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ABSTRACT

Understanding above-ground tree biomass carbon (AGC) and 
relationships to soil organic carbon (SOC) stocks across a landscape 
provide opportunities for better management of the carbon pools. 
This study determined relationships between on-farm AGC and 
SOC stocks along an altitudinal gradient on the slopes of Mount 
Kilimanjaro. Fifty plots (100 × 100 m) were established, whereby all 
trees ≥5 cm dbh, were recorded. Soil samples from top (0–20 cm) and 
subsoils (21–50 cm) were collected at the centre of the plots using 
four subplots. Tree inventory and soil analyses were performed and 
statistical tests were conducted to understand relationships between 
AGC and SOC stocks. Results indicated that stem density increased 
with altitude, however the upland and the midland did not differ 
significantly while the lowland differs with both the midland and 
the upland. A similar pattern was observed for basal area and above-
ground tree biomass (AGB), with no significant difference between 
the midland and upland whereas the lowland differed significantly 
from both the upland and the midland. SOC stocks varied significantly, 
being the largest in the upland, amounting to almost twice the size 
recorded in the midland or the lowland. SOC stocks indicated poor 
correlation (Pearson’s: r = 0.327, df = 47, p = 0.023) and poor interaction 
(Wald = 0.0008, df = 1, p = 0.977) with AGC. This study concludes that 
the relationship between AGC and SOC stocks was masked by other 
factors including soil types, precipitation and land management. The 
protocol used to test the relationships might also have contributed 
further to current observation. Overall, the lowland area, having low 
AGC and SOC stocks, requires management interventions aimed at 
increasing SOC stocks.

Introduction

The current trend of diminishing tropical forests and woodlands through deforestation and 

forest degradation (Gibbs et al. 2010; Green et al. 2013) is associated with declining stocks 

of soil organic carbon (SOC) (Lal 2006). SOC can be reduced by about 75% when tropical 

forests are converted to agriculture (Lal 2004); and as SOC stocks decrease, soil fertility 
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declines and land degradation can be accelerated. Such losses of SOC undermine the wider 

provision of ecosystem services and can have negative livelihood impacts. Elevation also 

influences SOC especially via changing ground cover, tillage and other management prac-

tices (Martin et al. 2010).

While tree cover has been decreasing within natural forests, there have been some 

increases in agricultural lands (Zomer et al. 2014). This follows efforts to diversify tree cover 

on farmland through domestication of indigenous tree species and other high value tree 

crops that can bring broader co-benefits of increased ecosystem services (Dawson et al. 

2013; Mpanda et al. 2014). Incorporating trees into agro-ecosystems can help mitigate the 

impacts of climate change, provide habitat for biodiversity (Nkem et al. 2007) and support 

crop production (Lal 2006) while increasing SOC. Changes in management practices can 

help reverse SOC losses, and interventions such as vegetation restoration can increase SOC 

by more than 20% within a decade (Wang et al. 2011). however, the link between tree bio-

mass and SOC is currently uncertain and quantifying the value of this regulatory ecosystem 

service has been a challenge (Gluck 2000; SCBD 2001).

Previous studies on the slopes of Mount Kilimanjaro have assessed the structure of the 

Chagga home gardens and information on the biodiversity associated with forest, agroforests 

and the land use changes (hemp 2005; Soini 2005). however, little is known about the dis-

tribution and relationships between on-farm tree biomass and SOC. Tree biomass itself is 

increasingly considered as an important ecosystem service under REDD+ (reducing emis-

sions from deforestation and forest degradation with additional role of conservation, sus-

tainable management of forests and enhancement of forest carbon stocks). REDD+ aims to 

enhance the terrestrial carbon stock to mitigate climate change by drawing down atmos-

pheric CO
2
. Whilst we do know that SOC represent a significant carbon store, further insights 

such as the study presented here contributes to a better understanding of SOC at local scale 

(Batjes 1996; Fonte et al. 2010).

This study attempted to assess tree biomass carbon and SOC stocks on the slopes of 

Mount Kilimanjaro. Specifically, it aimed at, (i) identifying variation in the tree biomass carbon 

in the agricultural landscape, and, (ii) identifying variation in the SOC stocks in the agricultural 

landscape. We hypothesized that an increase in tree biomass carbon on farm corresponds 

to an increase in SOC stocks.

