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Abstract		

Background:	 One	 in	 twenty-five	 people	 suffer	 from	 a	 mood	 disorder.	 Current	

treatments	are	sub-optimal	with	poor	patient	response	and	uncertain	modes-of-

action.	 There	 is	 thus	 a	 need	 to	 better	 understand	underlying	mechanisms	 that	

determine	mood,	and	how	these	go	wrong	in	affective	disorders.	Systems	biology	

approaches	 have	 yielded	 important	 biological	 discoveries	 for	 other	 complex	

diseases	 such	 as	 cancer,	 and	 their	 potential	 in	 affective	 disorders	 will	 be	

reviewed.		

Scope	 of	 Review:	 This	 review	 will	 provide	 a	 general	 background	 to	 affective	

disorders,	 plus	 an	 outline	 of	 experimental	 and	 computational	 systems	 biology.	

The	current	application	of	these	approaches	in	understanding	affective	disorders	

will	be	considered,	and	future	recommendations	made.	

Major	Conclusions:	Experimental	systems	biology	has	been	applied	to	the	study	

of	 affective	 disorders,	 especially	 at	 the	 genome	 and	 transcriptomic	 levels.	

However,	data	generation	has	been	slowed	by	a	lack	of	human	tissue	or	suitable	

animal	models.	At	present,	computational	systems	biology	has	only	be	applied	to	

understanding	 affective	 disorders	 on	 a	 few	 occasions.	 These	 studies	 provide	

sufficient	 novel	 biological	 insight	 to	 motivate	 further	 use	 of	 computational	

biology	in	this	field.	

General	 Significance:	 In	 common	with	many	 complex	 diseases	much	 time	 and	

money	 has	 been	 spent	 on	 the	 generation	 of	 large-scale	 experimental	 datasets.		

The	next	step	is	to	use	the	emerging	computational	approaches,	predominantly	

developed	 in	 the	 field	of	oncology,	 to	 leverage	 the	most	biological	 insight	 from	

these	 datasets.	 This	 will	 lead	 to	 the	 critical	 breakthroughs	 required	 for	 more	

effective	diagnosis,	stratification	and	treatment	of	affective	disorders.	
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1.! General	Introduction	

The	post-genomic	era	promised	much	with	respect	to	a	greater	understanding	of	

human	biology,	and	the	development	of	new,	more	effective	medicines	[1].	While	

this	has	been	achieved	 to	 some	degree,	 it	 can	be	argued	 that	 the	genomics	era	

actually	produced	as	many	questions	as	it	solved,	if	not	more.	This	is	particularly	

true	 with	 regard	 to	 the	 human	 brain,	 which	 has	 one	 of	 the	 most	 complex	

transcriptomes	in	the	human	body	[2-4].	

There	 is	 a	 pressing	 need	 to	 develop	 effective	 treatments,	 or	 management	

strategies,	 for	many	 complex	diseases,	 including	 cancer,	 fatty	 liver	disease	 and	

mental	disorders	[5].	This	review	will	consider	one	aspect	of	mental	disorders:	

mood,	 or	 affective,	 disorders.	 The	 spectrum	 of	 affective	 disorders	 afflicts	 an	

estimated	14	million	sufferers	 in	the	USA	alone,	representing	4.4%	of	the	adult	

population	[6].		

	

1.1.! The	potential	of	systems	biology		

At	 it’s	 broadest	 definition,	 systems	 biology	 is,	 quite	 literally,	 the	 biology	 of	

complete	 systems	 [7].	 The	 aim	 of	 systems	 biology	 is	 to	 predict	 the	 emergent	

biological	 phenotype	 from	 the	 interactions	 that	 occur	 within	 a	 system	 [8].	

Emergent	 properties	 are	 those	 that	 cannot	 be	 easily	 divined	 by	 study	 of	 the	

individual	 components	 of	 the	 system.	 For	 example,	 all	 life	 can	 be	 seen	 as	 an	

emergent	 property	 of	 the	 interaction	 between	 the	 proteins,	 lipids	 and	 other	

chemicals	 that	 make	 up	 an	 organism.	 While	 it	 is	 obvious	 that	 the	 human	

phenotype	 emerges	 from	 these	 interactions,	 it	 is	 not	possible	 to	define	what	 a	

person	will	 look	 like	by	studying	 the	phosphorylation	of	MAP	kinase.	 It	 is	only	

through	the	systems	approach,	where	the	study	of	these	individual	components	

are	connected,	that	higher-scale	properties	emerge.	Systems	approaches	are	now	

standard	 practice	 to	 understand	 the	 complex	 interactions	 that	 occur	 within	

biological	 systems.	 In	 addition,	 they	 are	 increasingly	 used	 to	 the	 understand	

aberrant	behaviour	of	 these	systems	(i.e.	disease	states),	helping	 identify	novel	

therapeutic	options	[7,	8].	 It	could	be	argued	that	this	approach	is	of	particular	

importance	 for	 the	 examination	 of	 complex	 biological	 phenomenon	 such	 as	
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mood.	This	is	an	area	where	much	knowledge	has	been	gained	at	the	molecular	

level,	 but	 it	 is	 still	 not	 fully	 understood	how	 such	 interactions	 link	 together	 to	

produce	a	particular	mood	phenotype.	This	review	will	cover	three	questions:		

(i)! Can	 a	 systems	 biology	 approach	 determine	 how	 the	 phenotype	 ‘mood’	

emerges	from	multiple	biological	interactions?	

(ii)! 	Can	a	 systems	biology	approach	determine	how	common	errors	 to	 this	

system	result	in	affective	disorders?		

(iii)! Can	a	systems	biology	approach	be	used	to	develop	effective	treatments,	

pushing	the	affective	phenotype	back	towards	normal?	

To	 fully	 understand	 the	 potential	 for	 systems	 biology	 to	 benefit	 the	

understanding	of	 affective	disorders,	 it	 is	 important	 to	unpick	 the	definition	of	

systems	biology	further.	This	will	clarify	both	what	we	can	hope	to	achieve	using	

a	systems	approach,	and	what	tools	are	available	to	achieve	this.		

1.1.1.!What	is	systems	biology?	

If	systems	biology	can	be	defined	as	a	means	of	studying	the	biology	of	an	entire	

system	 then	we	must	 first	 define	what	we	mean	by	 system.	At	 one	 end	 of	 the	

biological	 spectrum	we	ultimately	wish	 to	 understand	 the	 biology	 of	 an	 entire	

organism.	 The	 recreation	 of	 an	 entire	 organism	 in	silico	 can	 be	 achieved	with	

simple,	single-celled	organisms	such	as	bacteria.	However,	the	reconstruction	of	

an	 in	 silico	 human	 is	 currently	 beyond	 our	 technical	 and	 biological	

understanding.	 In	 these	 cases,	 we	 usually	 define	 a	 system	 as	 a	 lower	 level	 of	

organisation,	such	as	an	organ	or	cell,	or	even	an	individual	sub-compartment	of	

the	 cell.	 Robustly	 reconstructing	 these	 individual	 components,	will	 allow	 their	

merging	to	create	larger	structures,	eventually	leading	to	the	in	silico	human	[8].	

Once	we	have	decided	on	which	biological	system	to	study,	there	are	two	major	

flavours	 of	 systems	 biology	 that	 can	 be	 explored:	Experimental	systems	biology	

undertakes	measurements	of	the	system	at	the	global-scale.,	while	computational	

systems	 biology	 involves	 the	 integration	 of	 experimental	 data	 in	 silico	 in	 an	

attempt	to	improve	biological	understanding	[8].	Consideration	of	these	two	sub-
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disciplines	 leads	 to	 the	 realisation	 that	 they	 are	 highly	 dependent	 upon	 each	

other.	 For	 example,	 computational	 modelling	 is	 a	 logical	 way	 to	 attempt	 to	

interpret	the	large	experimental	datasets	produced	through	omic	approaches	[9-

11].	Conversely,	computational	models	require	experimental	data	to	both	inform	

their	 construction	and	 to	validate	 the	 final	model.	This	 leads	 to	 the	 conclusion	

that	 computational	and	experimental	 systems	biology	must	be	envisaged	as	an	

iterative	cycle,	rather	than	a	linear	pathway	[12].		

