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Abstract—Graph kernels are powerful tools for structural
analysis in computer vision. Unfortunately, most existing state-
of-the-art graph kernels ignore the locational or structural
correspondence information between graphs, based on the vi-
sual background. This drawback influences the performance of
existing kernels for computer vision based classification problems,
e.g., classification of shapes, point clouds and digital images. The
aim of this paper is to address the problem with existing kernels,
by developing a novel vertex clustering graph kernel. We show
that this kernel not only overcomes the shortcoming of ignoring
correspondence information between isomorphic substructures
that arises in most existing graph kernels, but also guarantees the
transitivity between the correspondence information. Our kernel
can easily outperform state-of-the-art graph kernels in terms of
classification accuracy on standard shape based graph datasets.

I. INTRODUCTION

Graph structures are important tools for representing com-
puter vision data (e.g., 3D shapes [1], point clouds [2], digital
images [3] and videos [4]), since they can reflect structural and
relational arrangements of objects in a scene. One challenge
arising in classifying graph-based computer vision data is how
to accurately and effectively compute the graph similarities for
classification. One way to address this problem is to use graph
kernels.

A. Graph Kernels on Computer Vision

Graph kernels have been proven powerful tools for struc-
tural analysis in computer vision. Typical applications include
a) image classification [5], b) 3D shape classification [1],
c) handwriting recognition [6], and d) point cloud classifi-
cation [1]. The main advantages of using graph kernels are
twofold. First, graph kernels can characterize graph features
in a high dimensional space and thus have the capability
of preserving graph structures. Second, graph kernels make
the rapidly developing kernel machinery for vectorial data
applicable to graphs.

Fig. 1. Two graphs abstracted from two digital images containing the same
object, based on different viewpoints.

One of the most successful and widely used approach to
defining kernels between a pair of graphs is to decompose
the graphs into substructures and to compare/count pairs of
specific isomorphic substructures. Specifically, all available
graph decomposition methods can be used to define a graph
kernel, e.g., graph kernels based on counting pairs of isomor-
phic a) walks [7], b) paths [8], and c) restricted subgraph
or subtree substructures [9]. With this scenario, Gaidon et
al. [10] have developed a subtree kernel for comparing videos.
For each video, the method considers complex actions as
decomposed spatio-temporal parts and builds corresponding
binary trees. The resulting kernel is computed by counting
the number of isomorphic subtree patterns. Bach [11] has
proposed a family of kernels for comparing point clouds.
These kernels are based on a newly developed local tree-
walk kernel between subtrees, that is defined by a factorization
on the properly defined graphical models of the subtrees.
Wang and Sahbi [12] have defined a graph kernel for action
recognition. They first describe actions in the videos using
directed acyclic graphs (DAGs). The resulting kernel is defined
as an extending random walk kernel by counting the number
of isomorphic walks of DAGs. Harchaoui and Bath [5] have
proposed a segmentation graph kernel for image classification.
For this method, each image is represented by a segmentation
graph, each vertex corresponds to a segmented region, and
each edge joins a pair of neighboring regions. The resulting
kernel is computed by counting the inexact isomorphic subtree
patterns between segmentation graphs. Other state-of-the-art
graph kernels include a) the shortest path graph kernel [13],
b) the backtrackless walk kernel [14], c) the Lovás kernel [15],
d) the Weisfeiler-Lehman subtree kernel [16], [17], e) the
continuous-attribute scalable graph kernel [18], f) the subgraph
matching kernel [17], etc. Some kernels have also been used
for computer vision applications.

One main drawback arising in the above mentioned kernels
is that they do not establish reliable correspondence informa-
tion between isomorphic substructures. In other words, for
graphs abstracted from images or 3D shapes, most existing
kernels cannot identify whether the isomorphic substructures
are located in identical regions based on the visual background.
For an instance, in Fig.1 there are two graphs abstracted
from two digital images, both containing the same house
object, based on different viewpoints. For these graphs, most
existing kernels will identify the two isomorphic subgraphs
consisting of red lines and thus contribute an unit value to the
kernel. Even though the substructures are not locationally or
structurally aligned based on the image background, since the
vertices connected by blue lines are not aligned. As a result,
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this drawback influences the performance of most existing
graph kernels for computer vision applications. To overcome
the shortcoming, Bai et al. [19] have proposed an aligned
subtree kernel. The kernel is computed by counting the number
of isomorphic subtrees that rooted at aligned vertices, and thus
overcomes the shortcoming of neglecting locational/structural
correspondences between isomorphic substructures arising in
most graph kernels. Experiments demonstrate that the effec-
tiveness of the aligned subtree kernel on 3D shape classifica-
tion problems.