Material and methods

Study site and design

This study was conducted on the southern slopes of Mount Kilimanjaro, in Kilimanjaro admin-

istrative region in northeastern Tanzania (Figure 1). Mount Kilimanjaro is a stratovolcano, 

with the highest free-standing solitary mountain rising above the surrounding relief by 

5000 m (Nonnotte et al. 2008). Rainfall is bimodal with longer rains from March to May and 

shorter rains in October to November. Kilimanjaro region’s population stands at 1,640,087 

and the average household size is 4.3 (URT 2013).

The landscape outside of the protected area on the slopes of Mount Kilimanjaro was 

divided into three broad land-use categories, namely the upland, midland and lowland 

(Table 1), that encompass differences in elevation (topography and slope), climate (precip-

itation and temperature), biophysical features (soils and vegetation) and land-use (URT 1998). 
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Three major patterns of tree distribution on farm were observed during the tree inventory; 

(i) boundary planting with a high number of trees of relatively low dbh (diameter at breast 

height), (ii) scattered trees of medium to large size, at variable densities and (iii) a combination 

Figure 1. Location of the study transect that extends from the sub-montane to lowland agricultural fields 
on the southern slopes of Mount Kilimanjaro, tanzania. source: Mathew et al. 2016.

Table 1. Characteristics of the three land-use zones on the slopes of Mount Kilimanjaro, tanzania.

Land-use zone Description

Upland elevation: 1438–1696 m a.s.l.
Precipitation: 1250–2000 mm per annum
temperature: 24 °C
topography: gentle slope (20–30°)
Major soils: weathered volcanic ash, humic nitisol
Characteristics: cultivated farms, Chagga homegardens, zero grazing, high density of coffee and 

banana
Midland elevation: 901–1337 m a.s.l.

Precipitation: 1000–1200 mm per annum
temperature: 26 °C
topography: gentle slope (20–30°)
Major soils: sodic volcanic ash, mainly in slopes, haplic Phaeozom
Characteristics: cultivated farms, transition of homegardens and maize belt, zero grazing

Lowland elevation: 680–834 m a.s.l.
Precipitation: 400–900 mm per annum
temperature: 33 °C
topography: Flat terrain (5–10°)
Major soils: sediments influenced by volcanic ash, eutric Fluvisol (alluvial with little profile 

development) 
Characteristics: cultivated farms, savannah plain, free grazing
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of (i) and (ii), i.e. boundary planting and scattered trees on farm. In the upland and midland 

zones, the Chagga homegarden was the common farming system, featured with multi-storey 

agroforests, where layers of closed tree canopy overlaps with understory layers of coffee 

and banana (Fernandes et al. 1984).

Methods

Assessing carbon stock from trees on farmland

A total of 50 (100 × 100 m) farm plots were sampled along a predetermined zigzag 25 km 

length study transect (Figure 1). Within each plot all trees (except for coffee shrubs and 

climbers) ≥5 cm diameter at breast height (dbh) were identified by a botanist and their dbh 

measured. One hundred trees ranging from 5 to 90.7 cm dbh were randomly sampled for 

height-dbh measurement for establishing the equation (expression (I)) used in estimating 

height of the rest of trees. For trees outside this range, it was assumed that their height could 

not be higher than 45 m which was the height of maximum range of 90.7 cm dbh. Only 

2.16% of all trees were later found to be larger than dbh of 90.7 cm.

 

where Ln = natural logarithm, ht = height (m), D = diameter at breast height (cm), R2 = coef-

ficient of determination and SE = standard error.

Above-ground tree biomass (AGB) was computed using allometric equation (expression 

(II)) developed by Chave et al. (2014), carbon content was computed as 50% of the dry tree 

biomass.

 

where AGB = above-ground biomass, ρ = wood specific gravity (g cm−3), D = diameter at 

breast height cm) and H = height (m).

Wood specific gravity of each species was determined from Global Wood Density Database 

(Chave et al. 2009; Zanne et al. 2009). Tree stocking parameters on per hectare basis for 

number of stems (N), basal area (G), AGB and above-ground tree biomass carbon (AGC) were 

computed.

Assessing SOC on farmland

Within each sample plot, four subplots (Figure 2) were established for soil sampling using 

inverted Y-shaped design adapted from the African Soil Information System protocol (UNEP 

2012). The layout of the four subplots ensured good representation of the soils in the centre 

of the sample plot and thus dissociate from external influence from boundaries.

In the plots where slope was >10%, a correction factor was applied using the following 

formula (expression (III)).

 

where L
s
 = slope distance, L = horizontal distance, S = slope angle in degrees.

Composite soil samples (litter was removed) from topsoil (0–20 cm) and subsoils (21–

50 cm) were collected from each of the four subplots, and separately mixed thoroughly. 