1.1.2.! Tools	to	study	experimental	systems	biology	

Biological	 systems	may	be	viewed	as	 series	of	 interconnected	 levels.	The	most	

obvious	interconnection	is	the	central	dogma,	the	flow	of	information	from	DNA	

to	 RNA	 to	 Protein	 [13].	 Experimental	 systems	 biology	 was	 initially	 concerned	

with	 the	 capture	 of	 the	 total	 information	 at	 each	 of	 these	 levels.	 For	 example,	

transcriptomic	 studies	utilise	microarray	or	RNASeq	 technology	 to	 examine	all	

the	transcripts	within	a	system	[14,	15].	Analogous	measurements	can	be	made	

at	 the	 level	 of	 the	 genome	 and	 proteome	 [16,	 17];	 in	 addition,	 study	 of	 the	

chemical	 complement	 of	 a	 system,	 the	 metabolome,	 is	 becoming	 increasing	

common	[18].	As	shown	in	Figure	1,	these	technologies	provide	a	comprehensive	

snapshot	of	the	vertical	information	flow	from	blueprint	(i.e.	DNA)	to	phenotype	

(i.e.	chemical	composition).		

Consideration	 of	 this	 vertical	 information	 flow	 has	 yielded	 significant	 insights	

into	 a	 wide	 range	 of	 biological	 questions,	 plus	 an	 impressive	 legacy	 of	

experimental	 data	 [19].	 However,	 to	 examine	 the	 vertical	 flow	 of	 information	

alone	ignores	the	control	that	exists	within	each	vertical	level.	For	example,	the	

importance	of	post-translational	modifications	in	setting	the	biological	activity	of	

proteins	 is	well	 established	 [20,	21].	The	post-translational	modification	status	

of	proteins	will	be	captured	in	a	standard	proteome	analysis,	but	its	significance	

may	be	lost	in	the	deluge	of	data:	a	case	of	not	being	able	to	see	the	trees	for	the	

wood.	Targeted	analyses	must	be	used	to	focus	on	specific	sub-populations	of	the	

proteome,	 such	 as	 the	 phosphoproteome,	 methylome	 or	 acetylome	 [21-23].	

Likewise,	analysis	of	the	horizontal	control	within	the	genome	(i.e.	epigenome),	

transcriptome	 (i.e.	 small	 non-coding	 RNAome)	 and	 metabolome	 (i.e.	 fluxome)	
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can	be	undertaken.	Considerable	work	is	also	now	focussed	on	the	interaction	of	

human	 biology	 with	 our	 symbiotic	 bacteria,	 mostly	 through	 study	 of	 the	

microbiome.	

Experimental	 systems	 biology	 is	 focussed	 on	 the	 capture	 of	 comprehensive	

information	 on	 biological	 systems.	 These	 high-density	 data	 are	 ideal	 for	

identifying	novel	biological	features,	as	they	provide	increased	analytical	power.	

They	 provide	 the	 building	 blocks	 for	 computational	 models,	 hypothesis	

generation	and	 targeted	 follow-up	experiments.	 Figure	1	presents	 a	 cartoon	of	

the	omic	 levels	of	 investigation,	and	highlights	 those	 that	have	been	utilised	 to	

date	in	the	study	of	the	biology	of	affective	disorders.	

1.1.3.! Tools	to	study	computational	systems	biology	

Computational	models	can,	essentially,	be	categorised	by	two	important	factors:	

the	 size	 of	 network,	 and	 the	 level	 of	 parameterisation.	 The	 reconstruction	 of	

large	molecular	 networks,	 often	utilising	 omic	 level	 datasets,	 aims	 to	 integrate	

large	 amounts	 of	 data,	 either	 automatically	 or	 through	 manual	 curation.	 In	

contrast,	 ‘bottom-up’	 approaches	 create	 highly	 detailed	 models	 of	 small	

biological	 networks,	 which	 may	 later	 be	 combined	 to	 create	 larger	 models,	 if	

desired	[12].		

The	desired	degree	of	parameterisation	within	a	model	is	often	a	deciding	factor	

for	many	decisions	within	computational	 systems	biology,	 including	 the	size	of	

the	 generated	 network.	 To	 fully	 represent	 a	 biological	 system	 in	 the	 most	

accurate	manner	possible	requires	complete	parameterisation	for	every	species	

and	reaction	within	the	system.	This	would	include	the	absolute	concentration	of	

every	 mRNA	 or	 protein	 (accurately),	 plus	 the	 kinetic	 parameters	 for	 all	

enzymatic	reactions,	the	rate	of	transcription,	translation	etc.	This	level	of	detail	

is	seldom	available	for	all	components	of	a	biological	system,	meaning	that	fully	

quantitative	 models	 are	 usually	 limited	 to	 small-scale	 ‘bottom-up’	 approaches	

[24-26].	 One	 potential	 work-around	 for	 this	 problem	 can	 be	 seen	 in	

physiologically	 based	 pharmacokinetic	models;	 these	 predict	 the	movement	 of	

chemicals	 around	 the	 entire	 body	 in	 a	 quantitative	 manner.	 This	 apparent	

paradox	 is	 achieved	 through	 the	 use	 of	 a	 reductionist	 approach,	 whereby	
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reaction	kinetics	are	simplified	to	a	level	that	can	be	approximated.	To	this	end,	

transport	 of	 a	 chemical	 across	 a	 membrane	 is	 often	 represented	 by	 a	 single	

mathematical	 term	 based	 upon	 experimental	 measurement	 in	vitro.	 This	 term	

reflects	 not	 a	 single	 process,	 but	 the	 net	 effect	 of	 multiple	 uptake	 and	 efflux	

process,	at	 least	 some	of	which	have	poorly	described	kinetic	parameters	 [27].	

This	effectively	 reduces	 the	size	of	 the	computational	network	by	reducing	 the	

number	 of	 species	 that	 need	 to	 be	 parameterised,	 while	 still	 allowing	 the	

representation	of	a	large	biological	network.	One	important	difference	between	

such	models	and	quantitative	mechanistic	models	is	the	use	of	experimental	data	

to	 ‘fit’	 model	 parameters.	 In	 a	 mechanistic	 model	 each	 step	 is	 accurately	

reproduced,	 and	 the	 larger	 scale	 behaviours	 of	 the	 network	 emerge	 from	 the	

interconnections	 of	 these	 steps.	 In	 contrast,	 in	 reductionist	 models	 the	

parameter	 values	 are	 fitted	 so	 that	 the	 model	 reproduces	 larger	 scale	

behaviours;	 in	the	case	of	physiologically	based	pharmacokinetic	models	this	 is	

usually	the	concentration-time	curve	for	the	drug	in	plasma.	While	the	difference	

may	 seem	 trivial	 upon	 first	 perusal,	 it	 is	 in	 fact	 a	 fundamental	 difference	 in	

approach,	leading	to	different	advantages	and	disadvantages	for	each	approach.		

Large-scale	models	often	comprise	networks	based	upon	hundreds	or	thousands	

of	 interactions,	meaning	 it	 is	highly	unlikely	 that	all	 kinetic	parameters	will	be	

available.	 Such	 models	 will,	 by	 necessity,	 be	 qualitative	 in	 nature	 and	 aim	 to	

capture	 the	 complexity	 of	 the	 biological	 network	 without	 reproducing	 its	

behaviour	in	a	quantitative	manner.	This	means	that	while	such	models	are	not	

able	 to	 predict	 the	 exact	 concentration	 of	 a	 substance	 in	 the	 model,	 they	 can	

predict	if	that	substance	can	be	formed	by	the	network.	These	large-scale	models	

are	 ideal	 for	 examining	 the	 design	 principles	 of	 a	 network,	 leading	 to	 an	

understanding	of	why	biological	systems	have	certain	network	connections	and	

how	 these	 my	 go	 wrong	 in	 disease	 [8].	 Examples	 of	 such	 qualitative	 models	

include	 large-scale	 reconstruction	 of	 signalling	 networks	 [28],	 or	 the	 use	 of	

genome-scale	metabolic	 networks	 (GSMNs)	 [29].	 It	 should	be	noted	 that	while	

these	models	are	qualitative	in	design,	experimental	parameters	can	be	added	to	

constrain	 the	 system,	 producing	 more	 realistic	 simulations.	 Such	 an	 approach	

can	 be	 seen	 in	 the	 integration	 of	 omics	 level	 data	 and	 a	 GSMN,	 tuning	 it	 to	 a	
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particular	cell-type	or	biological	context	[30,	31].	Essentially,	any	reaction	in	the	

network	 catalysed	 by	 a	 protein	 not	 present	 within	 a	 particular	 cell-type	 is	

switched	off,	helping	the	GSMN	to	represent	the	cellular	phenotype	[32].		

