shale nanopores is presented in Swami et al. (2012). The effects of
no-slip and slip flow, Knudsen diffusion, and Langmuir desorption on shale-gas production are considered by
Shabro et al. (2011a,b). Civan et al. (2011a,b, 2012) have introduced a theoretically improved model to incorporate
all gas flow mechanisms in shale. Their model is based on the Beskok and Karniadakis (1999) unified model for
gas flow in micro-tubes, which is valid over the whole range of flow regimes. The unified model of Beskok and
Karniadakis (1999) was also used by Florence (2007) to create an improved model to estimate the Klinkenberg-
corrected permeability using single-point steady measurements of low permeability sands. Sakhaek-Pour an
Bryant (2012) investigated the implications of adsorbed layers of methane and gas slippage at pore walls on the
shale gas flow behaviour.

The increased complexity of gas flow within shales means that these models have more unknown parameters than
simply the permeability constant needed to describe the Darcy flow. This means that more experiments and more
complex inversion schemes are needed to determine key parameters that affect gas flow in shale. Overall, current
publications appear to concentrate more on developing new models for gas flow in shales and less on the
practicalities of using these models to derive the parameters needed for experimental data for forward modelling.
As a first step to addressing this imbalance, the current paper presents a methodolody wanhuis inversion
techniques are applied to assess the viability of deriving key unknowns, which control gas flow inoahmale fr
transient noisy measurements. The paper begins by presenting a finite volume method (FuIMg thes
nonlinear mathematical model for gas flow in shale presented by Civan et al. (2011 a,b, 2012). The method is
applicable to non-linear diffusion problems, in which the permeability and fluid density both depend on the
pressure. The governing equation incorporates the Knudsen number, allowing different flow mecloalbésms t
addressed, as well as the gas adsorption isotherm. Various methods are then presented to invert experimental data
for 1, 2 and >2 unknowns. These are first tested on synthetic numerically simulated data with vayyimtg am

noise before being applied to real experimental data.

To summarise, the main novelties and highlights of our paper are as follows:

» The gas shale model for pressure pulse-decay tests githa papers by Civan et al. (2011a,b) has been
revisited. We have tried to explain the gas shale model more clearly and rigorously and to ensure that the
appropriate inverse method of minimisation is correctly applied.

* A new FVM for solving numerically the direct problem for the nonlinear parabolic diffusion equation wi
pressure dependent permeability subject to boundary conditions of the fourth-kind has been developed and
tested.

* The inverse method of minimisation has employed the NAG routine EO4FCF. This is robust amd@new
independence of the initial guess for the sought parameters.

* We invert for three new parameters, namely the reference coefficients characterising the shale intrinsic
permeability and tortuosity. A sensitivity study is also performed prior to inversion.

» New experimental data obtained from our laboratory tests are inverted in order to add pigutfa@nce to
our study.

2. Experimental Method Setup

Pressure-pulse decay tests are performed in this study. The equipment consists of an upstream and a downstream
reservoir and a core holder in which a cylindrical sample (core plughgth L(m) is placedFigure 1 shows a

schematic diagram of a pressure pulse-decay test, see also Figure 1 of Civan et al. TRéChatpsian distances

in the horizontal flow direction of the two sample ends gpoad to x0 and x=L, respectively. The upstream

and downstream reservoir volumes are denoted bgnd \4, respectively. The gas used in the experiments
investigated in Section 9 is Helium.



Upstream > Sample (Core plug) > Downstream
reservoir reservoir
Vu; pu Vd; pd

< L >
Figure 1. Schematic diagram of a pressure pulse-decay tespresents the sample length;avid \4 denote the
upstream and downstream reservoir volumes, aadg p denote the pressures in the upstream and downstream
reservoirs.

Initially, a uniform pressuregpapplies throughout the system. The test is initiated by applying an increased
pressure in the upstream reservoir, denoted,boyipich is greater than the pressure in the downstream reservoir,
denoted by g Therefore, flow occurs from the upstream gas reservoir to the downstream gas reservoir. The
upstream and downstream pressures are recorded in time using pressure transducers. A high precision transducer
(i.e. 0.01% precision) is used to record the upstream gas pressure and a regular pressure transducer (0.1%
precision) is used to record the downstream gas pressure. A confining pressure is applied to the sample; this was
set to 1000psi in this study. The confining pressure is monitored using an additional pressure transducer. The
temperature is maintained constant &1

3. Apparent Gas Permeability

When replacing the expression of the mean-free-path of moletalesd ofhydraulic radius Rin Equation (1),
theKnudsen number can be written as (Civan et al., 2011a):

u | TR T

Kn=— ,
n 4p Mgt Ko,

(2)

wherey is the viscosity of gas, is the absolute gas pressurgsz8314.4 J/kmol K is the universal gas constant,
T is the absolute temperaturg,is the porosity of porous mediurilg is the moleculamass of gass is the
tortuosity andK., is the intrinsic permeability of the tight porous medium.

Tortuosity is a measure of the sinuosity and interconnectedness of the pore space as it influences transport
processes through porous media, and it is influenced by the different flow regimes and hence gas pressures
(Clennell, 1997).

The permeability measured based on a Darcy-type gradient lawbgdla working-fluid (e.g. He, Nor CH,)

through low-permeability rock samples is the apparent permeability and not the intrinsialpityrn€ivan et

al., 2011a). The apparent gas permeability of gas-bearing shale can be related to the intrinsic permeability via the
following relationship (Beskok and Karniadakis, 1999):

K = K. f(Kn), (3)

where fKn) is a flow condition function given in terms of the Knudsen number, the dimensionless rarefaction
coefficienta and the slip coefficient b:

_ 4Kn

F(kn) = (1+ akn) (1 " m) (4)

Civan (2010) introduces an empirical correlation of the form:

A>0,B>0, (5)

where Aand Bare empirical fitting constants anglis an asymptotic limit value of the dimensionless rarefaction
coefficienta (0< a < ag). The values of these empirical constants are taken indper o be the same as the
values used in Civan (2010), Civan et al. (2011a, b), namght.358, A=0.178, and B=0.4348. These fitting
constants were estimated by Civan (2010) for the special sets of data of Loyalka and Hamoodh @€@ied
discussion on the determination of dimensionless rarefaction coeffidieptesented in Beskok and Karniadakis
(1999).



4. Gas Adsorption

In the shale gas flow process, some of the gas remains absorbed in shale.