(I)LnHt = 0.553 + 0.6817 × Ln(D);
(

R
2
= 0.7741, SE = 0.037, n = 100

)

(II)AGB = 0.0673 ×
(

�D
2
H
)0.976

(III)L
s
= L∕ cos (S)



FORESTS, TREES AND LIvELIhOODS  259

About 500 g of the composite sample for each top and subsoils were packed in zip-lock bags 

and labelled.

Cumulative soil mass samples were collected at the centre of each plot (subplot 1) using 

an Edelman combination auger, at depths of 0–20 cm and 21–50 cm. A sampling plate was 

used as an auger guide to enable full recovery of the sample. Cumulative soil mass collected 

from top and subsoils were separately packed and labelled in zip-lock bags.

Soil samples (composite and cumulative separately) were later air dried at 40 °C, then 

weighed to the nearest 0.1 g using a calibrated top-pan balance. Samples were then sieved 

with 2 mm mesh size sieve and the course fragments (>2 mm) weighed. Cumulative sub-

samples were used for estimation of gravimetric water content and bulk density. Sub-samples 

were oven-dried at 105 °C for 48 h until a constant weight was obtained, and thereafter 

computation for the expressions (III) and (Iv) was effected.

 
(Iv)Gravimetric water content (%) = ((Air dried soil − Oven dried)∕Oven dried) × 100

Figure 2. Layout of the tree sampling plot and nested soil sampling sub-plots.
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where M
d
 = mass of dry soil sample, V = soil volume.

Composite subsamples were analysed in the soil laboratory to determine organic carbon 

stocks by the Walkley–Black method (Nelson & Sommers 1982).

SOC was calculated as shown in expression (vI);

 

where SOC = soil organic carbon stock (t Cha−1), C = soil organic carbon concentration deter-

mined in the laboratory (g kg−1), ρ = soil bulky density (g cm−3), D = soil depth of sampled 

soil layer (cm), frag = % volume of coarse fragments/100, 100 = is a conversion factor to 

t Cha−1.

Assessing the relationships between tree biomass carbon and SOC in the three land-

use zones

A normality test was conducted and indicated that tree stocking parameters and SOC dis-

tribution did not conform to normal tendency, hence a non-parametric Kruskal–Wallis (K–W) 

and Mann–Whitney–Wilcoxon (MWW) were used for significance tests. The null hypothesis 

tested if the distribution of the tree stocking parameters and SOC were the same with altitude 

and land use zones (e.g. hassani & Silva 2015). Pearson’s correlation was conducted to deter-

mine relationships between AGC and SOC in each land-use zone (two plots were treeless, 

hence were omitted in the comparison). The interaction between AGC tree carbon and SOC 

was conducted using Generalized Linear Model presented by Wald’s test using GenStat 14th 

Edition (Payne et al. 2009).

Results

A total of 1660 individual trees were recorded belonging to 69 species and 28 families. Out 

of recorded individual trees, 846 were exotics and 814 were belonging to indigenous species. 

The number of stems per hectare increased with altitude (Figure 3), however the upland 

and the midland did not differ significantly (MWW test: df = 1, p = 0.354), while the lowland 

differs with both the midland (p < 0.001) and the upland (p < 0.001). The same pattern was 

observed for basal area (Figure 3), and for above-ground tree biomass (AGB, Table 2), with 

no significant difference between midland and upland (MWW test: df = 1, p > 0.05 for basal 

area and p = 0.939 for AGB) whereas the lowland differed significantly from both the upland 

and the midland (p < 0.001 for both basal area and AGB).

Results show that SOC (Mgha−1) was highest in the upland, accounting to almost twice 

the levels of the midland or of the lowland areas (Table 2). Soil moisture (%) recorded a similar 

trend as SOC, while soil bulk density (g cm−3) tends to decrease from lowland to upland areas.

Subsoil has relatively higher values than topsoil for SOC stocks and gravimetric water 

content in the three land-use zones (Table 2). SOC stocks differences between the three 

land-use zones were statistically significant at p = 0.001 (the upland vs. midland), p < 0.001 

(the upland vs. lowland) and p = 0.007 (the midland vs. lowland).

The relationship between AGC and SOC had poor correlation (Pearson’s: r = 0.327, df = 47, 

p = 0.023) and low interaction (Wald = 0.0008, df = 1, p = 0.977) with elevation. At land-use 

(v)Bulk density
(

g∕cm3
)

= Md∕V

(vI)SOC = (C∕100) × � × D × (1 − frag∕100) × 100
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zone level, the relation between AGC and SOC was negative for the lowland and for the 

upland, but was positive for the midland (Figure 4). In each case however, the coefficient of 

determination was very low, confirming the low correlation between our two variables.

