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Steady state evaluation of distributed secondary frequency control

strategies for microgrids in the presence of clock drifts*

Ajay Krishna1, Christian A. Hans1, Johannes Schiffer2, Jörg Raisch1,3 and Thomas Kral4

Abstract— Secondary frequency control, i.e., the task of
restoring the network frequency to its nominal value following a
disturbance, is an important control objective in microgrids. In
the present paper, we compare distributed secondary control
strategies with regard to their behaviour under the explicit
consideration of clock drifts. In particular we show that, if
not considered in the tuning procedure, the presence of clock
drifts may impair an accurate frequency restoration and power
sharing. As a consequence, we derive tuning criteria such that
zero steady state frequency deviation and power sharing is
achieved even in the presence of clock drifts. Furthermore, the
effects of clock drifts of the individual inverters on the different
control strategies are discussed analytically and in a numerical
case study.

I. INTRODUCTION

Electric power systems are currently facing various chal-

lenges that mostly arise from an increase in spatially dis-

tributed renewable energy sources (RES). As a consequence,

power generation is moving from a relatively small number

of large scale power stations to a very large number of

small scale distributed units. A promising way to tackle

the challenges that arise from this structural change is the

decomposition of the overall grid into regional entities called

microgrids (MGs). MGs typically consist of renewable and

storage units, as well as conventional generators, and loads.

In a general setting, MGs may interact with each other, but

- by matching generation and consumption within the MG

as far as possible - transmitted power is reduced and trans-

mission losses are decreased. MGs can usually be operated

in two modes, either connected to the grid or electrically

isolated (islanded) [1].

Motivated by existing control strategies in conventional

power systems, a hierarchical control approach has also been

advocated for MGs [2]. Thereby, one typically distinguishes

primary and secondary control layers (as in conventional

power systems), while the top control level, which is mostly

referred to as operational management or tertiary control, is

mainly concerned with generation scheduling.
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Primary control is typically implemented in the form of

decentralised proportional (droop) control. Its major objec-

tives are active power sharing as well as frequency and

voltage stability [1]. In MGs, this task is mostly assigned

to conventional generators and grid forming inverters [3].

Despite many advantages, a major drawback of this control

law is that voltage amplitudes and frequencies usually deviate

from their nominal values at steady state [4].

Secondary frequency control aims at removing stationary

frequency deviations. There are two prominent implementa-

tion approaches: centralised and distributed controllers. Cen-

tral approaches are widely used in existing power systems

[5] and have been implemented and studied for MGs in

[1], [2]. However, a major disadvantage of such approaches

is that the central control unit represents a single point of

failure. This issue motivated distributed strategies which use

locally available as well as neighbouring information that is

exchanged over a communication network [6].

Recently, various distributed secondary frequency control

strategies have been proposed. A distributed averaging pro-

portional integral secondary controller was presented in [7].

For this, an optimal tuning strategy using the input-output

H2-norm has been provided by [8]. A related consensus

based distributed frequency controller was proposed by [9].

Therein, a so called pinning control is used to ensure zero

steady state frequency error. Another distributed frequency

control approach is presented in [10]. Here also, pinning con-

trol is used to achieve frequency convergence. This way, the

reference frequency value only needs to be provided for one

inverter. Consensus based distributed frequency control along

with a weight calculation procedure for optimal convergence

speed is presented in [11]. All the above mentioned control

laws can achieve frequency synchronisation. Furthermore,

the communication layer can be designed such that the

controllers are resilient to communication path failures. In

[12], conditions for robust non-linear stability of MGs op-

erated with a distributed averaging integral controller under

fast-varying time-delays and switching communication topol-

ogy are derived. Furthermore, various secondary frequency

control policies are compared in [13]. In particular, the

effects of communication properties on different strategies,

such as, centralized, decentralized, averaging and consensus

strategies, are analysed in a quantitative way.