Themass of gas adsorbed per solid volume is given by:

psMy q.p
q= 21—, (6)
Vad PLT P

where @ and p are Langmuir volume and pressure, respectiyelis the density of porous samphy is the
molecular weight of gagnd \4q is the molar volume of gas at standard pressure and temperature (i.e. 273.15 K
and 101,325 Pa).

5. Governing Equations

5.1. Mathematical Formulation

To derive the governing equation for shale gas single-phase flow, the conservation of mass and of momentum
equations of gas flowing through the porous formation are combined to result in, see e.g. Civan et al. (2011a):

d p
Gelee+ (1= )l =7 (LK), (7)
wherep and pdenote the density and dynamic viscosity of the flowing gas, respectivvaly,the apparent

permeability tensor of gas shale arid time.

We neglect the term involving the gravity in this paper, because our applications of inteskst gas flow
through small porous material samples used in laboratory tests.

The density ofthe flowing gas is given bijhe real-gas equation of state:
_ Mg

ZR,T’

(8)

where Zis the real gas deviation factor.

Substituting Equations (6) and (@)Equation (7) leads to:

a M psMy q Myp K
ac (ZR9T¢+(1_¢)%—L>;9]=V- ( o7 1)) ®)
9 std PLT P ZRyT p
By denoting:
M
=S g (1-g)e L 104
4 ZRgT¢ ¢ oy DLt D (10a)

the so-called apparefibowing gas densityand byI' the so-called apparent diffusivity tensor:

_ Mg K
= ZR,T m (10b)
Equation (9) simplifies to:
d(op)
% =V (r'vp). (11)

The applications in this paper consider properties of samples in the direction of flow. Consequently, the
components of the vector and tensor quantities in the flow direction denotedtdysed in the following leading
to the one-dimensional form of Equation (11):

d(op) _ 0 ( 0Op
5= 52 (T30): (12)
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wherel represents the scalar apparent diffusivity.

The governing equation obtained and the use of the conservative form of this is the main difference between the
approach introduced in this paper and the one by Civan et al. (2011a), who introduced the apparent convective flux

term and an apparent transport coefficient. This results in their governing equation being given in term%ﬁof both

2
and 3712’. In our formulation, the approach considered is different, in that we use the conservative form of Equation
(9).

Equation (12) is the governing diffusion equation with the pressa® g primary variable to solve for. In this
equation, both the appardigwing gas density and the scalar apparent diffusivitydepend on p.

For convenience in their formulation, Civat al. @011a) introduced the following individual isothermal

coefficients of compressibility of the fluid viscosity, shale porosity and intrinsic permeability, and fhsidyde
respectively:

_1ad¢ _ ( P )
== = ¢yex (p)d 134
b= 5oy W)= boe(| BurIcp (132
- L% =k ’ d 13b
bro= gy Ko = Koo | e o) (130)
lou p
bu=ap P T HeeP (Loﬁu(p)dp> (13c)
10 p
ﬁ‘[h = aai;' Th(p) = Thoexp (Loﬁ‘[h(p)dp> (13d)
19p 1 1dz
b= oon ™ p " Zap (159

where prepresents the pressure at the initial time. These isothermal coefficients of compressibility are also used in
our formulation.

When taking the isothermal coefficients of compressibitityporosity, permeability, viscosity and tortuosity to

have approximately constant values, the corresponding properties can be calculated using Equatio(k3d)3a)
as follows (Civan et al., 2011a):

$(p) = poexp[By(p —po)|, By = const. (14a)
Keo(P) = Koo o@P|Bio (P — P0)] B, = cONSL. (14b)
w(p) = uoexp[Bu(p —po)], By = const. (14c)
0(P) = Tho®P[Br, (P —P0)] . Bu, = cONSt. (14d)

and the subscript ‘0’ of the properties indicates some reference some reference values such as defined at a reference
pressure. Substituting Equatiofigta)— (14d)into Equation (2) leads to the following expressionkar

p
Kn = Kno = elfr(p = po)]. (15)
whereKn, is the Knudsen number evaluated @apd given by
Ho | TRgT ¢y

K =— |, 16
Mo 4p, Mg Koo (16)

andgrdenotes

1
Br = Bu+ 5By = Bry = Bico)- (17)



5.2. Initial and Boundary Conditions
Equation (12) needs to be solved subject to initial and boundary conditions.

The initial condition specifies the pressureyerywhere on the domaih< x < L at time 0. In this case, the
pressure distribution in the sample (rock) is constant and is defined to have a referencg value p

P=po, 0<x<IL, t=0. (18a)

We also need to specify@0) and p(L,0):
p(0,0) = puo, (18b)
p(L,0) = pgo- (18c)

Dirichlet boundary conditions can be imposed on one side of the sample — either the downstreanstoedne up
boundary. These are given by:

p=p,(t), x=0, t> 0, (19a)
p=p4(t), x=1L, t> 0. (19b)

At the other face of the sample, conservation of mass at the sample-reservoir interface is applied. The upstream
or the downstream mass-flux boundary conditions are given by (Lin, 1977):

d(pV, N

(gt“) =—pu-nd, x=0, t>0, (20a)
d(pV, N

(gtd) = +pu-nd, x=1L, t>0 (20b)

respectively, whera is the volumetric flux vector satisfying Darcy's lawrepresents the unit vector normal to
the open core flow surface antl= V,/(¢L), where VY is the effective pore volume of the core sample.
Rearranging Equations (20a) and (20b) and considerjrap®/'\4 are constant, the following relationships are
obtained:

% _ V““ =0, t>0 21

ax ﬁp( ) at - Y ( a)
for the upstream mass-flux boundary condition, and

dp lel

o= " axPr ) 6t =L t>0 (21b)

for the downstream mass-flux boundary condition.

