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Abstract— Biofeedback assisted rehabilitation and 

intervention technologies have the potential to modify clinically 
relevant biomechanics. Gait retraining has been used to reduce 
the knee adduction moment, a surrogate of medial tibiofemoral 
joint loading often used in knee osteoarthritis research. In this 
study we present an electromyogram-driven 
neuromusculoskeletal model of the lower-limb to estimate, in 
real-time, the tibiofemoral joint loads. The model included 34 
musculotendon units spanning the hip, knee, and ankle joints. 
Full-body inverse kinematics, inverse dynamics, and 
musculotendon kinematics were solved in real-time from motion 
capture and force plate data to estimate the knee medial 
tibiofemoral contact force (MTFF). We analyzed 5 healthy 
subjects while they were walking on an instrumented treadmill 
with visual biofeedback of their MTFF. Each subject was asked 
to modify their gait in order to vary the magnitude of their 
MTFF. All subjects were able to increase their MTFF, whereas 
only 3 subjects could decrease it, and only after receiving verbal 
suggestions about possible gait modification strategies. Results 
indicate the important role of knee muscle activation patterns in 
modulating the MTFF. While this study focused on the knee, the 
technology can be extended to examine the musculoskeletal tissue 
loads at different sites of the human body. 
 

Index Terms— Gait modification, real-time biofeedback, 
electromyography, knee joint, contact force 
 

I. INTRODUCTION 
NAPPROPRIATE loading to the medial tibiofemoral joint 
during walking is believed to be a main mechanical 
contributor to development and progression of medial 

compartment knee osteoarthritis (OA) [1]. Medial tibiofemoral 
contact force (MTFF) is due to a combination of externally 
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applied knee loads [2, 3] and muscles forces [2, 4-6]. 
Increased external knee adduction moment (KAM), which is 
related to increased MTFF [7], has been associated with fast 
progression of medial knee OA [8], development of chronic 
knee pain [9], progression of articular tissue pathologies [10], 
and poor outcomes after high tibial osteotomy surgery [2, 11]. 
Conversely, muscle atrophy, known to reduce maximum 
muscle force production [12], is also associated with tissue-
induced damage in animal knee OA [13, 14] and fast 
progression to knee OA [15]. These results implicate impaired 
muscle action in the pathogenesis of knee OA— although it is 
not yet known how it may affect MTFF. 

There is an evolving understanding that MTFF 
underloading, in addition to overloading, may also be an 
important factor in the onset and progression of knee OA. 
Saxby and colleagues [16] have recently shown that at 2-year 
post anterior cruciate ligament reconstruction (ACLR) the 
MTFF are lower during walking, running, and side stepping 
compared to healthy controls. Additionally, healthy controls 
and ACLR without meniscal damage that have larger MTFF 
during walking have healthier cartilage and bone [17], while 
lower loading of MTFF at 2-year after ACLR may lead to 
greater risk of future onset of radiographic knee OA [18]. 
Currently it is unclear whether increasing or decreasing MTFF 
may offer therapeutic benefit; however, modifying gait to 
decrease MTFF has been proposed to slow the disease 
progression in those with established knee OA [19-23]. 

Different gait strategies have been proposed to reduce the 
MTFF [22, 24-27]. However, as the MTFF cannot be 
measured in-vivo in native knees, the KAM has commonly 
been used as a surrogate measure [7, 28]. The KAM during 
walking can be modified through kinematic changes [29], such 
as walking with toes pointed in [30, 31] or out [31, 32], 
increasing or decreasing side-to-side trunk sway [31, 33], 
using longer or shorter strides [31, 34], loading the inside or 
outside of the foot [34], changing the step width [35, 36], and 
changing the knee alignment [25, 37, 38]. Although gait 
retraining that uses biofeedback has been shown to 
successfully reduce the KAM [19, 21, 23, 38], is the KAM the 
correct biofeedback variable to manipulate MTFF? 

The KAM has been positively correlated with the shape of 
MTFF during walking [7, 39], but this is not always the case 
[3, 4, 37, 40]. Studies based on instrumented tibiofemoral 
prostheses [41] have shown that decreases in the KAM do not 
necessarily result in decreases to MTFF [37], and that only 
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small changes occurred in the MTFF for gait patterns designed 
to reduce KAM [42]. The KAM-MTFF relationship probably 
breaks down due to large muscular contributions to MTFF that 
are similar in magnitude to the contributions from external 
loads [4, 6]. Thus, it is essential to consider both external joint 
moments and muscle forces in order to estimate MTFF 
accurately [4, 6].  