A	 full	 description	 of	 computational	 biology	 approaches	 is	 beyond	 the	 scope	 of	

this	review,	but	the	 interested	reader	 is	pointed	towards	the	 following	reviews	

[7,	8,	12,	29].	

Computational	 system	 biology	 uses	 a	 range	 of	 approaches	 to	 reconstruct	 the	

features	of	biology	 in	silico.	The	aim	of	such	reconstructions	 is	 twofold:	 first,	 to	

improve	 understanding	 of	 how	 complex	 phenotypes	 emerge	 from	 multiple	

biological	 interactions;	 second,	 to	 provide	 a	 virtual	 platform	 to	 generate	

hypotheses	for	further	experimental	investigation.	

2.! Can	a	 systems	biology	approach	determine	how	 the	phenotype	 ‘mood’	

emerges	from	multiple	biological	interactions?	

The	 exact	 molecular	 underpinning	 of	 an	 individual’s	 mood	 phenotype	 is	 still	

unclear.	What	is	clear	is	that	mood	is	a	highly	complex	phenotype	that	emerges	

from	a	number	 of	 signalling	pathways.	 The	monoamine	hypothesis	 proposes	 a	

role	 of	 three	 major	 neurochemical	 signalling	 molecules	 in	 determining	 mood	

phenotype,	with	their	deregulation	contributing	to	the	development	of	affective	

disorders:	noradrenaline,	serotonin	and	dopamine	[33,	34].		This	hypothesis	may	

be	 further	 sub-divided	 into	 three	 hypotheses,	 each	 centred	 on	 an	 individual	

monoamine.	 The	 catecholamine	 hypothesis	 focuses	 on	 levels	 of	 noradrenaline,	

with	 increased	 levels	 resulting	 in	 a	 euphoric/manic	 mood	 phenotype,	 while	

decreased	 levels	 elicit	 depressive-like	 symptoms	 [35].	 The	 permissive	 amine	

hypothesis	 focuses	 on	 the	 control	 of	 noradrenaline	 activity	 by	 serotonin.	 This	

has	 an	 indirect	 impact	 on	 mood	 phenotype,	 as	 deregulation	 of	 serotonin	

signalling	impacts	on	the	noradrenaline-mediated	control	of	mood	[33].		Finally,	

the	dopamine	hypothesis	focuses	on	its	known	action	in	reward	and	behavioural	

reinforcement	[36].		Beyond	neurochemical	signalling	networks,	other	hormone	

systems	 have	 been	 implicated	 in	 the	 determination	 of	 mood.	 Production	 of	

growth	 hormone	 is	 regulated	 by	 a	 number	 of	 factors,	 including	 noradrenaline,	

dopamine,	somatostatin.	Levels	of	somatostatin	have	been	reported	to	decrease	
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during	depression	and	 increase	during	mania	 [37,	38].	Deregulation	of	 thyroid	

activity	 has	 also	 been	 observed	 in	 approximately	 ten	 percent	 of	 depressives,	

suggesting	 it	 has	 a	 role	 in	 determining	 mood	 phenotype	 [39,	 40].	 Finally,	

deregulation	 of	 the	 hypothalamic-pituitary-adrenal	 (HPA)	 axis	 leads	 to	 altered	

cortisol	 and	 noradrenaline	 release.	 This	 has	 been	 associated	 with	 the	

development	 of	 affective	 disorders,	 and	 will	 be	 more	 completely	 covered	 in	

section	 3.2.	 It	 is	 important	 to	 note	 the	 interconnected	 nature	 of	 the	 signalling	

pathways	 listed	 above.	 Given	 this	 high	 degree	 on	 interconnectedness,	 it	 is	

difficult	to	tease	out	which	effects	are	causative	of	affective	disorder,	and	which	

are	 consequential	 or	 unrelated.	 As	 a	 systems	 approach	 aims	 to	 integrate	 the	

input	of	individual	components	to	predict	the	emergent	biological	phenotype	it	is	

a	logical	tool	to	try	to	understand	the	aetiology	of	affective	disorders,	and	predict	

potential	therapeutic	options.		

When	 considering	 mood,	 it	 is	 perhaps	 pertinent	 to	 consider	 why	 mood	 is	 so	

flexible,	and	why	it	appears	relatively	easy	for	individuals	appear	to	deviate	from	

‘normal’	 mood	 phenotypes	 to	 adverse	 affective	 disorders.	 One	 possible	

explanation	 for	 this	 is	 that	 the	 neural	 networks	 that	 underpin	 our	 cognitive	

ability	and	mood	are,	by	design,	some	of	the	most	flexible	biological	networks	in	

the	human	body	[41,	42].	This	is	not	surprising	given	the	requirements	of	neural	

networks	in	comparison	to	many	other	systems	within	the	body.	In	the	liver,	for	

example,	the	gene-,	signalling-	and	metabolic	networks	are	designed	to	provide	a	

robust	 control	 of	 central	metabolism.	 Their	 drive	 is	 to	 change	 only	 enough	 to	

allow	a	return	to	chemical	homeostasis,	whereupon	the	network	returns	to	the	

original	state	[43].	In	contrast,	neural	networks	are	designed	to	adapt	to	external	

stimuli,	 producing	new	 connections	 that	 allow	 the	 organism	 to	 best	 survive	 in	

this	 new	 environment.	 The	 liver	 may	 be	 defined	 as	 a	 robust	 system,	 always	

aiming	to	return	to	a	base	state,	while	neural	networks	can	be	seen	as	fragile	or	

evolvable,	 meaning	 they	 can	 alter	 to	 adapt	 to	 stimuli.	 A	 whole	 branch	 of	

computational	 systems	 biology	 is	 dedicated	 to	 understanding	 flexibility	within	

biological	networks	 [44].	While	evolvability	 in	neural	networks	 is	 important	 to	

allow	our	long-term	adaptation	to	new	challenges,	it	does	increase	the	possibility	

of	 evolution	 into	 extreme	 states.	 From	 a	 systems	 perspective,	 one	 would	
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presume	 that	 the	more	 evolvable	 the	 system,	 the	more	 likely	 it	 is	 to	 produce	

outliers	 in	 performance.	 Such	 extreme	 states	 may	 underlie	 the	 significant	

evidence	 linking	 creative	 individuals	with	 affective	disorders	 [45,	 46];	 this	 has	

been	termed	the	‘edge	of	chase’	hypothesis	[47].	Outliers	could	be	seen	as	either	

beneficial	 (i.e.	 creative)	 or	 adverse	 (i.e.	 affective	 disorders),	 with	 evidence	

existing	 to	 support	 an	 inverted-U	 shaped	 relationship	 between	 creativity	 and	

mental	 illness.	 Under	 this	 hypothesis,	 as	 the	 evolvability	 of	 a	 neural	 network	

increases,	 so	 does	 creativity.	 This	 continues	 to	 a	 point	 where	 the	 system	

becomes	unstable,	 symptoms	of	mental	 illness	predominate,	 and	 a	decrease	 in	

creativity	 is	 observed.	 Evidence	 for	 such	 a	 relationship	 exists	 both	 in	 affective	

disorders	 and	other	mental	disorder	 such	as	 schizophrenia	 [48,	49].	Alongside	

empirical	evidence,	the	striking	number	of	highly	creative	individuals	who	have	

been	diagnosed	with,	or	who	expressed	symptoms	of,	bipolar	disorder	is	noted:	

Tenesse	Williams,	 Charles	 Dickens,	 Otto	 Klemperer,	 Vincent	 van	 Gogh,	 Steven	

Fry	etc..	

The	 field	 of	 understanding	 mood	 is	 complex	 and	 rapidly	 evolving.	 A	 systems	

approach	appears	a	 logical	means	to	understand	the	emergent	phenotype	from	

the	highly	 interconnected	neural	network.	However,	 	 systems	approaches	have	

been	 sparingly	 applied	 toward	 understanding	 the	 normal	 functioning	 of	 the	

brain	 in	determining	mood	phenotype.	This	probably	reflects	 the	variable	 level	

of	information	available	in	this	area,	with	some	areas	of	biology	well	understood	

and	others	still	largely	conjecture.	A	major	threat	with	systems	approaches	is	the	

so-called	‘garbage-in,	garbage-out’	paradigm.	Garbage	does	not	just	refer	to	poor	

quality	data,	but	can	also	mean	high	quality	data	that	has	a	low	coverage	of	the	

biological	phenomenon	under	study.	As	such,	systems	approaches	may	currently	

be	 of	 limited	use	 to	 study	 the	normal	 function	of	mood.	Only	when	we	have	 a	

significantly	enhanced	mechanistic	understanding	of	the	individual	components	

of	neural	functioning	will	systems	approaches	be	robustly	applicable.	