5.3. Non-dimensional Equations

The governing equation (12) is non-dimensionalised by introducing the following dimensionless variables:

X = t=—, p=—, o=—, T==, (22)

where pis a scaling pressure, and the subscript ‘0’ of the properties indicates some reference values. In accordance
to Equations (10a) and (10b), the propertiesdI” are calculated at the reference pressure as follows:

PsMy q
— g ~sg L
0=55-P*+ (1—9 ) (239)
0 ZORgT 0 std pLt po
and
M K
=90 Do (23b)
VA

respectively.
The apparent gas permeability at the reference pressure is calculated using Equation (3) as
Ky = Keof (Kny). (24)



The reference value for time, ts given by:

to = L*1(Ty/00)- (25)
In non-dimensional form, Equations (12) becomes:

a(ep) _ 0 (-625)
at  ax\ ax/ (26)
The initial condition given by Equations (18a) — (18c) will become:
=% o0<z<1, i=o, (27a)
ps’
puO
p(0,0) = (27b)
S
p(10) = 22, (270)
Ps
The Dirichlet boundary conditions (19a) and (19b) become:
p= pu(t) = p(t)ps, x=0, t>0, (28a)
P =pa(t) = pa(t)/ps, x=1, >0, (28b)
and the mass-flux boundary conditions (21a) and (21b) become:
0p _ Vu(Ty/ 0o) 1 _0p _ -
55 ——TZ——————ﬁb( )-—:, x =0, t>0, (293)
ap Vy (! _
a_i-_ d(+9°)ﬁﬁp( HL x=1, E>o0. (29h)

6. Finite Volume Method

The finite volume method (FVM) (or control volume method, CVM) is a numerical technique well-suited for the
simulation of various types of conservation laws (Patankar, 1980). When the integemization law is enforced

for each control volume, a linear algebraic system is obtained by numerical integration of the conserved variables
over the volume. If we denote by the spatial step size and &t/the time step size, then the conservative finite
volume discretisation of the non-dimensional Equation (26) (when using an implicit time-stapgpitigpping

the overbars for simplicity) is:

)n+1

(ep)P** —(ep)? _ 1 (Fa_p)"“_(ra_p)"“
ot ox ox i+% ox i_%

= L [ (PR =PI e pitt =t
ox i+% ox 1—5 ox

[ n+1(pﬁ:f __p?+1) Fn+1(pn+1 p?ﬁ}) ]’ (30)

" @02

where the subscriptdenotes a spatial stepli..., N, and the superscriptaenotes a time steps@,.., N—1, with
Nxand Nrepresenting the numbef control volumes, and of time steps, respectively.

The discretisation of the governing equation over the control volumes results in a non-linear system to be solved
at each time step. Therefore, an iterative non-linear solver is required at each time step. At each iteration, the
system is linearized by evaluating the pressure-dependent diffusion coefficiertisthe current pressure values.

2

The subsequent linearized system is solved using a tri-diagonal matrix algorithm. The coefficients are recomputed
and the system is solved again, until convergence is achieved. Furthermore, since the apparent flowing gas densit
o and the scalar apparent diffusivitydepend on the primary variable lpth these properties are evaluated at

each iteration using the pressure value at the previous iteration (which is the initial time for trezdirehitt

the first time step).

The real gas deviation factor i evaluatedn each control volumes for each time step, using the imgrove
correlation developed by Al-Anazi and Al-Quraishi (2010). The apparent flowing gas dewsitytherefore be

7



calculated from Equation (10a) at each time step. To calculate the apparent scalar diffuieityalue oKn is
determined first at each time step using Equation (15), then the dimensionless rarefaction coefferebe
determined using Equation (5). This allows the calculation of the flow condition fund€ionaf each time step,
using Equation (4) and then the apparent permeabilitysihg Equation (3). Therefore, the apparent scalar
apparent diffusivityl" can be calculated at each time step using Equation (10b).

The boundary conditions are also evaluated at each iteration, since they depend on the primary vatiable, p
isothermal coefficients of compressibility of fluid densfiy(p) needed in the mass-flux boundary conditions

(29a) and (29b) are calculated using Equation (13e), with the valuesleenined and the corresponding
pressure values. The resulting linearised equation is solved at each iteration and the safutiercyrrent time

step is used to update the properties and boundary conditions at the next time step. The procedure is repeated until
the desired time has been reached. In case of a steady-state problem, the number of time steps is taken to be one
(6t = o leadingto 1/6t = 0),and the procedure is applied only once, using several iterations to achieve
convergence.

7. Direct Solution

7.1. Verification of Numerical Approach

The developed numerical approach can also be applied for problems governed by the diffusion Equation (12), in
which the propertieg andI’ do not depend on the primary variapleThe boundary conditions have been
implemented to have the general form:

Ap+A6—p+A6—p=B (31)
0 lax Zat 0

with A, i=0,1,2 and Bare coefficients which are either constants or variable and they can depersiicn hat
the algorithm can handle different boundary condition types.

Example 7.1.
The approach was first tested on the diffusion equation:
%=%, O0<x<1, ¢t>0 (32)
with initial and boundary conditions in the non-dimensional form given by:
p=0, 0<x<1, &=0, (33a)
p(0,t) = 1and p(1,8) = 0, £> 0. (33h)

This problem has an analytical solution available (Al-Dhahir and Tan, 1968); mesh independence of our numerical
FVM was checked and ensured and moreover, when compared with the analytical solution, percentage error i
decreasing when using finer meshes from very early times (see TaBlerthermorean excellent agreement
between the numerical and analytical solutions was obt&né&tkample 7.1 for later times (Figure 2).

Nt 25 50 100
Ny Solution Percentage Solution Percentage Solution Percentage
error (%) error (%) error (%)
51 0.085¢ 8.3¢ 0.085: 7.9C 0.0843 6.€4
101 0.083: 5.4¢ 0.082¢ 4.6: 0.0815 3.12
201 0.0820 3.7¢ 0.081: 2.7C 0.07¢9 1.C6
Analytical 0.079( 0.079( 0.079(

Table 1. Comparison between the numerical FVM solution and analytical solutio(f0f6r04) for various
meshes obtained using,®1, 101 and?01 respectively, and &5, 50 and 100 respectively, with the
corresponding percentage errors, for Example 7.1.
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Figure 2. Numerical and analytical solutions for Example dttained for N,=101 and N=100, at the non-
dimensional tim& = 3.0for 0 < ¥ < 1.

Example 7. 2
In the second example we consider solving the diffusion equation:
_op _0%p -
Qﬁ(xlt) - Fﬁ' (xlf) € (011) X (Oll]l (34)

whereg and T are constants, with initial and boundary conditions (in non-dimensional form) given by:

p(x,00=0, 0<x<1, =0, (35)
p(1,8) =0, 0<t <1, (36)
op op _

E(O,f)=vuﬁ(0,f)+yu, 0<t <1 Y, # 0. (37)

Although this problem has an analytical solution available (Esaki et al., 1996) we compare our nuesatisal

with those presented in Lesnic et al. (1997), who used a weighted finite difference rirajboel2a shows the

good agreement achieved from this comparison for the pressure increase @jtyeyhen L= 3cm, the mean

value of the hydraulic conductivity is 1.35 x%n/s and a constant inflow rate of 1.6 x3¢0¥/sis supplied to

the upstream reservoir (see Lesnic et al., 1997 for complete experiment data and notations). Using their data leads
to the following values fop and T":

0=166x10"* andT = 1. (38)
The constants in the upstream boundary condition (37) become:
v, = 5424, y,= 5.33. (39)
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Figure 2a. Numerical results obtained by the FVivk¢) with N,=101, N=100, and the weighted average finite-

difference method presented in Lesnic et al. (1997 { -), for the pressure increase curvéd,p, for Example
7.2.

