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Abstract—Recently sparse representation has gained great
success in face image super-resolution. The conventional sparsity-
based methods enforce sparse coding on face image patches
and the representation fidelity is measured by ℓ2-norm. Such
a sparse coding model regularizes all facial patches equally,
which however ignores the natures of facial patches, where
the facial patches in the different regions (patch positions)
of human face may have distinct contributions to face image
reconstruction. In this paper, we propose to weight facial patches
based on their discriminative abilities in regression for robust face
hallucination reconstruction. Specifically, we learn the weights for
facial patches according to the information entropy in each face
region, so as to highlight higher frequency details in face images
and the facial discriminability can be well retrieved. Various
experimental results on standard face databased show that our
proposed method outperforms state-of-the-art methods in terms
of both objective metrics and visual quality.

I. INTRODUCTION

One of the most common challenges to practical face

recognition system is that most face images captured in the

wild are of low resolutions. The low-resolution (LR for short)

face images not only bring down the human visual experience

but also adversely affect the performance of the followed face

recognition and analysis. To alleviate this problem, image

super-resolution (SR) attempts to increases high-frequency

components and removes the undesirable effects, e.g., the

resolution degradation, blur and noise. For an observed LR

image y, the problem of image SR is generally modeled as

y = SHx+ e with the goal of recovering an high-resolution

(HR) image x from y, where e is a small noise term, H is

a blur filter, and S represents a down-sampling operator. The

dimension of y is significantly smaller than that of x; thus

there are an infinite number of possible HR images x that can

generate the same LR image y. To obtain a unique and good

HR image, additional information is imperative and of great

important to eliminate the uncertainty of recovery.

The problem of face image super-resolution was first stud-

ied by Baker and Kanade [1] which developed a Bayesian

approach to infer the missing high-frequency components of

face images. Based on the parent-training images, it generates

the high frequency details by learning the gradient prior from

a parent image pyramid. Subsequently, Liu et al. [2] present a

∗Corresponding author: zhihong@xmu.edu.cn.

two-step approach to hallucinate faces, which integrates global

structure reconstruction with local detail adjustment. Firstly,

the method generates global face image keeping the main

characteristics of the original high-resolution face. Secondly, it

produces residual image containing the high-frequency image

information to compensate the results of the first step. Both

of the methods incorporated the degradation function into

the formulation to solve the final hallucinated result. Wang

and Tang [3] propose a face hallucination method by eigen

transformation, which views hallucination as a transformation

between different image styles. However, this can hardly main-

tain the global smoothness and visual rationality, especially at

locations around the face contour and margin of the mouth.

Inspired by the well-known locally linear embedding idea [4]

in manifold learning, Chang et al. [5] developed a super-

resolution method through Neighbor Embedding algorithm,

which assuming that the training low- and high-resolution

images from manifolds share similar local geometric structure.

Motivated by Chang’s work [5], a number of face hallucina-

tions methods [6], [7], [8] were developed based on Neighbor

Embedding or using neighbor patch. However, fixed number of

neighbors for reconstruction may lead to blurred and unwanted

edges dur to under- or over-fitting.

Due to the success of sparse representation used in incom-

plete signal recovering, a series of methods based on sparse

representation are developed for face image super-resolution,

which can fundamentally avoid the blurring effects of super-

resolved faces. By forcing LR patch and the corresponding HR

patch to have the same sparse coefficient, Yang et al. [9] are the

first to introduce the idea of sparse representation to the face

image SR. The method offline trains a HR and LR dictionary

to sparsely decompose HR and LR image patches, respectively.

Given a LR patch input, a sparse coefficient vector is computed

using the LR dictionary by solving an ℓ1-norm minimization

problem. The desired HR patch is reconstructed by combining

the HR dictionary. The similar intuitive is used in [10]. Chang

et al. [10] used coupled over-complete dictionaries and sparse

representation to synthesize face sketch which obtained better

result. In order to fully use the structure information of facial

images, ELad et al. [11] used sparse representation for photo-

ID image compressing by adapting to the image content. The

prior of face position can be incorporated into face super-
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resolution. Ma et al. [12] take face position information as a

feature and proposed a position-patch based face hallucination

method. It estimate a HR image patch using the image patches

at the same positions of all training face image. Specifically,

the coding coefficients estimated via constrained least square

(CLS) in each face region are used to generate the HR patch of

the corresponding position. However, when the number of the

training images is much larger than the dimension of the patch,

the CLS problem is underdetermined and the solution is not

unique. To address the biased solution problem caused by least

square estimation, Jung et al. [13] provided a position-patch

based face hallucination method using convex optimization,

which obtained the optimal weights for face hallucination

and achieved a better results than Ma’s [12]. However, this

sparse coding based method [13] fail to consider the manifold

geometric structure of the face data that is important for image

representation and analysis. Zhang et al. [14] presented a dual-

dictionary learning method to recover more image details,

in which both the main and the residual dictionaries are

learned by sparse representation. These SR based methods

gave impressive improvements for experimental noise free

faces. However, due to the under sparse nature of noisy

images, they usually perform unsatisfactorily in the presence

of noise.