In this work, we explicitly consider the effect of clock

drifts in secondary frequency control. The term clock drifts

describes the fact that all units, operated with different

processors have a slightly different “understanding” of time,

i.e., their clock rates are not synchronized [14]. Most of



the distributed control approaches, as they make use of the

internal frequencies that are calculated by the controls of

the inverters, are influenced by clock drifts. In practice,

even if the units are synchronized to a global frequency,

the internal frequencies of the inverters are slightly different

[15]. As external synchronization units that could hamper

this problem are expensive, they are not used in most of the

applications. Whereas, a widely chosen alternative approach

to tackle this problem is the use of a central secondary

controller with a very accurate measurement. To enable a

design of distributed controllers that fulfil the requirement

of zero steady state frequency error and power sharing,

conditions on the tuning in the presence of clock drifts must

be derived. However, to the best knowledge of the authors,

none of the publications on secondary frequency control

investigates the effect of clock drifts.

Motivated by this fact, we compare a set of different

distributed control strategies proposed in the literature [7],

[10] with regard to their steady state performance in terms

of frequency restoration and power sharing under explicit

consideration of clock drifts. Furthermore, we identify a

suitable parametrisation for a distributed control strategy that

achieves zero steady state frequency error and steady state

power sharing in the presence of clock drifts.

The remainder of this paper is structured as follows. In

Section II, we provide the model for the electrical network

and the distributed units. Then, in Section III a central and a

distributed secondary frequency controller are introduced. In

Section IV, the distributed controller is parametrized to re-

semble different control laws reported in the literature. These

control laws are then analysed regarding their steady state

behaviour. Finally, in Section V, we compare performance

of the different controllers in a case study.

II. MODEL OF A MICROGRID

In this section, the employed MG model is introduced.

We start by introducing some notation and basics on graph

theory.

A. Preliminaries and notations

Throughout the paper, the identity matrix of size N ×N
is denoted by IN . Furthermore, 1N ∈ R

N is the vector of

all ones and 0N ∈ R
N is the vector of all zeros. The matrix

of all ones is denoted by 1N×N ∈ R
N×N and the matrix of

all zeros by 0N×N ∈ R
N×N . The N × N diagonal matrix

with entries aj , j = 1, . . . , N is denoted by diag (aj).
1) Graph theory: A finite undirected graph G is a tuple

G = (J , E), where J is a finite set of vertices with

J = {1, . . . , J} and J ∈ N is the total number of vertices.

Furthermore, E ⊆ [J ]2 is the set of edges where [J ]2

represents the set of all two-element subsets of J . The entries

of the adjacency matrix A ∈ R
J×J of G are aij = aji = 1

if {i, j} ∈ E and aij = aji = 0 otherwise. The set of

neighbouring nodes of node i is given by Ji = {j ∈
J | aij 6= 0}.

An ordered sequence of nodes such that any pair of

consecutive nodes in the sequence is connected by an edge

is called a path. If there exists a path between every pair

of distinct nodes, then the graph G is called connected.

The diagonal degree matrix D ∈ R
J×J is given by

D = diag
(
∑

j∈J aij
)

. The Laplacian matrix L ∈ R
J×J of

an undirected graph is given by L = D−A. If and only if a

graph G is connected, then L is positive semi-definite, with a

simple zero eigenvalue and a corresponding right eigenvector

1J [16]. Thus, L1J = 0J and 1
T
JL = 0

T
J [17].

B. Network modelling

The electrical network of the considered microgrid is

assumed to be connected. In this network, vertices at which

only loads and no other units are connected, are called

passive nodes. Using Kron-reduction [18], the original net-

work containing passive nodes is reduced to a lower dimen-

sional network that contains only nodes where grid forming

units, i.e., grid forming inverters or rotating generators, are

connected. We assume this reduction has been carried out.

Then, each grid forming unit i ∈ J is connected to a node

i ∈ J . This work focusses on secondary frequency control.

Therefore, we assume that the voltage amplitudes Vi ∈ R≥0

at all buses are constant [19].

Denoting the vector of phase angles of all nodes in the

grid by δ = (δ1, . . . , δJ) ∈ R
J , the active power injection of

unit i is given by

Pi(δ) = GiiV
2 + V 2

∑

j∈Ji

|Yij | sin (δi − δj + φij), (1)

where Gii = Ĝii+
∑J

j=1,j 6=i Gij . Here, Gii ∈ R is the self-

conductance, Ĝii ∈ R denotes the shunt conductance at node

i and Gij ∈ R≥0 the conductance of the line connecting

nodes i and j [18]. With the susceptance Bij ∈ R, the

absolute value of the admittance is given by |Yij | = (G2
ij +

B2
ij)

1

2 . Moreover, φij = arctan (Gij/Bij) is the admittance

angle. Note that if there is no direct electrical connection

between nodes i and j then Yij = 0.