Example 7. 3

Other tests of the FVM include examples in whichnd T are constant and the boundary conditions are of the
type:

5(x,00=0, 0<zx<1, p(0,0) =220, (40)
s

ap op _

ﬁ(o,f)——vuﬁ(O,f), 0<t <1, (41)

op p )

ﬁ(l.f)=vd%(l,f), O0<t <1, (42)

representing a mathematical model of the transient pulse test designed by Brace et al. (1968), and investigated by

Neuzil et al. (1981). In their paper, Neuzil et al. (1981) investigated the conditions of determining hydraulic
properties of tight rocks by a graphical method based on analytical solutions to the transientt gurssetged

in Hsieh et al. (1981). Numerical results are presented for the case when hydraulic conductivityl '%ra/g

and the dimensionless paramegemvhich denotes the ratio of compressive storage in the downstream reservoir
to compressive storage in the upstream reservgrss0.2 (see Neuzil et al., 1981 and Hsieh et al., 1981 for
complete experiment data and notations).

Figure 3 shows the numerical results for pressure at the upstream bouif@ary (red) and downstream
boundaryp(1,t) (blue) for this example, obtained foxNL01 and N=100, in comparison to the results obtained
by the graphical method based on analytical solutions presented in Neuzil et al. (1981). Ayrgjatide
agreement between the two sets of solutions is in evidence in this figure.

10



Pressure on x=0 and x=1 boundaries
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Figure 3. Numerical results obtained by FVM-{—) and the graphical method based on analytical solutions
presented in Neuzil et al. (1981} £ — —) whenp = 0.2, for the pressures at the upstream and downstream
boundaries, for Example 7.3.

7.2. Experimental Validation Under Steady-State Conditions

Example 7.4

The numerical approach was validated by comparison with the experimental results of Pong et al. (1994) on a
steady-state example. The example involves measurements of nitrogen gas pressures during flow through a micro-
channel under steady-state conditions. The experimental data are for the inlet pressireé35xPa, 170kPa,

205kPa, 240kPa and 275kPa, and a constant outlet pressure of 100.8 kPa.

Figure 4 shows the results obtained by the FVM for the five differeldt ipressures, obtained with#201,
superposed on the numerical and experimental pressure profiles of Civan et al. (2011a) and Pong et al. (1994),
respectively. A very good agreement is in evidence between our saniibthe other two sets of results, with

our results being undistinguishable from the numerical results of Civan et al. (2011a).

280 -
0 —Model
22 Inlet pressures
240 m 135 kPa
= * 170kPa
& 220 O 205 kPa
> A 240 kPa
o0 P ® 275kPa
Q
R
7
b 180
o
(B

160
140

120

100 —
0 0.001 0.002 0.003

Distance, X, m

Figure 4. Pressure profiles obtained by FVM (in colour) superposed on the numerical pressure profilas of C
et al. (2011a) (in black) and the experimental data of Pong et al. (1994) (with markers).
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7.3. Numerical Results for Pressure-Pulse Decay Tests

The numerical approach was tested on two pressure-pulse decay tests (unsteady state examples).

Example 7.5

This example is a numerical simulation of Test #2 from Civan e2@L1p, 2012). The simulated gas used was
the same, namely nitrogen. The upstream reservoir pressure was kept constant during thiste35aanp
3,546,375Pa, that is,

p(0,t) = p,, t>0, (43)
whilst the initial pressure is

p(x,0) = p,, O0< x<1L, (44)
where p=1atm=101,325 Pa. At the downstream boundary, condition (21b) is applied.

The data was taken as in Table 1 from Civan et al. (2011b); they are also presented in Sl units in Appendix A of
this paper. This example has the Langmuir gas pressure and volume equal to zero. The refergnedaime t
from Equation (25) to be 1560.5s.

Figure 5 shows the pressure at the downstream boundary pressure versus time for this test (pressure at upstream
boundary kept constant) obtained with=R01 and 1000, in comparison with the results presented in Figure 9
of Civan et al. (2011b) and very good agreement can be observed.

600

500 -

- —

300 +—

Pressure, psig

ZLU Test#2 FVM

— — Test #2 Civan et al. (2011b)

Downstream Reservoir

100

0 200 400 600 800 1000
Elapsed time, min

Figure 5. Numerical results for pressure pjlat the downstream boundary xebtained by FVM in
comparison with the results of Civan et al. (2011b) Test #2 for Example 7.5.

Pressure profiles across length of sample are shoWwigire 6. The times at which the pressure profiles were

plotted were chosen such that the pressure values at the downstream boundary were very close to those presented
by Civan et al. (2011b) in Figure 13 of their paper. However, the time levels (in minutes) necessary for the system

to reach these pressure profiles are different from the time levels indicated by Civan et al. (2011b). The=differen

in times is believed to be due to the computational differences of the two approaches or perhaps some different
values for the input data. However, a reduction in the factor between the two sets of times is observed, this gets
to 1.32 for the last time level presented (79.6min in our test and 60min in Civan et al., 2011b test).
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Figure 6. Pressure profiles across the length of sample obtained for Example 7.5. In this #ddr8min
corresponds to the lowest curve and the subsequent curves increase monotonically.

Example 7. 6

This example is a numerical simulation of the pressure-pulse decay test presented in Civan et al. (2011), namely
flow under transient-state conditions. The same gas is considered, namely methane. The downstream reservoir
pressure was kept constant in this example, namely=bQqi,325Pa, that is,

p(L,t) = pgq, t>0, (45)

whilst the initial pressure is given by Equation (44) wighjatm=101,325Pa. At the upstream bounggfy0) =
Puo = 500kPa. Condition (21a) is applied at the upstream boundary.

The other data used are shown in Appendix A of this paper (in S| uoitsjstent with the data given in Civan
et al. (2011a). This example has the Langmuir gas prepsure/.5 x 10°Pa and Langmuir gas volumg, =
0.01std m3/kg. The reference time ts found from (25) to be 2107.78s.