The above sparse representation based super-resolution ap-

proaches are based on the minimization of mean-squared-

error (MSE) between the input LR image patches and the

reconstructed SR image patches (i.e., ‖y − Dα‖2
2
). In fact,

the fidelity term has a high impact on the final coding results

because it ensures that the given signal y can be faithfully

represented by the dictionary D. From the view of maximum

likelihood estimation (MLE), defining the fidelity term with

ℓ2-norm actually assumes that the coding residual e = y−Dα

follows Gaussian distribution. Such coding fidelity treats all

the face image patches equally, and it ignores the natures of

facial patches, where the facial patches in the different regions

(patch positions) of human face may have distinct contribution

to face image reconstruction. Intuitively, face regions (such as

mouth, eyes, nose) rich in texture contain more high-frequency

detail; thus, facial patches in this regions are expected to

be assigned with high weight values to ensure very small

residuals. While some face regions with variational noise

or corruptions, their corresponding image patches are given

lower weight values to reduce their effects on the regression

estimation so that sensitiveness to these regions can be greatly

reduced.

To improve the robustness and effectiveness of face hallu-

cination, we propose to incorporated the discriminative ability

of pixel locations into the regression procedure. Such weight

values are determined through the information entropy in each

face region. In order to construct a robust weights to fully

exploit structure information of each face region, we employed

external data (not just limit to training data) to learn the

weights. As the external data can cover all possible face image

variants of different persons, so the robustness of obtained

weights can be guarantee.

II. RELATED WORK

We review some of the related previous works in this

section, which will lay the foundation for the derivation of

our approach later.

A. Super-resolution via Couple Dictionaries and Sparse Cod-

ing

Yang et al. [9] proposed an approach for super-resolution

based on sparse representation. Given Dl ∈ ℜM×K be an

over-complete LR dictionary of K prototype signal-atoms,

Dh ∈ ℜN×K be the corresponding over-complete HR dic-

tionary of K prototype signal-atoms, where N and M are

the dimensions of a HR image patch and LR image patch,

respectively. Yang et al. [9] start from a large collection of

low resolution (LR) and high resolution (HR) training patch

pairs and use a sparsity constraint to jointly train the LR

and HR dictionaries by assuming that LR patches and their

corresponding HR counterparts shares the same sparse coding

vector. The optimal dictionary pair {Dh,Dl} is obtained by

minimizing

min
Dh,Dl,Z

1

N
‖Xh−DhZ‖2

2
+

1

M
‖Yl−DlZ‖2

2
+λ(

1

N
+

1

M
)‖Z‖1 ,

(1)

Once the dictionaries are trained, the input LR image is divided

into overlapped patches, and each patch y can be sparsely

encoded by a learned LR dictionary Dl using the following

formulation:

min
α

‖FDlα− Fy‖2
2
+ λ‖α‖1 , (2)

where F is a feature extraction operator, α is the sparse

representation and λ is a weighting factor. The corresponding

HR patch is reconstructed by Dh and α with Dhα. Finally,

the HR image can be obtained by aggregating all the estimated

HR patches into a whole image. One problem of Yang’s work

[9] is that the dictionary training process is time-consuming.

Therefore, it will be much efficient if we can project the patch

vectors into a lower subspace while preserving most of their

average energy.

Zeyde et al. [15] improved the work of Yang et al. [9]

with less computation time and better estimation result. They

perform dimensionality reduction of LR image patches via

Principal Component Analysis (PCA) to improve the execution

speed. With the training patch pairs {Ph,Pl} prepared, they

firstly learn the LR dictionary as:

α = min
α

‖Pl −Dlα‖
2

2
+ λ‖α‖1 , (3)

The above optimization formula can be solved by K-SVD

[16] and Orthogonal Matching Pursuit [16]. By the same

assumption with Yang’s work [9], the sparse code α trained

from above can be utilized in constructing the HR dictionary

Dh. And the Dh training can be formulated as a least square

regression problem:

Dh = min
α

‖Ph −Dhα‖
2

2
, (4)
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Hence, a straightforward least-square solution of Dh can be

obtained by:

Dh = Phα
T(ααT)−1 , (5)

From above, it is clear that this method can only train for

LR dictionary and its corresponding sparse code, leading to

more time saving and less computation complexity. Despite

the improvements, the use of OMP during sparse coding is

clearly the bottleneck.