OpenSim [43] is a popular musculoskeletal modelling 
software for the analysis of the human motion that can account 
for individual variations in anatomy and movement [44]. 
However, OpenSim estimates muscle forces via optimisation-
based algorithms (e.g. static and dynamic optimization) [45] 
that cannot account for alterations in muscle excitation 
patterns evident in individuals with knee pathologies during 
gait [46]. Alternatively to optimization-based methods, 
electromyogram (EMG)-driven neuromusculoskeletal (NMS) 
models [47] use experimentally measured muscle excitations 
to estimate muscle forces, and have been able to correctly 
predict MTFF and lateral knee contact force (LTFF) measured 
directly from instrumented knee implants [41, 48, 49].  

In this study, a calibrated EMG-informed NMS model, i.e. 
CEINMS [50], was used in combination with OpenSim to 
estimate MTFF in real-time. Subjects were asked to modify 
their gait pattern in order to modify the model estimate of 
MTFF which was provided as visual biofeedback. Because of 
the novel approach, it was unclear whether subjects using this 
technology would be able to modify their gait strategy in order 
to manipulate their MTFF on-demand or if they would require 
suggestions. Also, it was unclear how subjects would change 
their gait strategy to alter their MTFF and if a common 
preferred strategy would emerge across the different subjects.  

The aims of this paper were (1) developing a software based 
on both OpenSim and CEINMS to estimate knee contact 
forces in real-time using musculoskeletal modelling 
techniques, (2) comparing real-time and offline estimates, and 
(3) exploring the use of musculoskeletal tissue loading as 
visual biofeedback for gait retraining by evaluating the 
response of 5 different subjects in distinct experimental 
conditions. 

II. METHODS 

A. Experimental setup 
The Griffith University Human Research Ethics Committee 

approved the study and 5 healthy male participants (mass: 
76.4 ± 6.4 kg, height: 1.78 ± 0.04 m, age: 26.8 ± 2.9 years) 
gave their written informed consent prior to testing. A 12-
camera Vicon motion capture system (Oxford, UK) and an 
instrumented split-belt treadmill (Bertec Corporation, 
Columbus, OH, USA) were used to collect marker trajectories 
(200 Hz) from 44 retro-reflective markers [51] and ground 
reaction forces (GRF) (1000 Hz) in real-time. Surface EMGs 
(Zerowire, Milan, IT) were acquired (2000 Hz) from 16 site s 
on a single leg [52]: gluteus maximus, gluteus medius, tensor 
fasciae latae, rectus femoris, sartorius, vastus lateralis, vastus 
medialis, adductor group, gracilis, bicep femoris, 
semitendinosus, gastrocnemius medialis, gastrocnemius 
lateralis, soleus, tibialis anterioris, and peroneus group. The 
EMGs were mapped to 32 muscle tendon units (MTUs), as 
described in [53]. Muscle excitations were amplitude-
normalized using a set of maximum isometric voluntary 
contractions (MVC) performed on a dynamometer (Biodex 
Medical Systems, Shirley, NY, USA). MVC for muscles 
crossing knee and ankle were acquired with subjects in a 
seated position at approximately 80 deg hip flexion, 60 deg 
knee flexion, and 0 deg ankle plantarflexion; MVC trials for 
muscles crossing the hip were first acquired in standing 
position, with the instrumented leg at 30 deg hip abduction, 0 
deg for both knee flexion and ankle plantarflexion; and then in 
supine position at 60 deg hip flexion, 90 deg knee flexion and 
0 deg ankle plantarflexion. The real-time data processing was 
executed on a Dell Precision Workstation T7500, with 2 
Intel® Xeon® Processors X5660 (12 MB Cache, 2.80 GHz, 6 
cores per processor), 8 GB of RAM, and Linux (kernel 4.2.0-
18). 

B. Software description 
We developed software (C++) based on CEINMS [50] and 

OpenSim [43, 51] that uses a marker-based Vicon motion 
capture system, force plates, and EMG to estimate MTFF in 

Fig. 1  Schematic representation of the real-time system. Experimental data are synchronized in Vicon Nexus and streamed to the real-time pipeline. An 
anatomical model scaled to the subject is used to estimate joint angles and moments using real-time inverse kinematics and inverse dynamics, respectively. Joint 
angles and moments, as well as experimental EMG are used as input for CEINMS in order to estimate MTFF and LTFF. Data are then visualized in real-time on 
a custom graphic user interface (GUI). 
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real-time (Fig. 1). The MTFF was displayed on a screen to 
provide augmented visual sensory feedback to the subject 
walking on the treadmill. The software has five different 
components: (1) anatomical model, (2) real-time estimation of 
joint angles and moments [51], (3) real-time estimation of 
tibiofemoral contact forces, (4) musculotendon parameter 
calibration, and (5) biofeedback visualization. These are 
briefly described below. 