Pressure profiles across length of sample obtained w#h(4 and I=1000 are shown iRigure7. These profiles

were plotted at the same times as the ones given in Civan et al. (2011a) (Figure 3 in their paper). A similar
behaviour can be noticed, however the times at which the two sets of profiles are reached are different. The
difference in times is believed to be due to some input data being different, as well as to mathematical differences
between the solution for(@,t) when imposing the boundary condition (21a) in our paper, and the boundary
condition (57) in Civan et al. (2011a) paper.
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Figure 7. Pressure profiles across the length of sample obtained for Example 7.6 by the FVM.
8. Inverse Problem Formulation

8.1. Known Input Parameters

When running a pressure-pulse decay test, some of the parameters needed in the governing equation are known
or can be directly determined. Some of the core sample properties (length, diameter, grain density) are known.
The remaining core sample property, the porosity, is determined separately, for example using techniques
described in Luffel et al. (1993). Once the porosity is determined, the compressibility coefficient for gy osity

can be determined using the approach outlined below. A power-law relationship between pore volume
compressibility and net effective confining pressure has been experimentally determinddbioratory data

from very tight gas sandstones presented by Byrnes et al. (2009):

ﬁ¢ = 10(_1-035+0-106/¢p0.5)x10g10p8+4.857¢p—0.0385’ (46)

wherepyis the pore volume compressibility inem)si,% is the unconfined routine porosity (in %) angsghe
average net effective confining pressure at wichpplies (in psi). As such, for a net effective confining pressure
of p.=5000psi, and a porosity ¢f, = 6%, the compressibility coefficient for porospty = 1.07x1PPa.

The gas properties (gas type, molecular mass, critical temperature and critical pressure, universal gas constan
viscosity, molar volume of gas at standard temperature and pressure) are known, while the cditypressibi
coefficient for fluid viscositys,, can be determined using Equation (13c) from the dependence of viscosity on
pressure at the prescribed temperature of the core flow tests (see Civan et al., 2011a). The pressure-pulse decay
tests conditions, namely: temperature, initial gas pressure, upstream (or downstream) gas pressure, upstream and
downstream reservoir volume are all known.

Some of the flow parameter values are also known or can be determined. The Langmuir gas pressure and Langmuir
gas volume can be determined by consideration of the adsorption/desorption effects ac&assgand Bustin
(2007).

The compressibility coefficient for intrinsic permeabilffy.. can be determined using the approach outlined
below. A power-law relationship between intrinsic permeabikty (in D), and the net stress has been
experimentally determined in our laboratory, of the form:

Ke(p) = Kop™*, (47)

whereK, = K.,p,t is the permeability (mD), [ the net stress (psi) andi€a dimensionless constant. This
relationship has been determined for valuesgef BLO1mD (with E0).

Using the definition ofix., given by Equation (13b), and Equation (47) by differentiation with respedetulp
to the following expression @fk.. when k > 0.01mD (with E0):

E
Bk, (p) = 3 (4843)
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For Ky < 0.01mD, B0 and Equation (48a) is changed to:

B ()‘E (48b)
Koo \P _p'

to account for the positive sign 6f..

The dimensionless constanh@s been determined to vary between [-2, 2] forakying between [1€?, 104D.
When choosing the range [1) 107]D for Ko, the constant Es E = 0.106. Then, from (48b), the value gf.
for a net stress of42000psi is determined to be 7.68%1Pa’.

Therefore, all parameters except the intrinsic permeability tértuosityzmo and the compressibility coefficient
for tortuosityfr, are either known or can be determined. The values of these three parameters are obtained using
an inverse problem formulation, described in the next section.

8.2. Inverse Problem: Determination of Unknown Parameters

An inverse problem is formulated as follows: minimise the nonlinear least-squares olfjsuttien defined as:

Fx) = Z[ﬁ(x:o.a) ~5(0.8), (49)

where

X =( Ko, o, ftn ) is the vector of values for the parameters to be inverted;

p(X;0,t,) is the computed pressure at the upstream boudar@ obtained by solving the direct problem;
p(O,fi) is the given measured or numerically simulated pressure at the upstream baundary

t; (i=1,..,M) are instants at which the pressure is measured.

In the case of numerically simulated data, in order to avoid an inverse crime, care is taken that the direct and
inverse solver have different mesh sizes, e,@nN N+1 discretisation points in the direct and inverse problems,
respectively.

The functionF(X) is defined for the upstream boundafy= 0; a similar function can be defined for the
downstream boundaby= 1.

It should be pointed out that this objective function is different from the one given in Civan e aa,([BD The

sum of least squares used in their papers is defined in terms of the calculated and measured pressure gradients,
rather than the calculated and measured pressures at the sides of the core plug. The pressure gradients used in their
sum of least squares are estimated from pressure measurements using finite-difference approximations.

In the remaining of this section we investigate the retrieval of the pararieteris andpz, for the pressure-pulse
decay test described in Example 7.6. We takd 000 and M-201.

8.2.1. Sensitivity Analysis

Prior to performing the inverse analysis of identifying all 3 unknown parameters, iavisenstudy was
undertaken, by calculating the sensitivity coefficients, as a function of time. Sensitivity coefficeetite &rst
derivatives of the measured quantities, i.e. upstream pressure, with respect to the unknowns, see e.g. Banks et al.
(2007). In general, the sensitivity coefficients are desired to be large and uncorrelated.

The sensitivity coefficients are calculated as:

09 (0,t.X)  p(0,5; Xy, ... X; + Ay, ... X3) — (0,5, Xy, ... Xy, ., X3)
X, A; ’

whereX = (X;,X;,X3) = (Koo' ThoBry ) @NdA; = 1% x X;.

Si(t) =

i=123, (50)

Figure 8 shows the sensitivity coefficients for.d o andpm. As it can be noticed, the sensitivity coefficients
for the three parameteasse close to zero f& < t < 10.This indicates that on this time interval the upstream
pressurep (0,t) does not depend significantly on any of the three parameters. Therefore, our inversion
investigation focuses on the initial tinfle< ¢ < 6 which offers more useful information for retrieving the
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Figure 8. Sensitivity coefficients for: k& (blue) andmo(red) (on primary axis) angy (lilac) (on secondary axis).

It is also useful to look first at the inversion of a single (Subsection 8.2.2) or a douldedt8ub8.2.3) parameter
in order to gain insight into when multiple parameters are inverted.