Usually, grid forming units such as synchronous genera-

tors and grid forming inverters are employed for frequency

restoration. Also, all the loads and grid feeding units can

be described by a constant impedance GiiV
2 ∀i ∈ J .

Therefore this work will focus on grid forming units which

will be simply referred to as units in the following.

C. Droop controlled units

A widely used control approach in MGs is droop control,

implemented on grid-forming inverters and synchronous gen-

erators. To realize this low level control, each unit is typically

equipped with its own digital controller with individual pro-

cessor clock. The time signal of all controllers slightly vary

from each other because of the so called clock drifts [15].

As has been shown in [15], clock drifts can be incorporated

in the model of a grid-forming inverter by introducing a

(constant) unknown scaling factor in the model. Then, the

dynamics of the ith unit equipped with frequency droop



control is given by

(1 + µi)δ̇i = (1 + µi)ωi = ω̄i, (2a)

= ωd − ki(P
m
i − P d

i ) + ξi, (2b)

(1 + µi)τiṖ
m
i = −Pm

i + Pi, (2c)

where µi ∈ R, is the clock drift factor, ωi ∈ R is the actual

electrical frequency and ω̄i ∈ R is the internal frequency

of the ith unit. Note that only the internal frequency ω̄i is

available to every unit. Furthermore, ωd ∈ R is the frequency

set point, ki ∈ R>0 the droop coefficient, P d
i ∈ R the active

power set point from a higher control level, e.g, energy

management [20], and ξi ∈ R is the control input. The

measured active power Pm
i ∈ R is obtained by filtering the

power output Pi in (1) by a first order low pass filter with

time constant τi ∈ R>0.

The model (2) can be used to model both, droop controlled

inverters and synchronous generators (see, e.g., [21]). How-

ever, using (2) without any secondary control, i.e., ξi = 0, the

steady state frequency error is typically non-zero. To achieve

the desired ω̄i = ωd, secondary control as described in the

next section can be used.

III. SECONDARY FREQUENCY CONTROL

Secondary frequency control aims at driving the frequency

value at steady state to a desired value. Strategies, that change

the input ξi to achieve this goal are introduced in this section.

The study starts with a widely used central control scheme.

Then, a distributed secondary control law is presented.

A. Central control

A standard approach for frequency secondary control is to

measure the frequency at a single bus bar where an accurate

frequency measurement can be realised. This frequency value

is then used in a standard central frequency controller (see,

e.g., [5]). Such control law can be described by

ξ̇c = ωd − ωc, ξi = biξc, ∀i ∈ J , (3)

where ξc ∈ R is the integrated frequency error and ωc is

the frequency measured at one bus, ξi ∈ R is the secondary

control input and bi ∈ R≥0 is the controller gain of unit i.
Usually in this control scheme, clock drifts are addressed

using an accurate central frequency measurement with µc =
0 and hence, ω̄c = ωc. Despite their popularity, central

controllers are vulnerable to single point failures which need

to be addressed by redundant communication or computation

infrastructure [10].

B. Distributed consensus based control

A generalised representation of a consensus based dis-

tributed secondary frequency control scheme explicitly con-

sidering clock drifts is

(1 + µi)ξ̇i = −
(

bi(ω̄i − ωd)+

ci
∑

j∈JGi
aij(ω̄i − ω̄j) + di

∑

j∈JGi
aij(ξi − ξj)

)

, (4)

where bi ∈ R is called pinning gain and ci ∈ R as well

as di ∈ R are controller gains. Furthermore, aij ∈ R≥0

are entries from the adjacency matrix (see Section II-A)

that describes the communication structure of the secondary

controller and JGi
is the set of neighbouring units of unit

i for the communication network. By parametrising (4),

different control strategies can be implemented, e.g., [10],

[7] or a controller similar to the one described by [9]. For all

considered strategies, we assume the communication graph

is connected and undirected.