C. The anatomical model 
The generic gait2392 OpenSim model [43] was first 

modified to allow calculation of external adduction/abduction 
moments about lateral and medial condyle contact points [40] 
and then scaled to fit the anthropometry of each participant. 
The hip joint centers were calculated using regression 
equations [54], while knee and ankle joint centers were 
calculated from markers on the femoral epicondyles and ankle 
malleoli, respectively. Hip, knee, and ankle joint centers were 
then used to scale the anatomical model to the individual’s 
segments lengths using the OpenSim scale tool. The 
tibiofemoral intercondylar distances were scaled 
proportionally to femoral epicondyles distance [5, 6]. Further 
personalization of MTU insertion points and muscle paths was 
not performed. In the scaled anatomical model, tendon slack 
length and optimal fiber length of each MTU were estimated 
using the anthropometric scaling method developed by 
Modenese and colleagues [55].  

D. Real-time estimation of joint angles and moments 
Vicon Nexus software automatically reconstructed and 

labelled markers in real-time. Joint angles and moments were 
estimated through OpenSim’s inverse kinematics and inverse 
dynamics algorithms (Fig. 1). A state-space filter 
implementation of a 2nd order low-pass Butterworth filter [56], 
with a cut-off frequency of 15 Hz [51], was used to filter both 

the GRFs and joint angles. An extended description is 
provided in [51]. 

E. Real-time estimation of tibiofemoral contact forces 
The tibiofemoral contact forces were estimated via 

CEINMS [50] in EMG-driven mode [47, 53]. This required, as 
inputs, MTU kinematics and muscle excitations. 
Multidimensional cubic B-splines, predefined using the 
OpenSim muscle analysis tool, calculated the MTU 
kinematics as a function of the joint angles [57] in real-time. 
Muscle excitations were calculated in real-time from raw 
EMGs that were high-pass filtered (30Hz), full-wave-rectified, 
low-pass filtered (6Hz) using a state-space 2nd order 
Butterworth filter [47, 56], and amplitude-normalized using 
the maximal values extracted from MVC trials acquired 
offline previously. Medial (𝐹𝐹𝑀𝑀𝑀𝑀) and lateral (𝐹𝐹𝐿𝐿𝑀𝑀) 
tibiofemoral contact forces were calculated as follows [6], 
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Where 𝑛𝑛 represents the number of MTU crossing the knee 
joint, 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  the force exerted by the ith MTU, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

𝐿𝐿𝑀𝑀  and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
𝑀𝑀𝑀𝑀  

the moment arm of the ith MTU about the lateral and medial 
condyle contact points, respectively, 𝑑𝑑𝐼𝐼𝑀𝑀 the intercondylar 
distance, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿𝑀𝑀 /𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀  and 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒

𝐿𝐿𝑀𝑀 /𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑀𝑀  the net internal and 

external adduction/abduction moments about the 
lateral/medial condyle contact points, respectively. The n 
MTUs considered in the calculations were: bicep femoris long 
head, bicep femoris short head, semimembranosus, 
semitendinosus, gracilis, sartorius, rectus femoris, vastus 
medialis, vastus lateralis, vastus intermedius, gastrocnemius 
medialis, and gastrocnemius lateralis.  
F. Model calibration 

Prior to real-time capability, each participant’s MTU 
parameters were calibrated using CEINMS [50]. The 
CEINMS calibration is an offline procedure whereby the 
MTU parameters are optimized to minimize the summed 
square error between predicted and experimental joint 
moments whilst minimizing the peak magnitude of both 
MTFF and LTFF [48]. The calibration was performed using a 
set of 3 walking stance phases recorded and processed offline 
[58] before starting the real-time protocol. The list of 
calibrating parameters and boundary conditions is the same 
used in [50]. The total time for initial data collection, offline 
data processing and calibration was approximately 1.5 hours. 
After calibration, the system was ready to estimate the contact 
forces in real-time. 

G. Biofeedback visualization 
The real-time estimated MTFF was visualized as a 

continuous time series graph plotted on a screen placed in 
front of the subject (Fig. 2). Each new point was added to the 
rightmost part of the visualization window scrolling of 
previous data points to the left, and permitted visualization of 

Fig. 2  Visual feedback provided to the subject. The MTFF force is plotted in 
blue, with the current value at the right most point of the graph and a history 
of 2000 number data points remains. The moving average is plotted in red and 
superimposed on the graph. 
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the last 10 seconds of data (blue line in Fig. 2). The target was 
calculated as percentage of the moving average of the previous 
15 medial contact force peaks and was also plotted onto the 
graph (red line in Fig. 2). This feedback modality was chosen 
to guide and promote the subject to further decrease or 
increase their MTFF. 