Discussion

This study observed distinct tree stocking levels associated with the three main land-use 

zones. Levels of SOC exhibited a strong pattern within land-use types although SOC and 

AGC stocks were poorly correlated. The lowland zone supported considerably lower tree 

stock densities than both the midland and the upland zones, while SOC was much higher 

in the upland zone than in both the midland and the lowland zones. Overall observed AGC 

Figure 3. Box and whisker’s plots representing the median values per plot of the number of stems and 
basal per hectare across the three land-uses.

Table 2. above-ground tree biomass carbon (aGC), soil organic carbon (soC), bulk density and gravi-
metric water content (gravimetric WC) in the three land-use zones on the southern slopes of Mount 
Kilimanjaro, tanzania (Mean ± se).

Parameters
Upland (1438–1696 m a.s.l) 

n = 12
Midland (901–1337 m a.s.l) 

n = 14
Lowland (680–834 m a.s.l.) 

n = 24

aGC (Mgha−1) 20.11 ± 5.23 22.17 ± 4.9 7.11 ± 2.59
soC (Mgha−1)
 0–20 cm depth 439.2 ± 62.83 257.57 ± 54.17 207.09 ± 34.47
 20–50 cm depth 474.96 ± 69.45 294.15 ± 63.48 233.8 ± 29.08
Bulk density (gcm−3)
 0−20 cm depth 0.6 ± 0.01 0.6 ± 0.06 0.7 ± 0.03
 20–50 cm depth 0.5 ± 0.03 0.6 ± 0.03 0.7 ± 0.03
Gravimetric WC (%)
 0−20 cm depth 15.06 ± 1.44 11.71 ± 0.98 10.28 ± 0.56
 20–50 cm depth 19.43 ± 2.08 13.7 ± 1.55 11.78 ± 0.7
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stocks were in the same range as noted by other studies conducted in the nearby areas 

(Ensslin et al. 2015). Reasons for the decline of basal area and tree biomass carbon in the 

upland remained unclear but is likely to result from a cooler climate that prompt farmers to 

destock trees to allow more space for crops.

Distribution of SOC

SOC stocks were found to strongly decline from the upland to midland, and to lightly decline 

from midland to lowland. These variations might be linked to the differences in soil types, 

environmental variables and management regimes (Table 1). SOC stocks trend relates to 

precipitation and soil moisture content, which increased upslope, and thus may have con-

tributed to the acceleration of decomposition of organic matter. Other studies have noted 

similar trends, where increased soil moisture corresponded to increase in SOC (e.g. Manns 

& Berg 2014; Klopfenstein et al. 2015). Furthermore, SOC stocks recorded in this study were 

within the range of other studies conducted close to the study area (e.g. Munishi & Shear 

2004; Mwakisunga 2012; Winowiecki et al. 2015).

Land management practices are different in each land-use zone, and probably contributed 

in influencing the distribution of SOC stocks. The build-up of SOC stocks in the upland and 

the midland may be reflective of the indigenous practices associated with the Chagga home-

garden systems. Fernandes et al. (1984) noted that the intensification in the Chagga home-

gardens, where tree intercropped with banana, coffee and zero grazing of livestock sustained 

the integrity of the system. The amount of litter-fall and other vegetation biomass from this 

system have higher contribution to SOC stocks accumulation especially in the upland, where 

there is higher concentration of coffee and banana than in the midland. Additionally, due 

Figure 4. scatter matrix of soC and tree carbon showing their relation across the land use zones.
notes: Middle regression line (midland zone plots) shows a positive trend; the upper regression line (upland zone plots) and 
the lower regression line (lowland zone plots) show negative trends.
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to shortage of fodder for livestock in the upland and midland, biomass transfer of crop 

residuals from the lowland upslope are a common practice (Mambo 2005). In the lowland, 

the change of savannah vegetation to cropland and free livestock grazing may have con-

tributed to low levels of SOC stocks (e.g. Oberholzer et al. 2014).

The low levels of SOC in the midland and lowland areas imply reduced crop productivity 

compared to the upland. Lal (2006) estimated that between 15 and 150 kgha−1yr−1 increased 

maize yield can be projected for every 0.5 Mgha−1yr−1 increase in SOC pool. Therefore, any 

efforts to increase SOC stocks in the lowland area could amount to improvement in crop 

production. Cropland management such as crop residual retention and crop rotation con-

tribute to improving SOC stocks (Raffa et al. 2015) so these strategies could be utilized in 

the lowlands to help enhance crop productivity.