Unfortunately, the aligned subtree kernel cannot guarantee
the transitivity between aligned vertices. More specifically,
given three vertices v, u and w, if v and u are aligned, and
u and w are aligned, the kernel cannot guarantee that v and
w are also aligned. On the other hand, Fröhlich et al. [20]
demonstrate that the transitive alignment step is necessary to
guarantee the positive definiteness of vertex alignment kernels.
Thus, the aligned subtree kernel cannot be guaranteed as a
positive definite kernel. Moreover, all the mentioned kernels
only reflect graph characteristics for each pair of graphs
under comparisons, and thus ignore the information from other
graphs. These drawbacks limit the precision of kernel-based
similarity measures. Therefore, developing effective graph
kernels still remains an open challenge.

B. Contributions

The aim of this paper is to address the mentioned prob-
lems arising in existing graph kernels, by proposing a new
vertex clustering graph kernel. To this end, we commence
by computing a S-dimensional signature for each vertex as
the point coordinate, through the frequencies of the shortest
paths rooted from the vertex to the remaining vertices. The
signature can represent a vertex in a high dimensional principle
space, and thus better preserve the information residing on the
vertex (note that any existing vectorial vertex signature can be
employed for the framework proposed in this paper). For a
set of N graphs under comparisons, we perform the K-means
clustering method [21] on their vertex signatures and divide the
vertices into N clusters. More formally, we select N centroid
points and minimize the sum of the squared distances from
each vertex to its nearest centroid point. Since a cluster of
vertices are all aligned to the corresponding centroid point,
these vertices can be seen as being approximately aligned.
The resulting kernel for a pair of graphs is computed by
counting the number of aligned vertex pairs. We show that
this kernel not only overcomes the shortcoming of neglecting
substructure correspondences, but also guarantees the transi-
tivity between the correspondence information. Moreover, the
computation of the new kernel for a pair of graphs encapsulates
the information from other graphs, and thus reflects richer
graph characteristics. Experiments demonstrate that our kernel
can outperform state-of-the-art graph kernels on shape-based
computer vision classification problems.

II. PRELIMINARY CONCEPTS

A. Vertex Signatures from the Shortest Paths

For an undirected graph G(V,E), V is the vertex set and E
is the edge set. We commence by computing the shortest path
matrix SG, where SG(v, u) records the length of the shortest

path between the vertices v ∈ V and u ∈ V . Let Cs
v be a

|V |-dimensional vector and satisfies

Cs
v(u) =

{

1 if SG(v, u) = s;
0 otherwise.

(1)

For the graph G(V,E), we compute a S-dimensional feature
vector for the vertex v ∈ V as

FS
v = [

∑

u∈V

C1
v (u), . . . ,

∑

u∈V

Cl
v(u), . . . ,

∑

u∈V

CS
v (u)]

⊤, (2)

where l ≤ S,
∑

u∈V Cl
v(u) is the l-th element and counts the

number of the shortest paths of length l from v to the remaining
vertices. If Lmax is the greatest length of the shortest paths
from v to the remaining vertices and Lmax < l ≤ S, then
Cl

v(u) is 0. Note that, for some instances, if l ≤ Lmax, the
non-zero l-th elements

∑

up∈Vp
Cl

vp
(up) and

∑

uq∈Vq
Cl

vq
(uq)

for the feature vectors FS
vp

and FS
vq

of a pair of graphs Gp and
Gq may be the same. This will influence the distinguishable
ability of the vertex feature vectors. To overcome this problem,
we normalize the feature vector FS

v and divide each element
by the sum of all elements. Thus, we compute a normalized
S-dimensional signature FS

v for v as

FS
v = FS

v /
∑

v∈V

FS
v , (3)

where the l-th element of FS
v is

∑

u∈V Cl
v(u)/

∑

v∈V FS
v .