8.2.2. Inversion for 1 Parameter

The inverse problem was first solved for 1 parameter, i.e. considering only one of the three parameters K
andpr to be unknown, while fixing the values of two of the others. The objective function is plotted against a
wide range of values of the corresponding parameter which is inverted ie Biganreach case a global minimum

is obtained at the exact value of the sought parameter.
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Figure 9. Results for the inversion with 1 parameter, for: (a); Kb) zo and (c)fz with minima corresponding
to: (a) Keo=5.3x10¥m?; (b) mo=1.41 and (cPz=—1.0 x10°Pal, respectively.

The inverse problem was investigated also for the case when noise is added to the direct problem pressure data
p(0,t) in the form:

Proisy(0.7) = P(0,F) + &, £>0, (51)

where e are random variables generated from a Gaussian normal distribution with zero mean and standard
deviation given by

£,% X ntjgxlﬁ(O,f)l, (52)
wheree, % represents the percentage of noise.

Figure 10 shows the solution for the non-dimensional pressure on the upstream bqﬁ(rﬁjﬁby(red stars) and
the 0.1% noisy dath,;s, (0,%) (blue diamonds).
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Figure 10. Solution for the non-dimensional pressure on the upstream boqﬁ(dh@ (red stars) and the 0.1%

noisy datahyisy (0, t) (blue diamonds).

Table 2 shows the numerical results for the inversion of a single paramefef.dor fm obtained when adding

a noise of 0.1% into the data, using Equation (51). It can be seen from this table that blecestoieaal of one

of the unknowns is obtained. The retrieval o r o is amplified by 5-6% for an input upstream pressure
perturbed by 0.1% noise. However, the param@teis exactlyretrieved. We have also investigated the retrieval

of this parameter for higher levels of noise, e.g. 1%, and a good retrieval has been obtained. It means that we can
always retrieve this parameter even for higher levels of noisy data.

Parameter/ur Exact Numerica Percentagerror (%),
Koo (M?) 5.3x1(%¢ 5.6x1(1¢ 5.€
Tho 1.41 1.51 6.7
P (PeY) -1.0 x1(® -1.0 x1(® 0

Table 2. Results for inversion with 0.1% noise for 1 parametes; #o or St

8.2.3. Inversion for 2 Parameters

The inverse problem was then solved for 2 parameters, i.e. considering two of the three parageteen &
p to be unknown, while fixing the value of the other. The objective function is plotted against angdeof
values of the inverted parameters resulting in a three-dimensional surface plot. Results are Sigure i1

for the inversion ofne andfm and one can observe that the global minimum is attained at the exact values of the
sought parameters.

Figure 11. Results for the inversion with 2 parameters fgyandgz, with minimum corresponding teio= 1.41
andpr=—1.0 x10°Pal. The zaxis shows the values of the objective function on a logarithmic scale.
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Although not illustrated, we mention that the exact values 5:3Xi) and—1.0 x10%(Pat) were also obtained
for Ko and gz in the case of noise free data, when inverting for these two parameters. However, when the
inversion with 2 parameters is performed fap lndzmo even in the case of noise free data, a deviation from the
exact solution is observed, namely: the valugs-K.5x10%(m?) andr= 1.15 are obtained, with a relative error
of 22.6% and 18.3%, respectively. This suggests that the two paramgiensdiéoare strongly correlated and
hence difficult to obtain simultaneously. However, the product between the numerical valugsaofl i is
very close in value to the product between the exact values ehldzo,with a relative error of 0.15%, indicating
that we can retrieve the product ofgkandzno by the inversion with two parameters, but not the exact individual
values. In fact, from (2) and (3) one has

0K

- = K + -
% 0K fho 0T

and since Kis of Q(10'% small, the normalised sensitivity coefficients f&f, and 7, will appear
indistinguishable. Another approach, proposed in Civan (2002, 2003, 2005), could be to modify the model to
relate permeability to pore connectivity using a power-law flow unit equation, however this invastigatio
deferred to a future research work.

K., (53)

As for the inversion with 1 parameter, the inversion with 2 parameters was investigated for the case when noise
is added to the direct problem solution, in the form given by EquationT&k)e 3 shows the numerical results
for Ko, Tho andpr, obtained when adding a noise of 0.1%.

Para_met_e Parameter/unit Exact Numerical Percentagerror
combination (%)
o 1.41 1E1 6.7
7o aNndfm, I —1.0x1C° ~1.0x1C° 0
Ko (M2 5.3x10'® 7.3x10'® 37.7
K.,
oandfo, o (PEY) ~1.0x1C° 29.0x1C7 10
Koo (M0) 5. 3x1( 7 IX1CE 33.C
Ksoandeo o 1.41 1.1z 20.2

Table 3. Results for inversion with noise for 2 parameters out.gf #o andpzn.

As expected, the relative error in this case is higher for bethaKd mo, namely itis 33.9% and 20.4%,
respectively. However, when the product between the numerical valueg ah#&wmo is calculated, it can be
observed that the relative error between this and the product between the exact valuamfdgis much
smaller, namely it is 6.5%.

8.2.4. Inversion for 3 Parameters

For the inversion problem applied to 3 parameters, the previous arithmetic method of calculating tive object
function (49) becomes prohibitive. In this case the minimisation of the nonlinear least-squanesedhbjection

(49) is performed numerically using the NAG routine EO4FCF. This routine is a comprehensive algorithm for
finding an unconstrained minimum of a sum of squares of a sum of squarasoafiear functions in K< M)
variables (see Gill and Murray, 1978). No derivatives are required. In our e&san hence we require that

M =3.

The NAG routine EO4FCF is applicable to problems of the form:

minimise F(X) = Z[ﬁ-(g)]2 (54)

=1

whereX = (X;,X,,...Xy)and M > N.

The functionsi{X) are referred to as ‘residuals’ and are supplied as:
fiX) = p(x:08) -p(0.5),  i=1,..M. (55)
From an initial gues¥ (") supplied by the user, the routine generates a sequence ofX/6ints > 2, given by
X0+ = x(B) 1 gk (k) (56)

intended to converge to a local minimumédfx), where the vectgs® is a direction of search, an®és chosen
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such that” (K(") + d(k)p(k)) is approximately a minimum with respect t§.d

The numerical results for the inversion of the 3 parametes,sii§ andpfz, are shown inrable 4, for a couple of

initial guesses. The inversion for.dwas done for 5.3 and the result was multiplied by21for convenience in
computing errors. The percentage errors are very small, showing some independence on the initial guess.
However, for other initial guesses further away from the exact values, results may become trapped in a local
minimum but this is typical with gradient search methods.