Combining the unit model (2) with the power flow equa-

tions (1) and the distributed control (4), the dynamics of the

closed-loop MG system can be written as

(IJ + µ)δ̇ = (IJ + µ)ω = ω̄, (5a)

= 1Jω
d − k(Pm − P d) + ξ, (5b)

(IJ + µ)τṖm = −Pm + P (δ), (5c)

(IJ + µ)ξ̇ = −
(

(B+CL)(ω̄ − 1Jω
d) +DLξ

)

, (5d)

where

µ = diag(µ1, . . . , µJ),

ω = [ω1, . . . , ωJ ]
T ,

ω̄ = [ω̄1, . . . , ω̄J ]
T ,

k = diag(k1, . . . , kJ),

P d = [P d
1 , . . . , P

d
J ]

T ,

Pm = [Pm
1 , . . . , Pm

J ]T ,

ξ = [ξ1, . . . , ξJ ]
T ,

τ = diag(τ1, . . . , τJ),

P (δ) = [P1(δ), . . . , PJ(δ)]
T ,

B = diag(b1, . . . , bJ),

C = diag(c1, . . . , cJ),

D = diag(d1, . . . , dJ).

Note that (5) is non-linear due to P (δ) from (1). For the

subsequent analysis, it is convenient to introduce the notion

below.

Definition 1: The system (5) admits a synchronised mo-

tion if it has a solution for all t ≥ 0 of the form

δs(t) =δs0 + ωst, ωs = 1Jω
∗, (6a)

with ω∗ ∈ R and δs0 ∈ R
J such that

|δs0,i − δs0,j | <
π

2
∀ i ∈ J , j ∈ Ji. (6b)

With Definition 1, we can now analyse the steady state be-

haviour of the closed-loop system (5) for different parametri-

sations of the controller (4) in the next section.

IV. STEADY-STATE BEHAVIOUR OF DISTRIBUTED

SECONDARY CONTROL STRATEGIES

The control strategies described in Section IV aim at

driving the steady state error of the frequency to zero. In

this section we will analyse under which parametrization

of the control (4), this can be achieved. Furthermore, we

will investigate how power sharing, i.e., that the units share

variations in load power in a desired manner, can be ensured.

Before analysing these properties, we derive an analytic

expression for the steady state frequency and a condition

for power sharing.

Lemma 1: Suppose that (5) admits a synchronised motion

(see Definition 1) where D is non-singular and that at

least one of the matrices B and C is non-zero. Then, the

corresponding synchronised electrical frequency is given by

ω∗ =
1
T
JD

−1
B1J

1T
JD

−1(B+CL)(IJ + µ)1J
ωd. (7)



Furthermore, ω∗ = ωd if and only if

1
T
JD

−1(B+CL)µ1J = 0. (8)

Proof: Along any synchronised motion, the electrical

frequencies at all nodes of (5) have to be identical, i.e.,

δ̇s = ωs = 1Jω
∗, (9)

which directly implies from (5a) that

ω̄s = (IJ + µ)1Jω
∗. (10)

Furthermore, ξ̇s = 0J . Hence,

(IJ + µ)ξ̇s = 0J = (B+CL)(ω̄s − 1Jω
d) +DLξs. (11)

Multiplying (11) from the left with 1
T
JD

−1 and recalling the

fact from Section II-A that 1T
JL = 0

T
J as the graph induced

by the communication network is undirected and connected

yields

0 = 1
T
JD

−1(B+CL)(ω̄s − 1Jω
d).

Using (10) and L1J = 0J leads to

0 = 1
T
JD

−1
(

(B+CL)(IJ + µ)1Jω
∗ −B1Jω

d
)

.

Unless B = 0J×J or ωd = 0, the above equation is solvable

if 1T
JD

−1(B+CL)(IJ+µ)1J is non-zero. Then, (7) follows

immediately.

To show that ω∗ = ωd if and only if (8) is satisfied, we

note that according to (7), ω∗ = ωd if and only if

1
T
JD

−1(B+CL)(IJ + µ)1J = 1
T
JD

−1
B1J .

Recalling the fact that CL1J = 0J , the above equation is

equivalent to (8).