Relationship between AGC and SOC stocks

vegetation is one among many factors influencing SOC stocks (Oueslati et al. 2015; Sun 

et al. 2015). Trends of tree vegetation and SOC stocks along land-uses in the study area 

indicated some commonalities and contrasting features. While the lowland had lower AGC 

and SOC stocks, the AGC stocks peaked in the midland and SOC stocks peaked in the upland. 

Our results seem to indicate that at farm level contribution of tree stocks in the build-up of 

SOC stocks might have been masked by other factors, both long and short term. Therefore, 

the observed poor correlation and interaction between AGC and SOC stocks can be a result 

of various contributing factors. Tree cover alone might not be the main contributor especially 

at larger scale such as farm and landscape. For instance, SOC stocks were found to be similar 

in adjacent sites containing primary and secondary forests (forest degraded by timber har-

vesting from late 1960s to early 1980s) in the nearby East Usambara Mountains in Tanzania. 

This was the case despite clear differences in tree biomass and vegetation cover. The obser-

vation means that differences in tree cover may not necessarily affect SOC stocks, if the cause 

of the differences did not involve soil disturbances (Kirsten et al. 2016). Similarly, Kinoshita 

et al. (2016) noted that SOC was influenced mainly by soil properties. The study further noted 

that topography and vegetation had very little impact. These observations may align with 

results of our study in which soil types (Table 1) probably contributed to the variability of 

SOC stocks, irrespective of the tree vegetation within the land-use zones.

Alternative explanation pertaining to poor correlation of carbon pools can be due to 

effect of long term and current land management practices on build-up of SOC stocks espe-

cially in the upland and midland. Zech et al. (2014) noted paleosols sequences with high 

SOC content of up to 3 m depth on the slopes of Mt. Kilimanjaro, which is irrespective of the 

tree cover. The accumulation of the SOC might be due to long-term processes. Therefore, 

observed SOC stocks in our study (Table 2) may also be a result of similar long-term land 

management practices.

Biomass transfer such as crop residuals, application of manure and other land manage-

ment practices used on farm at different levels and intensities may have contributed to either 

built-up or depletion of SOC stocks on farm. As there was no uniformity and clear patterns 

on land management due to fragmentation of smallholder farms in the study area, differ-

ences of SOC stocks was inevitable. Therefore, miscellaneous inputs of organic matter may 

have caused disruptions and mismatch in the correlation trends between tree carbon and 

SOC stocks.
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It is also apparent that the protocol used in collecting field data for trees and soils in the 

current study might have contributed to the observed low correlation and interaction 

between AGC and SOC stocks. For instance, Cardinael et al. (2015) noted that an alley crop-

ping agroforestry system involving hybrid walnuts accumulated more SOC than only agri-

cultural crops. This study took into consideration distance to trees and tree rows, and showed 

that carbon accumulation takes place under and at very short distance from the trees. In 

contrast, our study employed fixed subplots position for soil sampling while trees were in 

irregular patterns, meaning that our protocol may have been poorly suited to the estimation 

of SOC in such a mixture of trees and crops. Therefore, attempts by the present study to look 

at the bigger picture on the relation between AGC and SOC stocks accumulation at farm 

and landscape level revealed that, (i) contribution of tree biomass in SOC stocks was masked 

by other factors including soil types, precipitation and land management, and, (ii) the pro-

tocol used might have contributed to the observed lack of trend as it was ill adapted to 

capture the irregular patterns of trees on farm.

Conclusion

Understanding AGC and SOC stocks and their spatial relationship in a landscape is important 

as it provide opportunities for better management of the carbon pools. Tree stocking (basal 

area and carbon) varied along the altitudinal gradient, with peak in the midland. There was 

high variability for SOC stocks along the land-use zones with a decreasing trend, where 

Upland > Midland > Lowland. A poor relationship was observed between AGC and SOC 

stocks. This study suggested that the role of tree biomass in enhancing accumulation of SOC 

stocks was masked by other contributing factors such as soil types, climate (precipitation) 

and land management factors, and possibly by a SOC stocks estimation protocol not suited 

to the land-uses encountered in this study. Results from this study can be used to inform 

interventions aimed at improving tree stockings and building up of SOC stocks in areas with 

low levels. Overall, the lowland was destocked of the tree resources and had low SOC stocks 

and thus requires intervention.
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