H. Experimental protocol 
Participants were given a period of familiarization with the 

treadmill and asked to select their preferred walking speed, 
which was maintained for the remainder of the session. The 
real-time protocol consisted of five different walking 
conditions. First, “baseline walking” was recorded for 1 
minute and the mean of the peak values of MTFF was 
subsequently calculated. The subjects were then provided with 
the visual feedback of their MTFF and a target equal to 90% 
of the moving average of their MTFF peak. Subjects were then 
asked to decrease their MTFF driving the displayed value 
below the target (“decrease” condition). The subjects were 
then asked to try different strategies while trying to maintain a 
symmetric gait pattern; however in this instance specific 
instructions were not provided. The researchers verbally 
confirmed whether the strategy of the subjects was being 
effective or not when compared to their baseline level. When 
subjects found an effective gait strategy for reducing MTFF, 

they were asked to sustain it for 1 minute. Then a washout 
period of 5 minutes of normal walking was performed. 
Following washout, the same protocol was repeated asking the 
subjects to increase the medial force, using a target of 110% of 
MTFF peak displayed on screen (“increase” condition). After 
these self-guided gait trials, a washout period of 5 minutes of 
normal walking was performed, and then began a series of 
researcher-suggest gait pattern. The subjects were asked to 
decrease and then to increase their MTFF following the same 
protocol described above. 

However, this time specific verbal suggestions were 
provided, which we refer to as “decrease with suggestions” 
and “increase with suggestions” conditions. The following gait 
strategies, previously found to modify external knee loading 
[31, 34, 59], were presented to the subjects in both the 
“decrease with suggestions” and “increase with suggestions” 
conditions: walking with toes pointed in [30, 31] or out [31, 
32], increasing or decreasing side-to-side trunk sway [31, 33], 
using longer or shorter strides [31, 34], loading the inside or 
outside of the foot [34], changing the step width [35, 36], and 
changing the knee alignment [25, 37, 38], i.e. more medial or 
lateral knee positioning. Importantly, the suggested gait 
modifications were used as guidance to subject in order to find 
more effective gait modification strategies, but were not 
imposed.  

I. Data analysis 

a) Verification of real-time estimated contact forces 
The MTFF and LTFF estimated offline and in real-time 

during walking trials were compared in order to verify the 
real-time system. A cross-correlation analysis between offline 
and real-time contact forces was used to estimate the time 
delays introduced by the state-space filters used in the real-
time process. Then, real-time contact forces were time-shifted 
according to the delay, creating a time-aligned real-time data 
set. Offline, real-time, and time-aligned real-time contact 
forces were then divided into the repeated gait cycles. Root 
mean square errors (RMSE) were calculated between the 
offline and time-aligned real-time contact forces to reflect the 
error in time varying contact forces magnitude. For each gait 
cycle, real-time and offline MTFF and LTFF peak values were 
identified and a Bland-Altman analysis [60] was used to 
evaluate agreement. For each subject, representative curves 
were created using mean and standard deviation across time-
normalized gait cycles. Average computation times were 
estimated via software using the std::chrono::system_clock 
class available in C++11. 

Fig. 4  Bland-Altman plot representing the agreement between real-time and 
offline estimations of MTFF and LTFF peaks from 50 consecutive gait cycle 
for baseline trials from all subjects. 

Fig. 3  Comparison between tibiofemoral contact forces predicted offline 
(solid blue) and in real-time (dashed red) for 5 different subjects. For each 
subject, medial and lateral tibiofemoral contact forces from 50 consecutive 
gait cycles of baseline trials were normalized to body weight (BW), time 
normalized, and averaged to create representative mean curves. The blue and 
red points represent the maximum mean value of offline and real-time 
tibiofemoral contact forces, respectively. Shaded area represents ±1 standard 
deviation. 
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Fig. 5  Comparison among different subjects and different conditions across a variety of kinematic, kinetic, and muscle tendon force variables. For each of the final steady-state conditions, the MTFF peak was calculated for each 
gait cycle. The time points corresponding to the peaks of the MTFF were then used to analyse a variety of spatiotemporal, kinematic, kinetic, and muscular variables. The symbol ‘*’ represents significant differences (p<0.05÷4, i.e. 
with Bonferroni correction) from baseline. Error bars indicate 95% confidence intervals
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b) Evaluation of gait modification protocol 
For each subject, 1 minute of steady-state data from the five 