Next, we investigate under which conditions power sharing

can be achieved with the control (4) in the presence of

clock drifts. In this work, we are interested in power sharing

relative to the set-points P d
i . Therefore, we employ the

definition below, which is in a similar spirit to that introduced

in [21].

Definition 2: Let χi ∈ R>0 and χj ∈ R>0. The units

at nodes i ∈ J and j ∈ J share their active powers

proportionally if

P s
i − P d

i

χi
=

P s
j − P d

j

χj
. (12)

In vector notation with X = diag (χ1, . . . , χJ) and any

arbitrary constant γ ∈ R, (12) can be expressed as X−1(P s−
P d) = γ1J . Note that χi and χj are parameters that can

be chosen by the designer and don’t necessarily have to be

equal. In practice, a typical choice for χi is the nominal

power rating of the unit at node i.
Lemma 2: Assume that the system (5) possesses a syn-

chronized motion (see Definition 1). Then, active power

sharing along this motion can be achieved if and only if

k, B, C and D are chosen such that
(

B+ (C+D)L
)

F1Jω
d + γDLkX1J = 0J , (13)

where

F =
1
T
J D

−1
B1J

1T
J
D−1(B+CL)(IJ+µ)1J

(IJ + µ)− IJ . (14)

Proof: Along a synchronised motion, (5) becomes

ω̄s = 1Jω
d − k(Pm − P d) + ξs, (15a)

0J = −Pm + P s, (15b)

0J = (B+CL)(ω̄s − 1Jω
d) +DLξs. (15c)

Using (15b), we can rewrite (15a) as

ξs = (ω̄s − 1Jω
d) + k(P s − P d).

Inserting this equation in (15c) results in

0J =
(

B+ (C+D)L
)

(ω̄s − 1Jω
d) +DLk(P s − P d).

Following Definition 2, with P s − P d = γX1J , we have

0J =
(

B+ (C+D)L
)

(ω̄s − 1Jω
d) + γDLkX1J .

Furthermore, using (10) yields

0J =
(

B+ (C+D)L
)(

(IJ + µ)1Jω
∗ − 1Jω

d
)

+

γDLkX1J . (16)

Substituting (7), power sharing is achieved if and only if
(

B+ (C+D)L
)

F1Jω
d + γDLkX1J = 0J ,

with F given in (14), completing the proof.

Since the coefficients µi are unknown, Lemma 2 reveals

that unlike in the case of ideal clocks [9], [7], [10], when

taking clock drifts explicitly into account, it is hard to derive

necessary and sufficient conditions for the controller gains

B, C, D and k to guarantee power sharing. However, based

on Lemmata 1 and 2 we can provide the following tuning

criterion that ensures power sharing.

Lemma 3: Assume that the system (5) possesses a syn-

chronized motion (see Definition 1). Then, active power

sharing along this motion can be achieved if k, B, C and

D are chosen such that

Bµ = 0J×J , and (C+D) = 0J×J , (17a)

as well as

kX = αIJ (17b)

with α ∈ R.

Proof: For Bµ = 0J×J , (8) becomes

1
T
JD

−1
CLµ1J = 0.

Furthermore, with (C+D) = 0J×J ⇔ D
−1

C = −IJ , and

recalling the fact that 1T
JL = 0J , we can show that (8) holds.

Thus, ω∗ = ωd if (17a) holds. Furthermore, with Bµ = 0J

and (C+D) = 0J×J ,(13) becomes

0J = γDLkX1J .

Inserting (17b) yields

0J = γαDL1J .

This completes the proof.

Using the derived conditions from Lemmata 1–3, in the

following we will investigate whether and how a zero steady

state frequency error and power sharing can be reached.

Therefore, we will compare different parametrizations of the

control law (4).