3.! Can	a	 systems	biology	 approach	determine	how	 common	errors	 to	

this	system	result	in	affective	disorders?	

3.1.! Mood	disorders	
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Affective	 disorders	 are	 characterised	 by	 the	 shared	 feature	 of	 a	 pathological	

disturbance	 of	 mood	 ranging	 from	 extreme	 elation	 or	 mania	 to	 severe	

depression.	In	addition,	the	majority	of	affective	disorders	also	comprise	one	or	

more	other	symptoms,	such	as	disturbances	in	thinking	and	behaviour,	which	in	

extreme	 cases	 may	 present	 as	 psychotic	 delusions	 and	 hallucinations	 [50].	

Affective	 disorders	 may	 present	 as	 a	 primary	 symptom,	 or	 as	 a	 secondary	

symptom,	 to	 another	 disease	 state	 [50].	 A	 final	 distinction	 is	 made	 between	

unipolar	and	bipolar	disorders,	being	those	that	present	only	one	aspect	of	mood	

disturbance	 (i.e.	 mania	 or	 depression),	 compared	 to	 those	 that	 cycle	 between	

these	states,	respectively	[50].	A	full	description	of	the	classification	of	affective	

disorders	 is	 beyond	 the	 scope	 of	 this	 review,	 and	 the	 interested	 reader	 is	

directed	to	these	reviews	[50-53].	

One	 potential	 confounder	 for	 delineating	 molecular	 mechanisms	 of	 affective	

disorders	 is	 incomplete	 patient	 diagnosis	 and	 stratification.	 Despite	 the	

publication	of	diagnostic	guidelines	 [50],	 there	are	 still	 a	 significant	number	of	

missed	or	incorrect	diagnoses.	Data	from	the	USA	suggest	that	upwards	of	three-

quarters	 of	 all	 bipolar	 disorder	 patients	 are	 misdiagnosed	 upon	 first	

presentation.	 The	 most	 common	 incorrect	 diagnoses	 are	 unipolar	 depression	

(60%	 of	 cases)	 and	 anxiety	 disorder	 (26%)	 [54].	 As	 mentioned	 previously,	 a	

potential	 limitation	 of	 a	 systems	 approach	 is	 the	 ‘garbage-in,	 garbage-out’	

paradigm.	In	the	case	of	missed/incorrect	diagnoses	for	affective	disorders,	 the	

effect	 is	 to	 limit	 the	 size	of	 the	pool	available	 for	analysis,	potentially	 reducing	

the	 power	 to	 discern	 interactions.	 Diagnosis	 of	 an	 individual	with	 an	 affective	

disorder	 when	 they	 suffer	 from	 another	 condition	 would	 introduce	 potential	

confounding;	this	form	of	incorrect	diagnosis	is	comparatively	rare	compared	to	

the	reverse,	meaning	confounding	to	due	positive	misdiagnoses	is	limited.	Even	

once	an	individual	 is	correctly	diagnosed	with	an	affective	disorder,	 the	known	

heterogeneity	 in	 presentation	 (and	 potentially	mechanistic	 underpinning)	may	

cause	 issues.	 Analogous	 to	 the	 study	 of	 breast	 cancer,	 when	 tumour	

heterogeneity	 is	 a	 major	 concern	 [30],	 analysis	 of	 affective	 disorders	 without	

further	stratification	will	almost	certainly	confound	biological	insight.		

3.1.1.! Human	studies	
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In	common	with	most	complex	diseases,	the	genetics	behind	mood	disorders	has	

been	 extensively	 studied.	 For	 at	 least	 the	 past	 eighty	 years,	 twin	 studies	 have	

been	used	to	demonstrate	the	significant	contribution	of	genetics	in	the	aetiology	

of	 affective	 disorders	 [55].	 	 These	 studies	 suggest	 a	 heritability	 for	 unipolar	

disorder	of	 33-42%	and	 for	bipolar	disorder	of	 80-90%	 [55].	 	 Identification	of	

the	 genetic	 component	 for	 any	 disease	 or	 disorder	 can	 be	 assessed	 through	

either	a	hypothesis-driven	candidate	gene	approach,	or	a	data-driven	omic-level	

approach.	In	general,	the	use	of	data-driven	approaches	has	become	prevalent	in	

the	past	 few	years,	with	good	quality	 candidate	gene	studies	adding	additional	

valuable	 insights	 in	 their	 own	 right,	 and	 being	 essential	 to	 validate	 the	

conclusions	of	data	driven	studies.	

The	use	of	Genome-Wide	Association	Studies	(GWAS)	has	identified	a	number	of	

chromosomal	regions	with	significant	linkage	to	different	affective	disorders:	the	

regions	most	commonly	linked	are	described	in	table	1	[56-58].	It	is	of	note	that	

there	 are	 only	 limited	 consistent	 findings	 across	 these	 studies,	 with	 meta-

analyses	 required	 to	 predict	 the	 most	 significant	 hits	 and	 identify	 those	 loci	

likely	to	be	linked	to	affective	disorders	[56].	A	number	of	candidate	genes	that	

show	linkage	with	affective	disorders	have	been	 identified	through	hypothesis-

led	research.	The	majority	of	these	genes	are,	perhaps	unsurprisingly,	associated	

with	neurotransmitter	systems.	The	evidence	surrounding	each	candidate	gene	

is	 often	 conflicting,	 with	 both	 positive	 and	 negative	 reports	 present	 in	 the	

literature,	and	a	meta-analysis	approach	is	required	to	identify	candidate	genes	

where	 variants	 are	 commonly	 associated	 with	 affective	 disorders:	 these	 are	

presented	in	table	1.	It	is	of	note	that	these	genes	do	not	reside	within	any	of	the	

regions	 commonly	 identified	 through	 linkage	 studies.	 Despite	 this,	 there	 are	 a	

number	 of	 studies	 that	 have	 looked	 at	 candidate	 genomic	 regions	 rather	 than	

genes,	and	these	do	show	some	overlap	with	the	GWAS	data.	The	meta-analysis	

of	Badner	and	Gershon	 identified	22q	as	showing	significant	 linkage	 to	bipolar	

disorder	 [59],	while	 other	 reports	 linkage	 between	 Xp11	 and	 bipolar	 disorder		

[60,	 61].	 These	 reports	 are	 conflicted	 by	 other	 publications	 that	 report	 no	

associations,	and	hence	must	be	treated	with	some	caution.		
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Given	 the	 large	 amount	 of	 research	 that	 has	 been	 undertaken	 on	 the	 genetic	

basis	of	affective	disorder,	why	are	the	data	underlying	gene	associations	often	

conflicting?	 Three	 possibilities	 exist	 for	 these	 cloudy	 interpretations:	 first,	 the	

interaction	 is	 not	 real	 and	 has	 emerged	 from	 underpowered/confounded	

studies.	Second,	that	the	association	is	only	pertinent	in	a	specific	subset	of	the	

population	and	reflects	the	heterogeneous	nature	of	affective	disorders.	Third,	a	

real	association	exists,	but	 it	 is	 indirectly	 linked	to	the	candidate	gene.	Mood	is	

almost	 certainly	 impacted	 by	multiple	 genetic	 and	 environmental	 inputs,	 each	

contributing	 to	 the	 emergent	 biological	 phenotype.	 An	 affective	 disorder	

phenotype	 could	 emerge	 from	 many	 different	 combinations	 of	 these	 inputs,	

leading	 to	 a	 common	 phenotype	 but	 heterogeneous	 molecular	 underpinning.	

This	 highlights	 the	 importance	 of	 improved	 patient	 stratification,	 and	 larger	

studies	 with	 higher	 statistical	 power,	 allowing	 examination	 of	 these	 different	

molecular	mechanisms.		