different protocol conditions were analyzed in order to 
evaluate (1) whether subjects were able to modify their MTFF 
from baseline with or without suggestions, and (2) how the 
change was achieved. For each gait cycle, the time frame 
corresponding to the MTFF peak was used to identify 12 
dependent variables that are affected by the verbal 
suggestions: LTFF, trunk sway, stride length, step width 
(calculated as lateral distance between calcaneus markers at 
subsequent heel strikes), hip internal rotation, knee flexion 
angle, knee flexion moment, knee adduction moment, the 
external load contribution to the medial force, the MTU 
contribution to the medial force, the mean activation of the 
MTUs surrounding the knee, and the directed co-contraction 
ratio (DCCR) calculated from knee muscle activations [6, 46]: 
 

DCCR = �1 − Actext Actflex⁄ , if Actflex >  Actext
Actflex Actext − 1⁄ ,      otherwise   (3) 

 
where Actext and Actflex are the mean activation of the knee 
extensors and flexors, respectively. For each variable, multiple 
paired t-tests were used to compare each condition to baseline. 
Finally, examples of how subjects searched for an optimal 
strategy in order to increase or decrease their MTFF were 
reported. 

III. RESULTS 
The estimation of the MTFF was similar in real-time and 

offline, with an average (mean ± standard deviation) time-
aligned RMSE of 0.125±0.069 BW and a time delay of 
37.7±1.1 ms (Table I and Fig. 3). Differences between real-
time and offline estimation of LTFF were larger, resulting in 
an average time-aligned RMSE of 0.192±0.60 BW and a time 
delay of 63.3±16.5 ms (Table I and Fig. 3). The Bland-Altman 
analysis (Fig. 4) reported a bias of 2.30% and agreement limits 
of -3.36 and 7.95% for the MTFF, and a bias of 16.13% and 
agreement limits of -1.32 and 33.59% for the LTFF.  

The total time delay introduced by the real-time 
computation was approximately 115 ms. This included 4 ms 
of data processing in Vicon Nexus, 57 ms to calculate contact 
forces (including inverse kinematics, inverse dynamics, MTU 
kinematics, filtering, and muscle force estimation), 37 ms of 
time delay caused by the filtering phase shift (Table I), and 17 
ms of refresh time of the 60 Hz monitor used to provide the 
visual biofeedback.  

No subjects were able to decrease their MTFF without 
suggestions, but three subjects significantly decreased it 
following suggestions (Table II). All of the subjects were able 
to increase the MTFF, where for subjects 1, 2, and 3, the 
greatest change occurred after being provided suggestions. 
Fig. 5 summarizes the results across subjects and conditions 

and Fig. 6 shows examples of strategy search to decrease and 
increase MTFF. 

IV. DISCUSSION 
We estimated MTFF and LTFF in real-time at 200 Hz, 

using a scaled OpenSim model and CEINMS in EMG-driven 
mode [50, 53]. EMG-driven NMS models have been 
previously used to estimate, in real-time, the MTU forces 
spanning knee and ankle [61, 62]. However, this is the first 
time they have been used to estimate, in real-time, articular 
loading from motion capture data. The real-time estimated 
MTFF was used as visual biofeedback to explore whether 
healthy individuals could modify their gait patterns to 
manipulate their MTFF. All subjects were able to increase 
their MTFF, whereas three subjects were able to decrease the 
MTFF after being provided with suggestions on how to 
change their gait patterns (Fig. 5 and Table II). 

Differences between real-time and offline tibiofemoral 
estimates were limited, although larger errors were present in 
the real-time LTFF when compared to offline estimation 
(Table I and Fig. 3). Errors were caused by the combined 
effect of signal distortions associated with the real-time 
filtering of force plates, EMG, and kinematics data [51, 63]. 
Also, muscle forces contribute more to LTFF than MTFF [6], 
thus explaining larger errors (Table I and Fig. 3) and the inter-
subject variability evident in the Bland-Altman analysis (Fig. 
4). 