B. Anchored Neighborhood Regression

Starting from the same dictionaries training by K-SVD

with OMP algorithms in [15], the Anchored Neighborhood

Regression (ANR) approach [17] proposes to relax the sparsity

constraint in Eq. 2 and reformulates the patch representation

problem as a least squares (LS) ℓ2-norm regression. The

method uses the local neighborhoods of dictionary (i.e. Nl and

Nh) with a specific size instead of the entire dictionary used

in [9]. Compared with solving ℓ1-norm minimization which

is computationally demanding, the ℓ2-norm regression turns

the problem into Ridge Regression [18] and a closed-form

solution can be obtained.

min
β

‖y −Nlβ‖
2

2
+ λ‖β‖2 , (6)

where Nl is the LR neighborhood of input patch y chosen

from Dl. The algebraic solution of the coefficient vector β

can be written as:

β = (NT
l Nl + λI)−1NT

l y , (7)

the coefficients of β are then applied to the corresponding HR

neighborhood Nh to reconstruct the HR patch x,

x = Nh(N
T
l Nl + λI)−1NT

l y = Pjy , (8)

where Pj is the projection matrix for dictionary atom dlj.

Given the trained couple dictionaries, for each LR dictionary

atom dl, we search for its K nearest neighborhoods of dictio-

nary Nl by correlation between the whole dictionary atoms.

Then, based on the neighborhoods of dl, a separate projection

matrix Pj can be computed. Therefore, the projection matrix

can be obtained offline and the procedure of SR for ANR at

test time becomes mainly a nearest neighbor search followed

by a matrix multiplication for each input patch.

Although the effectiveness of sparse representation has been

proven, the spatial information is lost during the coding phase.

We believe that the amount of information in different face

regions is different and the spatial information should also be

included in the face image reconstruction.

III. THE PROPOSED ALGORITHM

Inspired from the recent development on regions division

problem [19], [20], we learn the weight for image patches in

each facial region according to the information entropy of the

region. More specifically, we firstly partitioned each face im-

age into overlapped patches according to the different regions

(patch positions) of human face and then the importance of

patches in each region is measured by information entropy.

Figure.1 shows the details for learning the weight values in

each face region using information entropy.

Fig. 1. The details for learning the weight values in each face region using
information entropy.

The entropy is a term defined in information theory as

a measurement of the uncertainty associated with a random

variable [21]. It is relevant to the quantity and variability of the

information. Here, we assume that the pixel intensity value is a

random variable; thus, we can use the histogram of intensities

in each face image patch to approximate the probability

density function (PDF) for computing the information entropy.

Applied to our case, the larger the entropy values is, the

more information a face image patch should contain, and thus

smaller residuals should be set for this patch.

The entropy value of the face patch i can be then defined

as

Hi =
n
∑

k=1

p(vk) log2

(

1

p(vk)

)

= −

n
∑

k=1

p(vk) log2 p(vk) (9)

where p(vk) is the probability of the pixel v with intensity

value k in the histogram of the region.

In our method, the entropy following Eq. 9, is computed

from the intensity histograms of the coarse divided regions for

all face images in the training set. Then, the average entropy

value of patches in a region for all images is used as the

corresponding regional patch entropy. Although some images

in the training set might be affected by noise, the average

entropy values can still reflect the information quantity differ-

ences among different facial regions. Finally, we normalized

these entropy values as the final weight values

Wi =
Hi

∑n

k=1
Hk

(10)

where Wi is the weight value of patch in face region i.

By imposing the weighted spatial information into the ANR

[17] scheme, our method can be formulated as follows:

min
α

||Wi(yi −N i
lα)||

2

2
+ λ||α||2 (11)
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where yi is the feature vectors of the i-th patch of input low-

resolution face image, N i
l is its corresponding neighborhood

in LR space, Wi is its corresponding weight value and λ is

a balance parameter. Eq. 11 is a convex formulation and its

algebraic solution is give by

α = ((WiN
i
l )

T(WiN
i
l ) + λI)−1(WiN

i
l )(Wiyi) (12)

the HR patch xi can then be computed using the same

coefficient on the corresponding HR neighborhood N i
h

xi = N i
hα (13)

Finally, we put all the HR patches together into a HR face

image.