A. Pinning gain at all units, no consensus-based exchange

of internal frequencies

By setting bi > 0, ci = 0 and di > 0 for all i ∈ J the

control law (4) becomes

(1+µi)ξ̇i = −
(

bi(ω̄i−ωd)+di
∑

j∈JGi
aij(ξi−ξj)

)

, (18)

which is equal to the secondary control scheme proposed

in [7]. In this strategy, the internal frequencies of all units

are used in the first term with the pinning gain. Consensus-

based exchange of the internal frequencies is not included,

i.e., C = 0J×J . Thus, supposing that the system (5) admits

a synchronised motion, condition (8) in Lemma 1 reduces to

1
T
JD

−1
Bµ1J = 0. (19)

The clock drift factors µi for i ∈ J are uncertain. Usually,

µi 6= µj 6= 0 for i, j ∈ J , i 6= j holds. In (18), as

D
−1 and B are positive-definite, condition (19) cannot be

satisfied. Hence, due to the impact of clock drifts, frequency

convergence (i.e, ω∗ = ωd) cannot be achieved with the

control law (18). Furthermore, (17a) does not hold, as

(C+D) 6= 0J×J and Bµ 6= 0J×J . Therefore, active power

sharing cannot be ensured.

B. Pinning gain at one unit, no consensus-based exchange

of internal frequencies

In this approach, (4) is parametrized by setting the pinning

gain bi = 0 for all units i ∈ J \ {k} except for unit k ∈ J
where bk > 0. This unit k is assumed to have access to

accurate frequency measurement with µk = 0. Furthermore,

ci = 0 and di > 0 for all i ∈ J . Hence, the control law (4)

reduces to

(1+µi)ξ̇i = −
(

bi(ω̄i−ωd)+di
∑

j∈JGi
aij(ξi−ξj)

)

, (20)

and thus is equivalent to the one proposed in [10] as shown

in Appendix I. Assuming a synchronised motion (see Def-

inition 1) and using C = 0J×J , the convergence condition

(8) reduces to

1
T
JD

−1
Bµ1J = 0. (21)

Since bi is zero for all i ∈ J \ {k} and µk = 0 for the kth

controller, Bµ = 0J×J . Thus, (8) holds and ω∗ = ωd in

steady state.

To investigate power sharing, we note that Bµ = 0J×J

and C = 0J×J . Thus, (13) and (14) can be combined and

reduces to

(B+DL)µ1Jω
d + γDLkX1J = 0J .

Again using the fact that Bµ = 0J×J yields

DLµ1Jω
d + γDLkX1J = 0J .

However, it remains difficult to derive any conditions on the

choice of D that ensures power sharing. Hence, the approach

presented in (20) partially fulfils the control objectives as a

zero steady state frequency error can be reached. However,

power sharing cannot be guaranteed.

∼

1

k1 = 60 1/MWs

µ1 = 20µs

∼

2

k2 = 30 1/MWs

µ2 = 30µs
∼

3

k3 = 20 1/MWs

µ3 = 40µs

∼

4

k4 = 15 1/MWs

µ4 = −30µs
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Fig. 1: MG used in case study.

C. Pinning gain at one unit, with consensus-based exchange

of internal frequencies

Similar to the approach in Section IV-B, (4) is

parametrized such that bk > 0 at one unit k with an accurate

frequency measurement, i.e., µk = 0. For all other units

i ∈ J \{k}, bi = 0. Furthermore, di > 0 for all i ∈ J . Note

that the consensus-based exchange of internal frequencies is

allowed, i.e, C may be non-zero. The resulting controller has

the form

(1 + µi)ξ̇i = −
(

bi(ω̄i − ωd)+

ci
∑

j∈JGi
aij(ω̄i − ω̄j) + di

∑

j∈JGi
aij(ξi − ξj)

)

. (22)

Assuming existence of a synchronized motion and recalling

Bµ = 0J×J , (8) becomes

1
T
JD

−1
CLµ1J = 0, (23)

along that synchronized motion. Selecting the matrices C

and D such that

D
−1

C = ρIJ , (24)

with ρ ∈ R, (23) holds, and therefore ω∗ = ωd. Thus for

C = ρD, a zero steady state frequency error can be achieved.

The power sharing condition (13) for the controller (22)

with Bµ = 0J×J is given by
(

B+ (C+D)L
)

F1Jω
d + γDLkX1J = 0J , (25)

where

F =
1
T
J D

−1
B1J

1T
J
D−1B1J+1T

J
D−1CLµ1J

(IJ + µ)− IJ . (26)

The condition (25) is satisfied if D
−1

C = −IJ , which in

turn satisfies Lemma 3. Therefore substituting ρ = −1 in

(24) will assure both zero steady state frequency error and

power sharing for the controller (22).