It	 is	 becoming	 increasingly	 clear	 that	 a	 major	 challenge	 with	 understanding	

genetic	data	is	placing	it	in	the	context	of	a	biological	system.	Standard	statistical	

approaches	are	usually	based	around	 the	concept	of	over-representation.	They	

rely	on	the	premise	that	if	something	is	present	at	a	higher	frequency	than	would	

be	 expected	 by	 chance,	 then	 it	 will	 have	 a	 biological	 impact.	 However,	 these	

approaches	 ignore	 the	 interconnected	 nature	 of	 biology,	 and	 how	 this	 may	

impact	 on	 the	 emergent	 phenotype.	 For	 example,	 increased	 expression	 of	 a	

single	gene	within	a	pathway	does	not	mean	that	activity	through	that	pathway	

will	 increase.	 	 If	 other	 proteins	 maintain	 a	 higher	 control	 coefficient	 in	 the	

pathway	 (i.e.	 rate-limiting	 steps),	 then	 it	 is	 their	 expression	 levels	 that	will	 be	

critical	 [62].	 However,	 even	 if	 all	 the	 genes	 within	 a	 pathway	 show	 increased	

levels	of	expression,	higher	activity	through	this	pathway	may	not	be	achieved.	If	

the	 level	 of	 a	 critical	 co-factor	 or	 precursor	 molecular	 produced	 elsewhere	

within	 the	 biological	 system	 is	 limiting,	 then	 the	 activity	 through	 the	 pathway	

under	 examination	 will	 still	 be	 limited.	 This	 is	 the	 concept	 of	 stoichiometric	

constraint,	whereupon	the	activity	of	one	part	of	the	network	is	constrained	by	

the	 chemical	 flow	 through	 a	 distant	 part	 of	 the	 network.	 It	 is	 becoming	

increasingly	 common	 practice	 to	 overlay	 genetic-level	 data	 on	 biological	
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networks,	with	the	additional	stoichiometric	and	thermodynamic	(directionality	

of	reactions)	constraints	allowing	greater	biological	insights	to	be	made	[10,	12].	

This	approach	has	been	mainly	applied	in	the	area	of	oncology,	with	a	number	of	

studies	 examining	 the	 biological	 networks	 associated	with	 different	 aspects	 of	

cancer	 [31,	 63,	 64].	 Not	 only	 can	 this	 approach	 be	 used	 to	 trim	 the	 list	 of	

potential	candidate	genes	by	looking	at	how	feasible	they	are	within	the	context	

of	 a	 biological	 network,	 it	 can	 also	 be	 used	 to	 examine	 disease	 heterogeneity.	

Heterogeneity	 is	 a	 significant	 issue	 in	 both	 affective	 disorders	 and	 cancer,	 and	

studies	are	now	emerging	in	the	area	of	oncology	on	how	systems	biology	can	be	

used	to	help	stratify	patients	[30].	This	should	lead	to	improved	understanding	

of	the	disease	itself,	improved	stratification	of	patients,	and	ultimately	improved	

selection	of	the	most	appropriate	therapeutic	regimens.		

Systems	 biology	 approaches	 can	 also	 be	 used	 to	 examine	 indirect	 associations	

identified	 through	 genetic	 approaches.	 Such	 a	 relationship	 can	 be	 seen	 as	

analogous	to	genotyping	studies	where	we	initially	look	for	linkage	with	a	trait,	

and	then	focus	on	identifying	the	true	association.	For	indirect	associations,	we	

presume	that	selection	of	 the	candidate	gene	 is	correct	with	respect	to	 linkage,	

but	proof	of	the	association	is	not	forthcoming.	One	possible	explanation	for	this	

is	 that	 the	 protein	 encoded	 by	 the	 candidate	 gene	 interacts	 with	 a	 network	

containing	a	protein	important	in	disease	aetiology.	A	systems	approach	can	be	

used	 to	 examine	 the	 interactome	 for	 the	 initially	 identified	 candidate	 gene,	

expanding	the	number	of	potential	candidate	genes	significantly.	A	good	example	

of	 this	 is	 brain-derived	 neurotrophic	 factor	 (BDNF),	 a	 neuropeptide	 that	 has	

been	linked	to	brain	plasticity	[65].	Studies	examining	the	linkage	of	BDNF	with	

bipolar	disorder	have	reported	both	positive	[66,	67]	and	negative	findings	[68,	

69],	meaning	its	importance	is	open	to	question.	Yeh,	Kao	and	Kuo	used	a	range	

of	 computational	 approaches	 to	 marry	 GWAS	 with	 the	 known	 BDNF	 activity	

network	 [70].	 They	 concluded	 that	 no	 significant	 association	 was	 observed	

between	 BDNF	 and	 affective	 disorders	 in	 the	 majority	 of	 genomic	 studies,	

although	 a	 consistent	 relationship	 between	 plasma/serum	 BDNF	 and	 affective	

disorders	was	 reported.	They	 identified	363	proteins	with	 significant	 evidence	

for	 interaction	 with	 BDNF	 using	 STRING,	 a	 database	 of	 known	 and	 predicted	
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protein-protein	 interactions	 [71].	This	 list	 included	proteins	such	as	AKT,	 IGF1	

and	 NOS3,	 and	 a	 clear	 association	 between	 their	 biological	 networks	 and	

affective	disorders	emerged	[70].	Hence,	by	using	a	systems	approach	to	expand	

a	 query	 from	 a	 single	 protein	 to	 several	 hundred	 interacting	 proteins	 (the	

interactome),	novel	biological	insights	were	gained.		

If	novel	insights	can	be	made	by	examining	the	interactome	of	a	single	candidate	

gene,	 could	 further	 insights	 be	 gained	 by	 overlaying	 interactome	 data	 from	

several	 candidate	 genes?	 In	 theory,	 such	 an	 approach	would	 further	 constrain	

the	 available	 biological	 network,	 producing	 more	 meaningful	 predictions.	

Detera-Wadleigh	 and	 Akula	 have	 taken	 such	 an	 approach,	 building	 molecular	

interaction	 networks	 based	 upon	 six	 candidate	 genes	 [72].	 When	 the	

interactomes	for	each	of	these	candidate	genes	were	examined,	certain	biological	

hubs	were	consistently	represented,	suggesting	their	deregulation	as	a	common	

factor	 in	 affective	 disorders.	 For	 example,	 patients	 with	 ANK3	 and	 CACNA1C	

allelic	 variants	 associated	 with	 increased	 risk	 of	 affective	 disorder	 also	 show	

enhanced	activity	within	the	MAPK	and	adrenergic	signalling	hubs	[72,	73].		

Given	 the	 overlapping	 phenotypes	 observed	 for	many	 psychiatric	 disorders,	 a	

potential	 further	approach	would	be	to	analyse	 interactomes	 for	all	psychiatric	

disorders	together.	Recently,	the	Psychiatric	Genomics	Consortium	took	the	first	

steps	 toward	 such	 an	 approach.	 They	 analysed	 genotype	 data	 for	 cases	 and	

controls	 in	 schizophrenia,	 bipolar	 disorder,	 major	 depressive	 disorder,	 autism	

spectrum	 disorders	 and	 attention-deficit/hyperactivity	 disorder	 [74].	 	 A	 high	

genetic	 correlation	 between	 common	 SNPs	 for	 schizophrenia	 and	 bipolar	

disorder	 (0.68)	 was	 observed,	 while	 moderate	 associations	 were	 observed	

between	major	 depressive	 disorder	 and	 schizophrenia	 (0.43),	 bipolar	 disorder	

(0.47)	 and	 attention-deficit/hyperactivity	 disorder	 (0.32).	 This	 systematic	

analysis	 should	 help	 identify	 common	 biological	 hubs	 that	 merit	 further	

examination	 of	 their	 role	 in	 mood	 and	 mood	 disorders,	 as	 well	 as	 potential	

generic	druggable	targets.	At	least	some	of	this	overlap	is	almost	certainly	due	to	

incorrect	 diagnosis,	 with	 up	 to	 15%	 of	 initial	 diagnoses	 incorrect,	 but	 some	

biologically	 important	 commonalities	 should	 be	 revealed	 [75].	 In	 addition,	 by	

exclusion	of	common	hubs,	it	should	be	possible	to	identify	unique	mechanisms	
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underlying	 each	 mental	 disorder,	 improve	 nosology,	 and	 suggest	 targeted	

therapies.	 This	 latter	 approach	 has	 the	 (large)	 caveat	 that	 hubs	 identified	 by	

exclusion	may	exist	due	to	a	lack	of	data	coverage,	rather	than	a	true	uniqueness.		