IV. EXPERIMENT

In this section, we conduct several experiments to evaluate

the effectiveness of the proposed method, in terms of both

objective metrics and visual quality. We compare the SR

estimation results with several classical as well as state of

the art SR methods including Bicubic interpolation, the sparse

coding algorithms of Yang et al. [9] and Zeyde et al. [15],

Anchored Neighborhood Regression (ANR) approach [17].

These methods were configured using the same patch size and

overlap as indicated below and configured using the optimal

parameters provided in their respective papers. The face super-

resolution performance is quantified by the Peak Signal to

Noise Ratio (PSNR) [22] between the ground truth face images

and the super-resolved ones.

A. Experimental configurations

Database: The experiments conducted in this paper use

different publicly available face datasets: i) FERET [23], ii)

CAS-PEAL-R1 [24], iii) AR [25]. All these face images were

aligned by an automatic alignment algorithm using the eye

positions, and then cropped to the size of 64 × 64 pixels.

The LR images are formed by blurred and down-sampling

(by a factor of 4 resulting the size of LR face images to be

16 × 16 pixels) the corresponding HR images. The 450 face

images from FERET were used as HR dictionary training

images and LR dictionary training images. Here, we adopted

the same way of dictionary learning procedure as Zeyde et

al. [15], which combining GOMP and K-SVD to train the

dictionary pair. Then, we randomly select 50 face images

from AR (referred to as SetA) and 50 face images from

CAS-PEAL (referred to as SetB) as the testing image sets.

Parameter Setting: Empirically, we set the size as 16 × 16

pixels for HR patch and the overlap between neighbor patches

as 4 pixels. The corresponding LR patch size is set to 4 ×
4 with overlap of one pixel. After learning the dictionaries

for high-resolution and low-resolution image patches, we can

group the dictionary atoms into neighborhoods. Specifically,

for each atom in the dictionary we find its K nearest neighbors

based on the correlation between the dictionary atoms, which

will represent its neighborhood. In our experiments, we set K

to 40 and parameter λ to 0.0001.

B. Comparison of Subjective and Objective Quality Results

In this section, we perform experiments on two representa-

tion benchmark databases (AR and CAS-PEAL) to demon-

strate the effectiveness of the proposed method. Since the

ground truth HR face images are available, we compare not

only the visual quality but also the quantitative results of the

reconstructed face images.

Fig. 2. Examples of our algorithm compared to other methods. From left to
right columns: (a) low-resolution input; (b) Bicubic interpolation; (c) Yang’s
method; (d) Zeyde’s method; (e) ANR (f) Our proposed method; (g) Original
HR face images

In Fig. 2, some reconstructed face images by different

methods are compared. It can be seen that the reconstructed

face images by Bicubic interpolation is very blurry. Yang’s

results lost too many details and have many jaggy artifacts. The

textures of ANR’s results are heavily smoothed. Our method

achieves better visual quality with more detail information

and less artificial effect. More specifically, our proposed

method can recover better high frequency components of facial

features like nose and mouth (see 5th and 6th row in Fig.

2). Overall, the proposed method improved the visual effect

significantly and the performance is better than others in

subjective.

To further validate the effect of the proposed method, objec-

tive evaluation of PSNR are carried out too. The average values

of PSNR from 100 testing images (SetA and SetA) are showed

in Table 1. Seen from Table 1, we found that the proposed

method obtained the highest PSNR values. It demonstrates

that the reconstructed face images by our method are closest
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Table 1

The average results of PSNR by different methods on the SetA and SetB.

Table 2

Part of the experimental results on the SetA

to the ground truth HR images. The results between subjective

quality and objective quality are consistent. It validates the

effectiveness and advancement of the proposed method.

For clear comparison, we randomly selected 10 face images

from SetA and SetA respectively for testing. The experimental

results in Table 2 and Table 3 also clearly show that the

proposed method outperforms each of the competing methods

all face images studied. The results further verify the effective

of proposed method.

V. CONCLUSION

In this paper, we have proposed a novel weighted patches

regression method to face hallucination. This idea is motivated

by the observation that face regions (such as mouth, eyes,

nose) rich in texture contain more high-frequency detail; thus,

facial patches in this regions are expected to be assigned with

high weight values to ensure very small residuals. Experi-

mental results on three benchmark datasets demonstrate its

superiority over state-of-the-art methods in terms of PSNR

values and visual quality.
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