Parameter/ur Exac Numerica Initial gues Percentagerror
(%0)
5.2¢x101¢ 7.0x1C1E 0.23¢
2 18
Ko () 5-3x10 5.4 X107 3.0X1CT 2.6¢
1.4 1.t 0.80¢
fho 141 1.3¢ 1 2.06
—9.9¢€ X107 -1.5 x1(® 0.157
1 _ 6
fron (PE) 1.0x10 —9.9¢€ X107 -0.5x 1(° 0.157

Table 4. Results for inversion of the 3 parametets, o andf, for exact data.

9. Laboratory Experimental Tests

The numerical approach was applied to experimental data obtained in the Wolfson multiphase fadoriadio

the University of Leeds for two samples: AB1 and AB2. The data for thesamples are presented in Appendix

A. The gas used in our experiments is Helium, which does not absorb to shale. Consequently, the gas desorption
data such as the Langmuir volume and pressure are set to zero. The intrinsic permeability of both these samples
is expected to be very low. The modelled boundary conditions for both these examples are of the same type as the
ones presented for Example 7.3, namely as given by (40)-(42). Laboratory results included measurements for the
pressure at both the upstream and downstream boundaries. The direct problem was solved first for samples AB1
and AB2. Results were analysed for both the upstream and downstream boundary pressures for different values
of the three unknown parameters, namelydandfz,, for the initial 200 minutes of the experiment for AB1 and

for the initial 60 minutes for AB2. To obtain a consistent value of the equilibrated pressure (pressure at which the
upstream and downstream pressures become equal) with the value obtained by the laboratory experiments, the
downstream volume was taken slightly smaller in the numerical calculations than in the labozgoments,

namely it was taken to be¥5.23x10'm*for AB1 and \4=9.83x10'm? for AB2. The compressibility coefficient

for porosityg,, and for intrinsic permeabilityx.. were determined for each sample, as described in Section 8.1.

Figure 12 illustrates the experimental results for the pressure at the upstream and downstream boundaries, in
comparison with the numerical results obtained by solving the direct problendfors5K102°m? andfz,=—1.0
x10Patwhen using three different values for tortuosity namely: 2.5, 3 and 4. It is in evidence in this figure

that the best estimates are obtainedygr 2.5,when analysing the results for both the upstream and downstream
boundary pressures. The fits of the pressure-pulse decay models to the experimental data are better near the initial
and final times than in the middle portion of the time interval.
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Figure 12. Upstream and downstream boundary pressures obtained experimentally and by solving the direct
problem, when usiné.o= 5x10%2m?, Brmo-—1.0 x10"'Pat andz,, € {2.5,3,4} for sample ABL, on a semi-log

plot. (The upstream and downstream boundary pressures are shown in the same colour for each case, for
consistency).

Figure 13 shows the experimental results for the pressure at the upstream and downstream boundaries for sample
AB2, in comparison with the numerical results obtained by solving the direct problemfor3K102°m? and

Br=—1.0 x10'Pa* when using three different values for tortuosify namely: 3, 3.5 and 4.5. It is in evidence in

this figure that the best estimates are obtained fer 3.5,when analysing the results for both the upstream and
downstream boundary pressures. As with sample AB1, the pressure pulse-decay model fits better thetakperimen
data near the initial and final times than in the middle portion of the time interval.
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Figure 13. Upstream and downstream boundary pressures obtained experimentally and by solving the direct
problem, when using.o= 3x10°m? andpw -—1.0 x10*Pat andz,, € {3,3.5,4.5} for sample AB2, on a semi-

log plot. (The upstream and downstream boundary pressures are shown in the same colour for each case, for
consistency).

The inverse problem applied to three parameters has been investigated for samples AB1 and AB2, using the
approach presented in Section 8.2.4. The initial guesses were taken close to the values of the three unknown
parameters determined by the direct problem for the two examples. The inverse problem was first investigated

when using one single set of experimental data per sample (i.e. data generated by running @y tabbper
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sample, using one single value for the initial upstream pressure and one for the initial downstream pressure). The
inverse problem was also investigated when using two sets of experimental data per sample (i.e. data generated
by running two different laboratory tests per sample, at different initial upstream and initial downstream
pressures). In both cases however, the results obtained so far indicate that these three parameters are very difficult
to retrieve together. This could be a result of combination of two key issues. Firstlgfuteeaf the relationship

between Ko and o (as mentioned earlier, they seem almost correlated and hence difficult to obtain
simultaneously) needs to be further investigated, possibly changing the permeability model, as jpnapiesin

(2002, 2003, 2005)Y.his was somewhat expected, from the discussion presented for the inversion with noise for
two parameters and the inversion with three parameters. Secondly, most shale samples that we have tested show
evidence of a dual porosity system potentially a combination of fracture and matrix porosity. Theamsenal
formulation presented here does not account for such heterogeneity and therefore needs extending to two- or even
three-dimensions.

10. Conclusions

A finite volume method has been developed to solve the nonlinear diffusion equation governing the pressure-
pulse decay tests subject to appropriate initial and boundary conditions. The numerical approach was tested for
different unsteady-state example problems for which analytical or numerical solutions are available ynd a ver
good agreement has been obtained. The method was then applied for solving the pressure-pulse decay tests given
in Civan et al. (2011a, b) and a comparison with their results was made. An inverse problem was formulated to
determine the values of the unknown parameters present in the governing equation. An inverse numerical solution
has been presented for the inversion of up to three parameters. For the inversion of one and two parameters noi
was also added to the direct problem pressure data and an error analysis was made. A very good retrieval of one
of the unknowns was found for exact data. A reasonable retrieval of one of the unknowns was also obtained in th
case of noisy data. When the inversion with two parameters is performegh fond<,o even in the case of exact

data, a deviation from the exact solution was observed, which indicated that these two parameters are almost
correlated and hence difficult to obtain simultaneously. However, their produighas correctly estimated.