This	could	be	addressed	by	either	further	clinical	studies,	or	the	use	of	systems	

approaches	 such	 as	 the	 interactome	 analysis	 of	 Yeh,	 Kao	 and	 Kuo	 described	

above	 [70].	These	would	 further	extend	 the	biological	coverage	of	 the	genomic	

analysis,	improving	the	robustness	of	the	‘disorder	unique’	or	‘common	between	

disorders’	 call	 for	 the	 identified	 biological	 hubs.	 	 As	more	 candidate	 genes	 are	

analysed	 through	such	approaches,	and	 the	results	pooled,	 it	 is	hoped	 that	key	

biological	 hubs	 commonly	 deregulated	 in	 affective	 disorders	will	 emerge.	 This	

will	 not	 only	 lead	 to	 an	 improved	 understanding	 of	 the	 aetiology	 of	 affective	

disorders,	but	may	also	 identify	the	most	 fruitful	points	within	the	network	for	

therapeutic	intervention.		

Examination	of	genomic	variability	in	disease	has	made	a	significant	contribution	

to	 the	 understanding	 of	 a	 range	 of	 complex	 diseases.	 However,	 this	 only	

addresses	 the	 first	 vertical	 level	 of	 biological	 organisation	 (Figure	1).	 It	 is	 also	

important	to	examine	transcript,	protein	and	metabolome	studies,	as	well	as	any	

studies	concerned	with	horizontal	regulation.	Experimental	systems	biology	has	

been	 used	 to	 capture	 data	 dense,	 omic	 level	 information	 on	 gene	 expression	

profiles	in	normal	and	affected	individuals.	For	such	studies,	the	source	material	

is	 critical,	 and	 can	 have	 a	 significant	 impact	 on	 the	 quality	 of	 data	 produced.	

Human-derived	biopsy	tissue	is	the	gold	standard	for	such	approaches,	but	in	the	

area	 of	 psychiatric	 disorders,	 sample	 sourcing	 is	 complicated	 by	 the	 fact	 that	

human	 tissue	 is	 only	 available	 post-mortem,	 potentially	 affecting	 quality	 [76].	

Despite	 these	difficulties,	 studies	have	been	undertaken	on	post-mortem	tissue	

from	bipolar	patients	with	promising	results	[77,	78].	Iwanoto	et	al.	reported	the	

gene	 expression	 profiles	 of	 post-mortem	 brains	 from	 a	 number	 of	 mental	

disorders,	 including	 11	 patients	with	 bipolar	 disorder	 [78].	 The	 transcriptome	

profiles	of	the	bipolar	samples	were	quite	distinct	from	both	schizophrenia	and	

major	 depressive	 patients,	 with	 only	 a	 minimal	 overlap	 in	 differentially	

regulated	 genes	 when	 compared	 to	 samples	 from	 ‘healthy’	 individuals.	

Examination	of	the	commonly	differentially	regulated	genes	identified	that	they	
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could	 be	 linked	 to	 processes	 associated	 with	 all	 conditions,	 representing	

common	 biological	 hubs.	 Foe	 example,	 the	 shared	 up-regulation	 of	 the	

membrane-bound	 water	 transport	 protein	 AQP4	 could	 lead	 to	 altered	 water	

permeability	across	the	blood-brain	barrier;	such	water	accumulation	has	been	

linked	 to	 the	white	matter	 hyperintensity	 observed	during	MRI	of	 brains	 from	

patients	with	psychiatric	disorders	[78].	To	identify	biological	processes	unique	

to	 an	 individual	 disorder,	 it	 is	 necessary	 to	 examine	 the	 unique	 differentially	

regulated	 genes.	 Amongst	 those	 genes	 identified	 as	 down	 regulated	 only	 in	

bipolar	post-mortem	brains	were	 several	 associated	with	membrane	 receptors	

or	 transporters:	 specifically,	 the	 glutamate	 receptors	 GRM1	 and	 GRIK2,	 the	

nucleoside	transporter	SLC29A1,	the	calcium	channel	CACNA1A,	and	the	insulin-

like	 growth	 factor	 binding	 protein	 IGFBP6.	 These	 observations	 are	 consistent	

with	 the	 reported	 literature:	 GRM1	 and	 GRIK2	 have	 both	 been	 identified	 as	

candidate	 genes	 via	 SNP	 analysis	 for	 both	 schizophrenia	 and	 bipolar	 disorder	

[79,	80],	while	altered	calcium	dynamics	has	been	suggested	as	both	a	cause	of,	

and	 potential	 treatment	 for,	 affective	 disorder	 [81,	 82].	 Such	 studies	 therefore	

support	 the	 use	 of	 omic-level	 analysis	 in	 post-mortem	 brains,	 with	 two	

important	caveats:	 first,	 the	correct	controls	are	 in	place	to	ensure	high	quality	

data	 is	extracted;	second,	 that	sufficient	samples	are	used	 to	correctly	power	a	

robust	systems	analysis.	

The	 analysis	 of	 omic	 level	 data	 for	 affective	 disorders,	 especially	 when	

constrained	by	biological	networks,	should	provide	novel	biological	insights	into	

affective	disorders.	For	this	potential	to	be	realised,	however,	it	is	important	that	

sufficient,	 high	 quality	 experimental	 studies	 are	 undertaken	 to	 ensure	

meaningful	insights	can	be	gained.	Experimental	systems	biology	has	progressed	

to	 different	 degrees	 across	 the	 omes.	 Significant	 progress	 has	 been	 made	

analysing	 genetic	 variation	 (genome),	 mRNA	 expression	 and	 splice	 variants	

(transcriptome).	 Analysis	 at	 the	 proteome,	 metabolome	 and	 horizontal	

regulatory	levels	is	far	patchier.				

3.1.2.! Animal	models	
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Given	the	issues	associated	with	obtaining	post-mortem	tissue,	and	the	pitfalls	of	

it’s	correct	processing,	alternative	models	have	been	explored.	The	first	of	these	

alternate	 approaches	 is	 the	 use	 of	 animal	 models,	 with	 a	 number	 of	

pharmacological	 or	 genetic	models	 proposed.	 Table	 2	 contains	 an	 overview	 of	

the	major	models,	with	a	more	in	depth	review	provided	by	Nestler	and	Hyman	

[83].	 It	 should	 be	 noted	 that	 these	models	 are	 not	 representations	 of	 complex	

affective	disorders	such	as	bipolar	disorder,	and	generally	reproduce	only	one	of	

the	modalities,	either	depressive-	or	mania-like	symptoms.	This	means	that	they	

may	shed	light	on	the	individual	modalities,	but	are	unlikely	to	be	of	significant	

use	 in	 terms	 of	 understanding	 the	 bistability	 between	 the	 two	 states	 that	 is	

observed	 in	 bipolar	 disorder	 patients.	 In	 addition,	 as	 noted	 by	 Nestler	 and	

Hyman,	although	these	models	reproduce	the	desired	phenotype,	there	is	often	a	

lack	 of	 convincing	 evidence	 that	 this	 phenotype	has	 been	 reached	 through	 the	

same	aberrant	biology	observed	in	the	human	conditions	[83].	

Animal	models	have	produced	a	wealth	of	mechanistic	understanding	across	 a	

range	 of	 human	 biology,	 including	 neurobiology.	 Such	 data	 may	 be	 further	

examined	through	computational	systems	biology	approaches,	but	only	with	the	

understanding	that	you	are	exploring	the	biology	of	an	animal	model,	and	not	the	

human	 condition.	 In	 complex	 diseases	 such	 as	 affective	 disorders,	 where	 the	

interconnected	 nature	 of	 the	 neural	 network	 is	 still	 not	 fully	 understood,	 this	

caveat	is	particularly	important.			

	

3.1.3.! Reverse	engineering	mechanism	from	treatment	

A	 second	 alternate	 approach	 to	 the	 use	 of	 post-mortem	 tissue	 from	 affective	

disorder	patients	is	reverse	engineering.	While	the	underlying	mechanisms	that	

determine	 an	 individual’s	 mood	 phenotype	 are	 not	 clearly	 understood,	 the	

pharmaceutical	agents	used	to	treat	affective	disorders	are	well	established.	The	

efficacy	of	these	agents	suggests	that	they	must	act	on	the	biological	systems	that	

determine	mood	phenotype.	 Studies	on	 their	mode-of-action	 should,	 therefore,	

provide	 insight	 into	 the	 biological	 mechanisms	 of	 both	 normal	 and	 abnormal	

mood	phenotypes.	There	have	been	many	studies	to	examine	the	transcriptome	
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impact	 of	 affective	 disorder	 treatments,	most	 commonly	 lithium	and	 valproate	

[84-86].	In	addition,	an	increasing	number	of	studies	are	looking	at	other	levels	

of	 global	 organisation,	 such	 as	 the	 epigenome	 [87,	 88],	 proteome	 [89,	 90],	

phosphoproteome	 [91],	 and	 the	metabolome	 [92].	 It	 should	 be	 noted	 that	 for	

these	 therapeutic	 agents,	 their	 exact	 mode	 of	 action	 is	 unclear,	 and	 the	 high	

doses	required	to	achieve	efficacy	suggest	a	non-specific,	multi-target	effect.	This	

further	complicates	the	analysis	of	the	information	dense	datasets	produced	by	

experimental	 systems	 biology,	 as	 non-specific	 effects	 must	 be	 identified	 and	

removed.	