TABLE I 
  Medial tibiofemoral contact force 

  

Time 
delay 
(ms) 

RMSE (BW) Time-adjusted 
RMSE (BW) 

Peak absolute 
error (BW) 

      SD   SD   SD 
Subject 1 36.40 0.195 0.016 0.055 0.006 0.029 0.022 
Subject 2 37.70 0.259 0.101 0.137 0.112 0.067 0.045 
Subject 3 37.20 0.244 0.028 0.116 0.023 0.076 0.042 
Subject 4 37.60 0.200 0.015 0.087 0.010 0.029 0.023 
Subject 5 39.60 0.225 0.023 0.117 0.019 0.041 0.032 
Average 37.70 0.226 0.056 0.125 0.069 0.049 0.040 
                
 

Lateral tibiofemoral contact force 

 

Time 
delay 
(ms) 

RMSE (BW) Time-adjusted 
RMSE (BW) 

Peak absolute 
error (BW) 

 
    SD   SD   SD 

Subject 1 63.10 0.296 0.010 0.199 0.009 0.307 0.057 
Subject 2 44.30 0.172 0.096 0.125 0.098 0.092 0.054 
Subject 3 70.00 0.248 0.018 0.168 0.015 0.105 0.042 
Subject 4 48.70 0.211 0.017 0.167 0.017 0.209 0.073 
Subject 5 90.40 0.360 0.022 0.239 0.025 0.191 0.088 
Average 63.30 0.258 0.081 0.192 0.600 0.178 0.101 

Errors between real-time and offline, and time-adjusted real-time and offline 
predictions of MTFF and LTFF from 50 consecutive gait cycles for each 
subject. For each subject, time delays were calculated from a cross-
correlation analysis performed on the entire data to avoid errors introduced 
by the uncertainties in the identification of different gait cycles. RMSE = 
Root Mean Square Error, BW = body weight, SD = standard deviation 
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As measuring knee contact forces in-vivo is challenging, 
direct validation of real-time estimated MTFF on healthy 
subjects using direct experimental measures was not 
performed. Offline estimation of MTFF using CEINMS was 
previously validated in [48] using data from instrumented 
knee implants [41]. Despite the differences between 
instrumented knee implants and healthy knees, CEINMS 
accounts for personalized excitation patterns and the OpenSim 
anatomical model can be adjusted to include variations in knee 
geometry and alignment [44, 48]. Thus, we considered 
CEINMS estimations of internal forces to be valid also on 
healthy subjects, and the offline CEINMS estimates of MTFF 
were used as the criteria for real-time verification in this study 
(Table I, Fig. 3, and Fig. 4). Some subjects presented values of 
MTFF that were higher in the first peak than second peak for 
their baseline gait (Fig. 3). However, variability in MTFF 
across subjects has been shown using instrumented knee 
implants [39], so it is not surprising to observe such variability 
in healthy individuals as well. 

It could be argued that multiple gait strategy could be first 
tested in laboratory and then analyzed offline to identify the 
best strategy to manipulate MTFF. While this is possible, 
subjects may not be able to replicate novel gait patterns across 
sessions, or may find a combination of strategies more 
successful than a single strategy or more suited to their 
personal walking style. Also, while our study focused only on 
increasing and decreasing MTFF, specific MTFF values could 
be used as biofeedback target, which could be extremely 
difficult, or impossible, to perform offline.  

The association between action and biofeedback improves 
as the biofeedback delay decreases [64]. Subjects were able to 
visualize the MTFF biofeedback as a continuous time series 
graph with a total delay of 115 ms from the data measurement. 
While the time delay of our system may not be optimal (i.e. 
less than 70 ms [64]), it was considered an improvement from 
visualizing the MTFF peak only, which would require to 

complete the current gait cycle before visualizing the new 
value [34], thus introducing a larger delay.  

While previous gait retraining studies have used kinematic 
[23, 38, 65] and kinetic [21, 23] variables as biofeedback, we 
used the MTFF. The MTFF arises due to the complex changes 
in and interactions between whole-body kinematics, kinetics, 
and muscle coordination. No subject achieved a MTFF 
reduction when provided with only verbal and visual 
biofeedback, and the three subjects that did reduce their 
walking MTFF only did so when suggestions were given on 
gait modification strategies. Studies on individuals with 
instrumented implants also showed that alternative gait 
patterns did not lead to statistical significant reductions of 
MTFF [42], or that magnitude reductions were present in the 
second MTFF peak only [24, 37]. Interestingly, in the 
“decrease with suggestion” condition, subjects 1 and 5 were 
unable to decrease their MTFF lower than baseline (Table II 

TABLE II 

 
  Percentage variation of peak MTFF  from baseline 

  
Decrease  

Decrease with 
suggestions  Increase  

Increase with 
suggestions 

        ±CI       ±CI       ±CI       ±CI 
Subject 1 

 
2.31 

 
1.72 

 
3.88† 

 
2.05 

 
4.85 

 
2.54 

 
20.79 

 
2.83 

Subject 2 
 

-3.08 
 
2.89 

 
-9.78 

 
2.01 

 
8.59 

 
2.42 

 
54.26 

 
13.55 

Subject 3 
 

-0.91 
 
2.88 

 
-26.77 

 
2.68 

 
6.93 

 
1.76 

 
18.70 

 
2.36 

Subject 4 
 

0.70 
 
1.66 

 
-3.15 

 
1.68 

 
136.05 

 
16.32 

 
31.61 

 
4.52 

Subject 5   -0.46 
 
2.31 

 
25.41† 

 
3.50 

 
55.00 

 
6.61 

 
13.65 

 
1.49 

             