Finally, our approach has been applied to practical laboratory pressure-pulse decay results obtained when using
samples with very low permeability. Preliminary results, obtained by solving the dirbttrprand comparing

the results with the experimental results for two samples, AB1 and AB2, indicate an intrinsic peynoéab

0(102%) and 10%) for the samples, respectively. However, we were not able to invert.ford and Sz,
simultaneously, from laboratory pressure-pulse decay tests using samples. The failure to invert for these three
parameters potentially reflects the close correlation betwegarilmo. This is particular to the pressure-pulse

decay test performed and, more importantly, that only the boundary pressure data have been used as additional
measurement information in the inversion process. This obviously has the practical advantage that the inversion
is non-intrusive; however, if better retrieval is desired then additional intrusive measurements of the pressure at
internal ports mounted within the sample might be necessary (Lesnic et al., 1998). More general effects such as
heterogeneity and anisotropy of the sample in the gas shale model will be investigated in a future work. Overall,
the work presented in this paper may be used to test whether other gas flow models can be used to obtain the key
unknowns of flow in shale from experimental data obtained in the laboratory.
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Nomenclature

A empirical fitting constant (dimensionless)

A coefficient used in the general boundary condition Equation (31) (dimensiord€s%)2i
b slip coefficient (dimensionless)

B empirical fitting constant (dimensionless)

Bo coefficient used in the general boundary condition Equation (31) (dimensionless)
D diameter of sample (m)

f(Kn)  flow condition function (dimensionless)
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AN «Q

ﬁ noisy

acceleration due to gravity {s)
apparent permeability tensor of gas)m
Knudsen number (dimensionless)
intrinsic permeability ()

length of sample (m)

molecular weight of gas (kg/kmol)
numberof time steps (dimensionless)
numberof control volumes (dimensionless)
unit vector (dimensionless)

absolute gas pressure (Pa)

critical pressure (Pa)

downstream gas pressure (Pa)
Langmuir gas pressure (Pa)

scaling pressure (Pa)

upstream gas pressure (Pa)
dimensionless gas pressure

dimensionless gas pressure with added noise

Prumerical NUMerical dimensionless gas pressure

q
Ca

Vstd
Vu

=i

Greek

mass of gas adsorbed per solid volume (Rp/m

standard volume of gas adsorbed per solid mass f#dm
Langmuir gas volume (std¥kg)

universal gas constant (8314 J/kmol K)

sensitivity coefficients

denotes standard conditions (273.15K and 101,325 Pa)
time (s)

dimensionless time

absolute temperature (K)

critical temperature (K)

volumetric flux vector (rfm?/s)

bulk volume of core plug (f

downstream reservoir volume n

effective pore volume (&)

molar volume of gas at standard temperature (273.15K) and pressure (101,325P3krtadt) m

upstream reservoir volume
cartesian distance in the horizontal flow direction (m)
dimensionless distance

real gas deviation factor (dimensionless)

dimensionless rarefaction coefficient (dimensionless)
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0o asymptotic limit value of dimensionless rarefaction coefficient (dimensionless)

B ratio of compressive storage in the downstream reservoir to compressive storage in tha upstreair
(dimensionless)

P isothermal coefficient of compressibility for fluid viscosity (Pa

By isothermal coefficient of compressibility for porosity (fPa

Lo isothermal coefficient of compressibility for intrinsic permeability {Pa

by isothermal coefficient of compressibility for fuid density tPa

Pn isothermal coefficient of compressibility for tortuosity (fPa

Vu coefficient used in upstream boundary condition equations (dimensionless)

ot time step (dimensionless)

OX spatial step (dimensionless)

™

noise (dimensionless)

&n noise (percents)
r apparent diffusivity tensor (Ss)
r scalar apparent diffusivity (s)
r dimensionless scalar apparent diffusivity
¢ porosity of porous media (fraction)
A mean-free-path of molecules (m)
Th tortuosity of porous media (dimensionless)
p density (kg/m)
apparent flowing gas density’{®?)
0 dimensionless apparent flowing gas density
Ps material density of the porous sample (k§/m
M dynamic viscosity of gas (Pa s)
Vg4 coefficient used in downstream boundary condition equations (dimensionless)
Vy coefficient used in upstream boundary condition equations (dimensionless)
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Appendix A

Table Al. Data used for Pressure-Pulse Decay Tests.

Test Example 7.5 (Test Example 7. 6 (Test Experimental | Experimental
2# Civan et al. Civan et al. 2011a) Test- Sample | Test- Sample
2011b) AB1 AB2

Core Sample Properties

Length L(m) 0.04057 0.05 0.0262 0.027077
Diameter D (m) 0.02528 0.05 0.0338 0.03657
Grain densitys (kg/nv) 2650 2500 2650 2650
Porosityg (fraction) 0.0575 0.05 0.038 0.017

GasProperties

Gas type Nitrogen Methane Helium Helium
Viscosity 4 (Pa s) 1.8x10° 1.8x10° 1.984x10¢ 1.984x10C
B (Pab) 8.388x1 3.0x10% 1.68 x1& 1.68 x1&
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Molecular mass
(kg/kmal)

28.01

16

Critical temperature ;I

(K)

126.2

190.6

52

5.2

Critical pressure P(Pa)

3,394,387.5

4,605,697.87

228,009.62

228,009.6

Molar volume of gas ¢
standard temperature
(273.15K) and pressure
(101,325Pa) Mq (std
m3/kmol)

22.414

22.414

22.414

22.414

Pr essur e-Pulse Decay
Tests Conditions

Temperature T (K)

303.85

298.15

294.15

294.15

Initial gas pressurepp
(Pa)

101,325

101,325

124,078.1

101,325

Upstream gas pressurg (]
(Pa)

3,546,375

500,000

1,051,753.8

1,020,879

Upstream reservoir
volume \} (m®)

8.835 x1¢

2.1x10°

6.57x10°

6.57x10°

Downstream reservoir
volume \4 (m®)

1.1148 x16

Not needed

1.83x10°

1.83x10°

Flow parameter values

Intrinsic permeability Ko
(m?)

1.97 x10'°

5.3 x10%

Inverted

Inverted

Langmuir gas pressure p
(Pa)

7.5 x16

Langmuir gas volumag.
(std n¥/kg)

0.01

Tortuosityzno
(dimensionless)

2.2

141

Inverted

Inverted

ao constan
(dimensionless)

1.358

1.358

1.358

1.358

A constant
(dimensionless)

0.178

0.178

0.178

0.178

B constant
(dimensionless)

0.4348

0.4348

0.4348

0.4348

Slip coefficient b
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i
Py (P2) 9.8692 x102 4.0 x10° 1.41 x10 2.47 x10
Pro (PEY) 1
3.947 x1¢ 1.0 x10° 7.61 x16° 1.19 x1¢
Prn (Pat) -1.9738 x10* —-1.0 x10° Inverted Inverted
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