An	exciting	development	is	the	analysis	of	data	from	diverse	datasets,	analogous	

to	the	combination	of	genome	data	from	multiple	psychiatric	disorders	(section	

3.1.1).	This	approach	looks	for	commonalities	in	biological	networks	activated	by	

multiple	mood	stabilising	drugs,	presuming	these	represent	core	biological	hubs	

associated	with	affective	disorders.	A	number	of	studies	have	been	undertaken	

to	 compare	mood	stabilising	drugs,	most	 commonly	 lithium	and	valproate	 [84,	

86,	 93].	 While	 the	 data	 from	 this	 approach	 is	 still	 emerging,	 it	 does	 seem	 to	

highlight	 programmed	 cell	 death	 as	 a	 common	 feature,	 consistent	 with	 an	

alteration	in	neural	plasticity	[94].		

Reverse	 analysis	 of	 drug	 action	 to	 determine	 disease	 mechanisms	 is	 a	 well-

established	approach,	and	has	yielded	success	in	other	therapeutic	areas.	Given	

the	difficulty	in	sourcing	high	quality	human	post-mortem	tissue,	and	the	caveats	

associated	with	 current	 animal	models,	 this	 reverse	 engineering	 approach	 has	

potential	to	add	to	our	biological	knowledge	of	affective	disorders.	

	

3.2.!Cortisol	 and	 Affective	 disorders:	 An	 example	 of	 network	

interconnectivity	

An	example	of	where	systems	approaches	may	aid	understanding	of	the	drivers	

for,	 and	 potential	 treatments	 of,	 affective	 disorders	 can	 be	 seen	 in	 the	 case	 of	

cortisol.	Cortisol	undertakes	a	number	of	critical	functions	within	the	body,	and	

interacts	 with	 a	 large	 number	 of	 biological	 sub-networks	 [95].	 Along	 with	

melatonin,	cortisol	is	a	key	regulator	of	the	circadian	clock,	acting	to	connect	the	
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central	oscillator	to	the	rest	of	the	body.	In	addition,	cortisol	has	a	major	role	in	

the	‘fight	or	flight’	response	to	stress.	Here,	we	examine	the	role	of	both	circadian	

biology	and	stress	in	affective	disorders	and	how	systems	biology	can	be	used	to	

integrate	 these	 large	 biological	 areas	 to	 provide	 novel	 insights	 into	 affective	

disorders.	

Disruption	 of	 circadian	 rhythms	 has	 been	 associated	 with	 a	 range	 of	 disease	

aetiologies,	 including	acute	cardiovascular	disease,	metabolic	syndrome,	cancer	

and	 affective	 disorders	 [96,	 97].	 Kripke	 et	 al.	 reported	 that	 free-running	

circadian	 rhythms	 were	 faster	 in	 patients	 with	 bipolar	 disorder	 [98],	 while		

Steinan	 et	 al	 reported	 that	 approximately	 ten	 percent	 of	 patients	with	 bipolar	

disorder	 also	 fulfilled	 the	 criteria	 for	 delayed	 sleep	 phase	 disorder	 [99].	 The	

molecular	understanding	of	the	circadian	clock,	and	how	to	manipulate	it,	is	well	

advanced	 [100-102],	 and	 this	 knowledge	 may	 be	 used	 to	 understand	 some	

aspects	of	affective	disorders.	As	detailed	in	table	2,	genetic	knock-out	of	CLOCK,	

a	 core	 gene	 in	 the	 circadian	 clock,	 is	 the	 basis	 for	 an	 animal	 model	 of	 mania	

[103].	 In	 addition,	manipulation	 of	 circadian	 rhythms	 has	 been	 suggested	 as	 a	

treatment	 for	 affective	 disorders	 [104,	 105].	 A	 case	 report	 of	 Leibenluft	 and	

Suppes	 reported	 how	 improvements	 in	 a	 patient’s	 bipolar	 disorder	 could	 be	

achieved	through	active	management	of	their	sleep	wake	cycle.	In	addition,	they	

noted	 that	when	sleep	was	disrupted	 through	shift	work	 the	 treatment	 regime	

for	bipolar	disorder	became	less	effective	and	their	condition	deteriorated	[106].	

Kripke	 et	 al.	 observed	 that	 lithium	 treatment	 of	 individuals	with	 rapid	 cycling	

circadian	clocks	led	to	a	decrease	in	circadian	period	to	within	the	normal	range	

[98].	 In	 summary,	 clear	 evidence	 linking	 affective	 disorders	with	 disruption	 of	

the	circadian	clock	exists,	although	the	underpinning	biology	has	not	been	fully	

elucidated.	

Data	also	exists	 to	 support	an	association	between	chronic	 stress	and	affective	

disorders	[107,	108].	Chronic	exposure	to	stress,	or	even	acute	exposure	under	

certain	conditions,	appears	to	be	able	to	elicit	a	shift	toward	an	affective	disorder	

phenotype.	These	effects	have	been	observed	not	only	in	individuals,	but	appear	

to	 cross	 generational	 boundaries	 via	 exposure	 of	 the	 developing	 foetus	 to	

maternal	 stressors	 [109].	 The	 association	between	 chronic	 stress	 and	 affective	
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disorders	has	been	attributed	to	altered	neuronal	plasticity,	with	stress	 leading	

to	 reduced	 plasticity.	 As	 detailed	 in	 section	 3.1.1,	 neuronal	 plasticity	 may	 be	

defined	as	the	ability	of	the	neural	network	to	respond	to	novel	stimuli.	Reduced	

neuronal	 plasticity	 manifests	 itself	 in	 a	 phenotype	 of	 poor	 adaptation	 to	

stressors,	 common	 in	 affective	 disorders	 [50].	 This	 is	 consistent	 with	 the	

observation	 that	 early	 (even	 pre-natal)	 exposure	 to	 stressors	 shows	 a	

particularly	 strong	 association	 with	 affective	 disorders.	 Such	 early	 exposure	

occurs	 during	 the	 period	when	 neural	 network	 development	 is	 still	 underway	

and	most	easily	disrupted	[109,	110].	As	previously	noted,	deregulation	of	BDNF,	

a	key	modulator	of	brain	plasticity,	has	been	associated	with	affective	disorders	

[65-67].	 BDNF	 is	 under	 transcriptional	 control	 of	 the	 glucocorticoid	 receptor,	

one	of	three	nuclear	receptors	that	have	cortisol	as	an	endogenous	ligand	[111].		

There	exists	a	comparatively	good	understanding	of	the	molecular	mechanisms	

underlying	 both	 the	 circadian	 clock	 and	 glucocorticoid	 signalling.	 Circadian	

rhythms	 have	 been	 extensively	 studied	 using	 systems	 approaches,	 both	

experimental	 and	 computational.	 Beyond	 the	 classical	 molecular	 dissection	 of	

the	 mammalian	 circadian	 clock,	 there	 have	 been	 a	 number	 of	 excellent	

transcriptomic	 and	metabolomics	 studies	 in	 this	 area	 [112-115].	 In	 addition,	 a	

number	of	computational	models	of	the	circadian	clock	have	been	developed,	at	

varying	 levels	 of	 abstraction	 [116-118].	 The	 glucocorticoid	 signalling	 network	

has	 also	 been	 extensively	 studied	 using	 both	 experimental	 [119-121]	 and	

computational	 [25,	 122,	 123]	 systems	 biology	 approaches.	 As	 both	 circadian	

rhythms	and	stress	have	an	impact	on	the	emergent	mood	phenotype,	and	have	

been	 subject	 to	 intense	 study	 at	 both	 the	 experimental	 and	 computational	

biology	 levels,	 it	 is	 tempting	 to	 speculate	what	might	 be	 achieved	 through	 the	

integration	of	these	three	fields.	The	integration	of	data	from	circadian	rhythms,	

stress	and	affective	disorders	into	a	holistic	model	using	computational	systems	

biology	seems	 ideal	 for	such	an	approach,	and	could	yield	significant	biological	

insight	once	completed.		
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4.! Can	 a	 systems	 biology	 approach	 be	 used	 to	 develop	 effective	

treatments,	pushing	the	affective	phenotype	back	towards	normal?	