 
 
       Percentage variation of peak LTFF  from baseline 

  
Decrease  

Decrease with 
suggestions  Increase  

Increase with 
suggestions 

        ±CI       ±CI       ±CI       ±CI 
Subject 1 

 
0.26 

 
1.86 

 
21.88 

 
2.42 

 
-9.88 

 
2.30 

 
16.53 

 
2.48 

Subject 2 
 

22.78 
 
10.09 

 
28.56 

 
7.12 

 
28.97 

 
7.12 

 
45.73 

 
14.25 

Subject 3 
 

15.45 
 

2.61 
 

13.55 
 
5.72 

 
-34.27 

 
2.45 

 
-28.29 

 
1.97 

Subject 4 
 

-27.71 
 

9.44 
 

-1.01 
 
9.10 

 
925.27 

 
103.70 

 
12.22 

 
11.66 

Subject 5   43.39   10.31   -1.37   4.08   -34.40   18.39   -13.65   3.24 
Percentage variation of MTFF and LTFF across subjects and conditions. For 
each of the final steady-state conditions, the MTFF peak was calculated for 
each gait cycle. The time points corresponding to the peaks of the MTFF were 
then used to analyse LTFF. Bold font represents represents significant 
differences (p<0.05÷4, i.e. with Bonferroni correction) from baseline, † symbol 
represents significant differences for variation of MTFF opposite to the desired 
condition. 

Fig. 6  A representative example of a strategy search to (a.) decrease MTFF 
(Subject 2, “decrease with suggestions” condition), and (b.) increase MTFF 
(Subject 4, “increase” condition). . For each MTFF peak percentage variations 
from baseline were plotted as bar charts. High values for changes in DCCR  
(b.) were caused by baseline values close to zero. The red shaded area 
represents ±1 standard deviation of MTFF peaks from 50 consecutive gait 
cycle of baseline trials 
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and Fig. 5) and adopted altered gait that had the opposite 
effect, resulting in increased MTFF (Table II and Fig. 5). This 
may be a reflection of the study design and the subjects may 
have felt necessary to follow some of the provided suggestions 
even if they resulted in increased MTFF. Given the complex 
nature of the biofeedback, it is also plausible that subjects 
were unable to associate their action to the visual biofeedback. 
However, all subjects increased their MTFF, even without 
suggestions, indicating that a correct association between 
action and visual biofeedback was present. The inability of the 
subjects to reduce the MTFF without suggestions could be 
related to the visual biofeedback target magnitude, which was 
calculated from the peak of the MTFF of 15 previous gait 
cycles. Future studies investigating MTFF biofeedback should 
also consider evaluating what type of visual biofeedback (e.g. 
continuous time series, peaks, bars) works best, similarly to 
what has been done with KAM biofeedback [23, 29]. Finally, 
learning effects of the decrease strategy in the increase 
conditions cannot be excluded, as conditions were not 
randomized.  

Gait strategies to modify the MTFF differed across subjects 
(Fig. 5). Previous gait retraining studies identified increased 
step width, medial knee thrust, increased hip internal rotation, 
and trunk sway as common strategies to decrease KAM [22, 
66], even though large variations among subjects were 
reported [26, 27]. However, our model included joint 
kinematics, kinetics (e.g. KAM), and EMG-based MTU forces 
when estimating the MTFF. Since muscle activation patterns 
differ across tasks [67] and individuals even when the joint 
kinematics and kinetics are the same [68, 69], MTFF 
modulation strategies were expected to be different between 
different individuals. When using a large number of subjects, 
common kinematic patterns related to MTFF variations will 
likely emerge, but large variations would still be expected in 
the final strategies that individuals adopt.  