FS
v represents v in a S-dimensional principle space, and can

be seen as the point coordinate in the space. Moreover, FS
v

encapsulates the distribution in terms of the frequencies of
different shortest path lengths. As a result, FS

v also reflects
rich structural information in terms of the shortest paths.

B. Vertex Alignments through K-means Methods

In this subsection, we divide the vertices of graphs into cor-
responding clusters using the K-means clustering method [21],
and identify the alignment between vertices based on the vertex
clusters. Let G = {G1, . . . , Gp, . . . , Gq, . . . , GN} be a set
of N graphs under comparisons. For each graph in G, we
compute the S-dimensional signatures of its vertices as points,
based on Eq.(3). Assume we have n vertices for the graphs in
G, the S-dimensional signatures of the n vertices are FS =
(FS

1 ,F
S
2 , . . . ,F

S
n ). Given N clusters Ω = (yS1 , y

S
2 , . . . , y

S
N)

where S corresponds to the parameter of these S-dimensional
signatures, the K-means method aims to minimize the sum
of square distances (i.e., the Euclidean distance in this paper)
between the vertex point FS

j and the cluster centroid point of

cluster ySi to which FS
j has been assigned, i.e.,

argmin
Ω

N
∑

i=1

∑

FS
j
∈yS

i

‖FS
j − µS

i ‖
2, (4)

where µS
i is the mean (i.e., the centroid point) of the vertices in

cluster ySi in terms of the S-dimensional signatures. Note that,
the K-means method requires initial means for the expected
clusters. To eliminate the randomness of setting the initial
means, we proposed to compute the vertex mean of each graph
as the initial N centroid points. For each graph Gp(Vp, Ep),
the centroid point µS

p of cluster ySp is

µS
p =

∑

vp∈Vp

FS
vp
/|Vp|. (5)

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 23rd International Conference on Pattern Recognition.

Received April 17, 2016.



Vertices belonging to the same cluster are all mostly closed
to the same centroid point, thus these vertices can be seen ap-
proximately aligned. Furthermore, the vertex clustering relies
on the minimization of Eq.(4), based on the S-dimensional
signatures of all graphs. As a result, the clustering results of
the vertices encapsulate rich information over all graphs.

III. GRAPH KERNELS FROM VERTEX CLUSTERING

A. The Vertex Clustering Graph Kernel

Let G = {G1, . . . , Gp, . . . , Gq, . . . , GN} be a set of N
graphs. We commence by computing the S-dimensional sig-
natures of vertices for each graph, based on Eq.(3). We cluster
the vertices (i.e., the S-dimensional signatures) of the graphs
in G into N clusters Ω = (yS1 , . . . , y

S
j , . . . , y

S
N), based on the

definition in Section II-B. For a pair of graphs Gp(Vp, Ep) and
Gq(Vq , Eq) from G, the vertex clustering graph kernel K is

K(Gp, Gq) =

Smax
∑

S=1

∑

vp∈Vp

∑

vq∈Vq

δ(S)(vp, vq), (6)

where

δ(S)(vp, vq) =







1 if vp ∈ ySj and vq ∈ ySj , and
FS

vp
(S) 6= 0 and FS

vq
(S) 6= 0;

0 otherwise.
(7)

For vp ∈ Vp, FS
vp
(S) is the S-th element of its S-dimensional

signature. FS
vp
(S) 6= 0 guarantees that there are the shortest

paths of length S from vp to the remaining vertices in Gp.
The parameter Smax corresponds to the maximum value of
the parameter S. Generally, we select the greatest value of
the shortest paths of graphs in G as Smax. Clearly, Eq.(6)
and Eq.(7) indicate that the proposed graph kernel K(Gp, Gq)
counts the number of vertex pairs that belong to the same
cluster ySj . As we have stated in Section II-B, the vertices
belonging to the same cluster can be seen approximately
aligned. As a result, K(Gp, Gq) can also be seen as a matching
kernel that counts the number of aligned or matched vertex
pairs for a pair of graphs, i.e., K(Gp, Gq) establishes the
reliable correspondences between vertices.