A	 major	 aim	 of	 systems	 biology	 is	 the	 development	 of	 novel	 therapeutic	

treatments.	Traditional	drug	design	has	focussed	on	key	regulatory	hubs	and/or	

druggable	targets,	which	are,	usually,	identified	through	hypothesis-led	research.	

A	systems	approach	allows	a	more	holistic	viewpoint,	considering	how	the	total	

network	interacts	to	produce	the	emergent	biological	phenotype.	This	raises	the	

potential	 of	 identifying	 key	 choke-points	 in	 the	 network	 that	 may	 represent	

novel	drug	targets.	 In	addition,	a	systems	approach	 is	 ideally	placed	to	 identify	

novel	network	targeting	drugs	[8].	Traditional	combination	therapy	has	relied	on	

using	 two	 drugs	 that	 target	 different	 aspects	 of	 a	 disease,	 with	 the	 hope	 of	 a	

synergistic	 interaction	 when	 used	 together.	 Successful	 combinations	 are	 often	

designed	 empirically	 by	 trying	 combinations	 of	 already	 approved	 drugs	 in	 the	

hope	 of	 achieving	 improved	 patient	 response.	 However,	 in	 a	 systems	 network	

targeting	 approach,	 the	 combination	 is	 designed	 first,	 and	 then	 the	 relevant	

drugs	identified.	In	fact,	one,	or	both,	of	the	drugs	used	may	not	fit	the	classical	

definition	of	drug,	and	may	have	no	efficacy	when	used	alone.	An	example	of	this	

is	 the	 concept	 of	 synthetic	 lethality:	 The	 action	 of	 a	 cytotoxic	 agent	 can	 be	

reduced	 by	 biological	 re-routing,	 leading	 to	 drug	 resistance.	 Targeting	 these	

rescue	 pathways	 can	 significantly	 enhance	 drug	 efficacy	 [12,	 124].	 To	 design	

such	a	combination,	it	is	imperative	to	examine	the	entire	network,	such	that	the	

relevant	biological	chokepoints	can	be	identified	for	targeting.		

The	 majority	 of	 research	 into	 network	 targeting	 has	 been	 undertaken	 in	 the	

oncology	 therapeutic	 area,	 leading	 to	 novel	 combinations	 that	 are	 currently	

being	 examined	 in	 clinical	 trials	 [31,	 64,	 124].	 Affective	 disorders	 seem	 to	 be	

ideally	suited	to	treatment	through	a	network	targeting	approach,	but	while	this	

has	been	discussed,	it	is	not	an	area	that	is	being	fully	explored.	One	reason	for	

this	is	that,	as	previously	stated,	the	underlying	biology	of	mood	is	far	less	fully	

understood	than	in	the	oncology	arena.	Hence,	it	is	more	difficult	to	build	robust	

predictive	models	 from	which	 network-targeting	 approaches	 can	 be	 designed.	

The	 rapid	growth	 in	experimental	 systems	biology	data	 in	 this	area,	 leading	 to	
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testable	mechanistic	hypothesis,	may	help	to	address	this	important	deficit	in	the	

next	few	years.	

	

5.! Conclusion	

The	application	of	systems	biology	has	reaped	significant	rewards	in	the	study	of	

a	 number	 of	 complex	 diseases.	 It	 has	 helped	 to	 suggest	 novel	 biomarkers	 for	

patient	 stratification,	 shed	 light	 on	 disease	mechanisms	 and	 help	 design	 novel	

treatment	 paradigms.	 This	 success	 has	 been	 based	 on	 a	 bedrock	 of	 solid	

mechanistic	 understanding	 and	 high	 quality,	 data	 rich	 resources.	 Within	 the	

sphere	of	understanding	mood,	and	its	deregulation	in	mental	disorders,	systems	

biology	 is	 yet	 to	 reach	 fruition.	 This	 almost	 certainly	 reflects	 the	 poorer	

understanding	 of	 the	 highly	 complex	 biology	 underlying	 mood	 and	 affective	

disorders.	Increasing	numbers	of	experimental	systems	biology	studies	are	being	

undertaken,	and	coupled	with	highly	refined	targeted	experiments	are	producing	

a	legacy	of	high-quality	datasets.	A	major	challenge	in	the	understanding	of	mood	

and	affective	disorders	is	to	leverage	this	legacy	data	fully,	utilising	the	advances	

in	computational	systems	biology	to	gain	a	holistic	view	of	how	mood	emerges	

from	 the	 complex	 neural	 network.	 Such	 studies	will	 naturally	 lead	 to	 a	 better	

understanding	 of	 what	 goes	 wrong	 during	 the	 development	 of	 an	 affective	

disorder,	and	propose	new	targeted	treatments.	
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Figure	1:	The	omic	levels	of	organisation	and	affective	disorders.	

Information	flow	within	the	cell	can	be	envisaged	as	being	a	vertical	continuum	

from	DNA,	through	transcript	and	protein,	to	metabolites.	Within	each	of	these	

levels	exits	horizontal	regulatory	levels,	controlling	the	vertical	flow	of	

information.	For	each	‘ome’,	the	extent	of	experimental	systems	biology	devoted	

to	the	understanding	of	mood	and	affective	disorders	is	indicated.	Black	text	

indicates	no	major	studies	reported	to	date;	Green	indicates	some	evidence	for	a	

role	in	affective	disorders,	but	limited	and/or	sub-omic	level	analyses.	More	

robust	experimental	systems	biology	approaches	are	required	to	further	

investigate;	BLUE	indicated	that	omic	level	studies	have	been	undertaken,	but	

only	in	animal	models	or	in	vitro.	Extrapolation	to	human	situation	therefore	

complicates	their	interpretation;	red	indicated	a	good	number	of	omic	level	

studies	have	been	undertaken,	including	in	human	studies,	providing	a	solid	

legacy	knowledgebase		
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Tables	

	

Genomic	

Region	

Disorder	 Ref	 Genes	 Disorder	 Ref	

2p13-p16	 BD	 [125]	 MAO-A	

(Xp11.3)	

BD	 [126]	

4p16	 BD	 [127]	 COMT	(22q11)	 BD	 [128]	

4q32	 BD	 [129]	 5HTT	(17q11)	 BD	 [130]	

6q21-q25	 BD,	UD	 [127]	 BDNF	(11p13)	 BD	 [66,	67]	

8q24	 BD	 [131]	 	 	 	

13q32	 BD	 [129,	132]	 	 	 	

12q22-q24	 BD,	UD	 [127]	 	 	 	

15q14	 BD	 [133]	 	 	 	

15q25-q26	 UD	 [134]	 	 	 	

Table	 1:	 Genetic	 loci	 associated	 with	 affective	 disorders.	 BD	 =	 bipolar	

disorder,	UD	=	unipolar	disorder,	5HTT	=	serotonin	transporter,	BDNF	=	brain-

derived	 neurotrophic	 factor,	 COMT	 =	 catechol-O-methyltransferase,	 MAO-A	 =	

monoamine	oxidase	A.	It	should	be	noted	that	disorder	represents	the	disorder	

most	commonly	demonstrating	linkage	to	a	particular	genomic	region/gene,	and	

does	not	suggest	complete	exclusion	of	the	other	disorders	
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Model	 Comments	 Ref	

Genetic	Models	–	Knock	out! 	

Clock		 Mania,	reversible	by	lithium	 [103]	

WFS1	 Poor	adapatation	to	stressors	 [135]	

Genetic	Models	–	over	expression	 	

Glucorticoid	receptor		 Depression,	increased	anxiety	 [136]	

GSK-3β	 Mania,	reduced	anxiety,	hypophagia	 [137]	

mutPOLG	 Mania-like	bevhaviour	 [82]	

Pharmacological	Models	 	

Cocaine	 Mania,	reversible	by	lithium	 [138]	

Amphetamine	 Mania,	reversible	by	lithium	 [139]	

Ampheatmine	and			

chlorodiazepoxide	

Mania,	reversal	by	lithium,	carbemazepine,	

valproate	and	lamotrigine	

[140]	

Table	2:	Animal	models	of	mania	and	depression	

	

	