Having achieved conditions for zero steady state frequency

error and power sharing, in the following case study they

will be illustrated for an exemplary microgrid. Therefore,

the different parametrizations of (4) will be compared with

each other and with the central controller (3).

V. CASE STUDY

In this section, the behaviour of the different approaches

from Section IV is analysed exemplarily. First, we will intro-

duce the MG used and the course of external actions in the

simulation. Then, the operation of the grid with the different

controllers is discussed.



A. Simulation setup

The case study was performed using MATLAB R©/Simu-

link R© and PLECS [22]. The structure of the MG used

was motivated by the case studies of [7], [9], [10]. More

specifically, the choice of the parameters is closely connected

the ones used in [9]. As shown in Fig. 1, the MG consists of

four units with different power ratings and loads. Motivated

by [9], for all units i ∈ J with J = {1, 2, 3, 4}, a time

constant of τi = 0.16 s and the droop gains ki as indicated in

Fig. 1 were used. Furthermore, the desired power sharing was

chosen as 1/χi = ki for all i ∈ J . The clock drift factors µi

were not part of the original model and introduced as shown

in Fig. 1. Initially, a load of (100 + j 100)Ω is connected at

each unit bus. The line parameters are the same as in [9],

except for the following modification. The original MG, has

a line that directly connects node 2 and 3. In our example,

the line, i.e, the admittance of the line, was divided into

two parts that connect node 2, respectively 3 with node 5.

This was done to introduce a busbar where an accurate

central frequency measurement, e.g., with a phase locked

loop (PLL), can be performed. The course of external events

of every simulation instance is described in Table I.

B. Central control

For the central controller, bi = 1 for all i ∈ J . Fur-

thermore, the communication structure in Fig. 2a was used,

i.e., the frequency is measured at the busbar (node c) and

controlled according to (3). The communication in this case

is directed from the central node to different units. In the

beginning, there is a non-zero frequency error (see Fig. 3a).

As the controller is enabled at t = 10 s, the error reduces to

zero and the frequency is restored to 50 Hz (see magnified

plot for frequency). The steady state frequency error also

goes to zero after a change in active power at t = 30 s
occurs (see the bus bar frequency). However, power sharing

at steady state is not achieved with this control strategy (see

magnified plot for Pi/χi).

C. Distributed consensus based control

The distributed secondary frequency control strategies

were implemented and analysed with the MG and communi-

cation as in Fig. 2b. Thus, the busbar (node c) is not included

in the secondary control and just serves for an accurate

frequency measurement with µc = 0.

TABLE I: Simulation scenario.

Time Event

0 s Start of simulation, primary control is activated;
10 s Secondary control is activated;
30 s Load with apparent power S = 10 kVA and power factor

cos(φ) = 0.9 (ind.) added to node 4;
70 s Load with apparent power S = 10 kVA and power factor

cos(φ) = 0.9 (ind.) added to node 4;
90 s End of simulation;
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(a) Central integral secondary controller.
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(b) Distributed integral secondary controller.

Fig. 2: Control layers of different controllers.

1) Pinning gain at all units, no consensus-based exchange

of internal frequencies: Fig. 3b shows the output of approach

(18) with B = diag (14), C = diag (04) and D = diag (14).
It can be seen that the frequency that is measured accurately

at the busbar is not exactly 50 Hz. Hence, as indicated in

Section IV-A, a zero steady state frequency error is hard to

reach with this strategy. At steady state, the power sharing

is not achieved (see magnified plot for Pi/χi) either.

2) Pinning gain at one unit, no consensus-based exchange

of internal frequencies: In contrast to Fig. 1, in this approach

unit 1 is assumed to have a very accurate clock (i.e., µ1 = 0).

The rest of the clock drift factors µi for i ∈ J \ {1} remain

unchanged. The controller parameters are assumed as B =
diag (1, 0, 0, 0), C = diag (04), and D = diag (14). Fig. 3c

depicts the internal frequencies and active power ratios of the

MG, controlled with strategy (20). It can be observed that the

steady state frequency error of unit 1 and at the busbar goes

to zero. Thus, as expected from Section IV-B, zero steady

state frequency error is achieved. However, power sharing is

not achieved.