Time Complexity For a set of N graphs each of which has
n vertices, computing the vertex clustering kernel for all pairs
of graphs requires time complexity O(Nn3 + N2Smaxn

2 +
N2nT ), and T is the iteration number for the K-means
method. This is because computing the S-dimensional sig-
natures of vertices for each graph relies on computing the
shortest path matrix, and requires time complexity O(n3).
Computing the N means for the S-dimensional signatures
of all graphs through the K-means method requires time
complexity O(N2nT ), since there are Nn S-dimensional
signature vectors and N means. Computing the kernel values
for all pairs of graphs over Smax families of S-dimensional
signatures requires time complexity O(N2Smaxn

2). Thus, the
whole time complexity is O(Nn3+N2Smaxn

2+N2nT ), our
kernel can be computed in polynomial time. Note that we use
the fastest K-means MATLAB implementation developed by
Deng Cai [22], and the default number of T is 100.

B. Advantages of the Vertex Clustering Kernel

The new vertex clustering kernel has following advantages,
that are not available to the mentioned state-of-the-art graph
kernels in Section I-A. First, unlike aligned subtree kernel [19]
that also identifies the vertex correspondences between each
pair of graphs, the proposed kernel K identifies the vertex cor-
respondences by evaluating whether the vertices are assigned
to the same cluster, i.e., we evaluate whether the vertices are
mostly closed to or aligned to the same corresponding centroid
points. Thus, K can guarantee the transitivity between pairs of
aligned vertices (i.e., for three vertices v, u and w, if v and u
are aligned, and u and w are aligned, then v and w are also
aligned), and thus are positive definite (pd). By contrast, the
aligned subtree kernel cannot guarantee the transitivity and the
positive definiteness properties. Second, unlike all mentioned
state-of-the-art graph kernels in Section I-A, that only capture
graph characteristics for each pair of graphs under comparisons
(i.e., these kernels ignore the information from other graphs),
the computation of the proposed kernel K for each pair of
graphs also incorporates the information from other graphs
under comparisons. This is because assigning each vertex into
a corresponding cluster relies on the minimization of the sum
of square distances between all vertices and the centroid points
of their clusters. This can be observed by Eq.(4). As a result, K
reflects richer graph characteristics than existing graph kernels.

IV. EXPERIMENTAL RESULTS

We test our kernel on standard computer vision datasets.

BAR31, BSPHERE31 and GEOD31: The SHREC 3D
Shape database consists of 15 classes and 20 individuals per
class, that is 300 shapes [23]. This is an usual benchmark in 3D
shape recognition and plays an important role for classification
problems. The original 3D shapes of the SHREC database can
be found in Fig.2, where each row corresponds to a class of
shapes. It is clear that some shapes from the same class are
quite different, the shapes in the SHREC database are hard for
classifications. From the SHREC 3D Shape database, three
graph datasets, namely BAR31, BSPHERE31 and GEOD31
datasets, are established through three mapping functions.
These functions are a) ERG barycenter: distance from the
center of mass/barycenter, b) ERG bsphere: distance from the
center of the sphere that circumscribes the object, and c) ERG
integral geodesic: the average of the geodesic distances to
the all other points. The number of maximum, minimum and
average vertices for the three datasets are a) 220, 41 and 95.42
(for BAR31), b) 227, 43 and 99.83 (for BSPHERE31), and c)
380, 29 and 57.42 (for GEOD31), respectively.

GatorBait: GatorBait has 100 shapes representing fishes from
30 different classes. The Delaunay graphs have been extracted
from their shape quantization (Canny algorithm followed by
contour decimation). Since the classes are associated to fish
genus and not to species, there is a high intraclass variability
in many cases. The graphs of the GatorBait dataset are shown
in Fig.3. There are 10 classes with one species, 11 with 1 to
3 individuals, 5 with 4 to 6 individuals and only 4 classes
with more than 6 species. Thus, the database, though having
only 100 samples, plays a challenging role in testing graph
classification. The number of maximum, minimum and average
vertices for the dataset are 545, 239 and 348.70.
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Fig. 2. Examples of the 3D shapes for the Reeb graphs.

Fig. 3. Examples of the graphs in GatorBait.

Shock: This dataset consists of 150 graphs from the Shock 2D
shape database [24]. Each graph is a skeletal representation of
the differential structure of the boundary of a shape. There are
10 graph classes, each containing 15 graphs. The number of
maximum, minimum and average vertices for the dataset are
33, 3 and 13.16.
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Fig. 4. Embedding and alignment evaluations for VCGK.

A. Vertex Embeddings and Alignments

In this subsection, we evaluate the performance of the
proposed vertex clustering graph kernel (VCGK) on vertex
embedding and alignment problems, through the challenging
GatorBait graphs. Moreover, we also compare the VCGK
kernel to the aligned subtree kernel (ASK) [19] that also
identifies vertex correspondences associated with vectorial
signatures of vertices. a) For the vertex embedding evaluation,
we select the first, fifth and eighth graph structures from the
GatorBait dataset, which is shown in Fig.3, as the testing
graphs. Based on Fig.3, the three graphs belong to 3 differ-
ent classes, respectively. For the three graphs, we compute
the S-dimensional signatures (for the VCGK kernel) and h-
layer entropic representations (for the ASK kernel) as the
vectorial representations of vertices. We perform the Principle
Component Analysis (PCA) [25] on the vertex representations
and embed them into a 3-dimensional principal space. We
visualize the embedding results of the vertices using the first
three principal components. The embedding results for the
VCGK and ASK kernels are shown in Fig.4-a and Fig.5-
a, respectively. b) For the vertex alignment problems, we
visualize the embedding result of vertices of a pair of graphs
through the PCA method for each of the VCGK and ASK
kernels. Moreover, we visualize the alignment results between
vertices for a pair of graphs using cyan lines, i.e., we connect
a pair of aligned vertices identified by the VCGK and ASK
kernels using the cyan lines. For the graph structures shown in
Fig.3, the alignment results identified by the proposed VCGK
kernel between the first and second graphs, the fifth and sixth
graphs, and the first and fifth graphs are shown in Fig.4-
b, Fig.4-c and Fig.4-d, respectively. The alignment results
identified by the ASK kernel between the first and second
graphs, the fifth and sixth graphs, and the first and fifth graphs
are shown in Fig.5-b, Fig.5-c and Fig.5-d, respectively. Note
that, based on Fig.3, the first and second graphs are both from
the first class of GatorBait, the fifth and sixth graphs are both
from the second class of GatorBait.
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Fig. 5. Embedding and alignment evaluations for ASK.

In terms of the vertex embedding results, Fig.4-a and Fig.5-
a indicate that the vertices from the same graph structure
tend to aggregate to the same cluster. This indicates that the
required S-dimensional signature for the VCGK kernel and
the h-layer entropic representation for the ASK kernel have a
good ability of distinguishing vertices of graphs of different
classes. On the other hand, comparing to the original shapes
of the graphs, the vertex clustering results for the VCGK
kernel is better distributed than those for the ASK kernel.
In other words, the vertex distributions for the VCGK kernel
are more like fishes. This indicates that the proposed VCGK
kernel can better preserve the vertex information residing on
the graph structures than the ASK kernel. In terms of the vertex
alignment results, Fig.4-b, Fig.4-c, and Fig.4-d indicate that
the number of aligned vertex pairs identified by the VCGK
kernel for graphs from the same class is much more than
that for the graphs from different classes. By contrast, Fig.5-
b, Fig.5-c, and Fig.5-d indicate that the number of aligned
vertex pairs identified by the ASK kernel are quite similar for
graphs from either the same class or the different classes. These
observations indicate that the proposed kernel VCGK has
better ability of distinguishing graphs from different classes
than the ASK kernel. Moreover, we observe that the VCGK
kernel can identify more pairs of vertices for graphs from the
same class than the ASK. This indicates that the proposed
VCGK kernel has better ability of enhancing the similarity
measure than the ASK kernel. Finally, we observe that the
aligned vertices identified by the VCGK kernel between graphs
of different classes are distributed in the small local region. By
contrast, such aligned vertices identified by the ASK kernel
are distributed over the global region. As a result, the VCGK
kernel can better express the differences between graphs over
global structures. This again indicates that the VCGK kernel
can better identify graphs of different classes.