3) Pinning gain at one unit, with consensus-based ex-

change of internal frequencies: In this approach, it is as-

sumed that in contrast to Fig. 1, unit 1 incorporates a very

accurate clock (i.e., µ1 = 0). The controller parameters

are B = diag (1, 0, 0, 0), C = diag (−14), and D =
diag (14). Fig. 3d shows the simulation output of control

strategy (22). It can be observed that the internal frequency

at unit 1 coincides with the very accurate busbar frequency.

Further, the theoretical results from the steady state analysis

in Section IV-C could be reproduced, as a zero steady state

frequency error as well as power sharing is achieved
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(a) Central controller (3).
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(b) Distributed controller (18) with pinning gain at all units, no
consensus-based exchange of internal frequencies.
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(c) Distributed controller (20) with pinning gain at one unit, no
consensus-based exchange of internal frequencies.
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(d) Distributed controller (22) with pinning gain at one unit, with
consensus-based exchange of internal frequencies.

Fig. 3: Frequency and active power ratios Pi/χi of MG operated with different controllers.

D. Comparison

The central controller (3) as per Fig. 3a has the capa-

bility to address clock drifts due to the presence of an

accurate frequency measurement at the bus bar. However,

power sharing is not achieved. Furthermore, since (3) is a

central controller, it is prone to single point failures [1]. The

distributed approaches in contrast can be designed in a way

that is robust to those failures. Fig. 3b indicates that a zero

steady state frequency error is hard to be achieved with (18).

Control approaches that use a very accurate central frequency

measurement at a node with non-zero pinning gain as in (20)

and (22) are able to realise zero steady state frequency error

in the presence of clock drifts. In steady state, power sharing

can be achieved by using a distributed frequency secondary

control that is parametrized as described in Section IV-C.

A brief overview of the applicability of the different

approaches is also given in Table II. From this comparison,

especially (22) seems to be a good choice because of zero

frequency error and power sharing at steady state.

Remark 1: The control approaches (20) and (22) can also

be implemented with central frequency measurement at a

bus bar. Then, the busbar is added to the secondary control

layer and the frequency reference ωd is provided only to the

busbar. The frequency at the busbar can be measured using,

e.g., a PLL with very accurate clock signal or a power quality

monitor.

VI. CONCLUSIONS

In this paper, the steady state behaviour of different

secondary frequency controllers has been compared in the

presence of clock drifts. A controller was proposed that uses

TABLE II: Comparison of different approaches.

Criterion (3) (18) (20) (22)

Zero steady state frequency error 3 3 3

Steady state power sharing 3

Central frequency measurement 3 3 3

External frequency measurement possible 3 3 3

Resilience to single-point failures possible
by design

3 3 3



an accurate frequency measurement at only one unit. With

this controller, zero steady state frequency error and power

sharing can be achieved. Sufficient conditions for zero steady

state frequency deviation and power sharing for distributed

secondary frequency control approaches have been derived.

In a case study, the results from the analysis were illustrated

and some practical aspects were discussed. Future work will

address tuning of the different approaches for comparing

their dynamic behaviour and to provide a stability proof for

the proposed control approach. Furthermore, experiments in

a real MG are planned.
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APPENDIX I

REMARK ON SECONDARY CONTROL LAW

In the following we illustrate how the secondary controller

in [10] is related to (20). In [10], (47), droop control at node

i is described as

ωi = ξi − kiPi, (27)

which can be transformed into (5b) with ωd and P d set

to zero and considering a model without clock drifts. The

secondary frequency control law proposed in (52), (53) in

[10] can be expressed in our notation as

ξ̇i = −mi

(
∑

j∈J aij(ωi − ωj)+

ni(ωi − ωd) +
∑

j∈J aij(kiPi − kjPj)
)

.

Inserting (27) yields

ξ̇i = −mi

(
∑

j∈J aij(ωi − ωj) + ni(ωi − ωd)+
∑

j∈J aij((ξi − ωi)− (ξj − ωj))
)

,

which is equivalent to

ξ̇i = −
(

mini(ωi − ωd) +mi

∑

j∈J aij(ξi − ξj)
)

.

For mini = bi and mi = di this equals (20).