B. Graph Classification

We evaluate the performance of the vertex clustering graph
kernel (VCGK) on graph classification problems. Furthermore,
we also compare our kernel with three state-of-the-art kernels,
including 1) the Weisfeiler-Lehman subtree kernel (WLSK)
[16], 2) the shortest path graph kernel (SPGK) [13], and
3) the aligned subtree kernel (ASK). Both the WLSK and
ASK kernels require a tree-index method for strengthening
the vertex label. In this paper, we set the highest dimen-
sion h for their tree-index methods (i.e., the height of the
subtrees identified by the tree-index methods) as 10. Since
the classification accuracies of the WLSK and ASK kernels
tend to be stable when the highest dimension h is greater
than 8. We compute the kernel matrix associated with each
kernel on each dataset. We perform 10-fold cross-validation
using the C-Support Vector Machine (C-SVM) Classification
to compute the classification accuracies, using LIBSVM [26].
We use nine samples for training and one for testing. All the C-
SVMs were performed along with their parameters optimized
on each dataset. We report the average classification accuracy
(± standard error) and the runtime for each kernel in Table I.
The runtime is measured under Matlab R2011a running on a
2.5GHz Intel 2-Core processor (i.e., i5-3210m).

In terms of classification accuracies, our kernel outperforms
all the alternative kernels, only the ASK kernel is a little higher
than our kernel on the BAR31 dataset. Especially, the classi-
fication accuracy of our VCGK kernel is much higher than
that of other kernels on the challenging GatorBait database.
Note that, as we have stated, the GatorBait dataset has only
100 samples, but is divided as 30 classes. Thus this dataset is
extremely hard for classification. These observations indicate
that the VCGK kernel has a good ability of distinguishing
graphs from different classes. The reasons for this effectiveness
are threefold. First, unlike the WLSK and SPGK kernels that
ignore correspondence information between substructures, the
VCGK kernel establishes reliable structural correspondences
between substructures and vertices, i.e., our kernel can identify
the structural correspondence information based visual back-
ground on computer vision databases. Second, compared to
the ASK kernel that also establishes correspondence infor-
mation, only our VCGK kernel can guarantee the transitivity
between pairs of aligned substructures/vertices. Third, unlike
all alternative kernels that only reflect characteristics for each
pair of graphs, our kernel encapsulates the information from
all graphs. i.e., our kernel can be seen as an instance of
transductive learning [27], where all graphs (including the
training and test sets) are used to compute the kernel matrix.
However, note that we do not observe the class labels of the
test graphs during the training. As a result, our kernel can
encapsulate richer graph characteristics than other kernels. In
terms of the runtime, our kernel can finish the computation in
a polynomial time, though it is not the fastest kernel.

V. CONCLUSIONS

In this paper, we have proposed a new graph kernel based
on vertex clustering. We theoretically show that this kernel not
only overcomes the shortcoming of ignoring correspondence
information between isomorphic substructures that arises in
most existing graph kernels, but also guarantees the transi-
tivity between the correspondence information. Experiments
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TABLE I. CLASSIFICATION ACCURACIES (IN %± STANDARD ERROR) AND THE RUNTIME OF COMPUTING KERNEL MATRICES.

Datasets VCGK WLSK SPGK ASK

BAR31 69.30 ± .52 58.53± .53 55.73± .44 73.10 ± .67

BSP31 63.56 ± .60 42.10± .68 48.20± .76 60.30 ± .44

GEOD31 48.93 ± .41 38.20± .68 38.40± .65 46.21 ± .69

GatorBait 18.60 ± .77 10.10± .61 9.00± .75 8.40± .83

Shock 51.00 ± .87 36.40± 1.0 37.88± .93 42.14 ± .73

Datasets VCGK WLSK SPGK ASK

BAR31 10′20” 30” 11” 8′40”

BSP31 11′32” 25” 14” 12′40”

GEOD31 7′5” 15” 11” 14′50”

GatorBait 5′29” 33” 2′25” 8′7”

Shock 3” 3” 1” 9”

demonstrate the effectiveness of our kernel.
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