A combination of kinematic, kinetic, and muscle activation 
changes were used by the subjects to manipulate their MTFF 
(Fig. 5). In the “decrease with suggestion” condition, subject 2 
increased trunk sway and decreased hip internal rotation as 
their effective MTFF reduction strategy (Fig. 5 and Fig. 6). 
Interestingly, in the “increase” condition, subject 2 increased 
their MTFF (Fig. 5) by increasing their total muscle co-
contraction, but maintained consistent KAM and knee flexion 
moment. Conversely, subject 4 used a different gait strategy to 
successfully increase MTFF by combining changes in stride 
length, hip internal rotation, knee flexion angle, trunk sway, 
and muscle activations and co-contraction (Fig. 5 and Fig. 6). 
Interestingly, subject 4 increased their MTFF by substantially 
increasing their total muscle activation, but reduced external 
loading with reduced KAM and knee flexion moment. 
Importantly, the use of the EMG-driven neural control 
solution in our NMS model was essential to identify changes 
in muscle forces due to variation in activation patterns and co-
contraction, which static optimization based methods cannot 
correctly predict [70]. 

In this preliminary analysis, a reduction of MTFF did not 
always result in an increase of LTFF or vice-versa (Table II). 
However, LTFF results should be interpreted cautiously, as 
larger limits of agreement and bias are present in the LTFF 
estimates when compared to MTFF (Fig. 4). Also, variation in 

hip and ankle contact forces should be analyzed to better 
understand how variation in MTFF could affect other joints 
[71]. 

While this study aimed to evaluate whether the MTFF could 
be used for biofeedback, we recognize that subjects may 
struggle to adopt different kinematic patterns during gait, and 
that verbal suggestions may be essential to achieve MTFF 
reductions. Subjects were free to adopt any symmetrical gait 
pattern, but, as also observed by van den Noort and colleagues 
[23], this could result in extreme kinematics changes that are 
unsuitable for daily living activities. Furthermore, subjects 
were not allowed to walk with their new gait for a long period 
of time; thus, if they adopted a kinematic change, it is unlikely 
that they were walking with the most efficient coordination 
strategy [72]. Also, while multiple optimal solutions to 
decrease or increase MTFF may exist, subjects may have only 
explored a limited portion of the solution space. Computer 
simulations [25] and/or data-driven approaches [20] to suggest 
minimal gait kinematic changes could mitigate extreme gait 
patterns and address the limited time subject have to explore 
potential solutions. 

This study has limitations that should be considered. 
Although scaled to the subjects’ dimensions and mass, the 
anatomical model was based on a generic template. This 
potentially produces less accurate estimates compared to 
subject-specific models [48]. Also, the inter-condyle distance 
in the knee model was scaled proportionally to the femoral 
epicondyles, possibly resulting in MTFF magnitude errors as 
the contact model is sensitive to the contact geometry [44, 49]. 
Further studies should include subject specific knee alignment 
[44], geometry [48], and kinematics [73] to improve the 
estimation of MTFF. 

Prior using CEINMS in real-time, it was necessary to scale 
the anatomical model and calibrate the MTU parameters. 
These operations are time consuming, but they were 
performed within the same session to avoid marker and EMG 
electrode repositioning errors. To reduce the time burden on 
the subjects, we limited the CEINMS calibration time to less 
than 1 hour using the stance phase, rather than the full gait 
cycle. This potentially resulted in sub-optimal MTU 
parameters, although due to the complex solution space of the 
NMS system it is not at all clear that more calibration time 
will necessarily improve MTU parameter estimates. Future 
improvements will focus on the development of faster 
calibration routines able to operate “in the background” to 
automatically calibrate and updated MTU parameters during 
the real-time execution. Another limitation regards the use of 
the split-belt treadmill. The treadmill forced the subjects to 
maintain a minimum step width to avoid treading on the 
junction between the moving belts. Also, while the subjects 
were asked to maintain a symmetric gait, a measure of that 
symmetry was not provided as biofeedback. Thus, it is not 
possible to exclude compensatory changes in the contralateral 
limb, or in other joints. However, these should be considered 
in future clinical applications of this technology. Finally, 
while we acknowledge the listed limitations, we also stress the 
exploratory nature of this study and its main goal to assess 
whether people could use the MTFF as biofeedback to modify 
their gait. 
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V. CONCLUSIONS 
This study presented the real-time estimation of MTFF and 

its use as a visual biofeedback variable for gait modification. 
The MTFF was estimated from joint angles and moments 
calculated through real-time inverse kinematics and inverse 
dynamics analyses, respectively, that were used within the 
CEINMS framework in EMG-driven mode [47, 50, 53]. The 
current study is not meant to be an extensive exploration of 
possible gait modification strategies, and further investigations 
into the use of MTFF for gait retraining involving a larger 
number of subjects is required before reaching general 
conclusions. Despite the modest sample size, these results 
show the importance of personalized NMS models that 
account for variations in movement, external joint loading, 
and muscle activation patterns across different individuals. 
Accounting for this variability is of particular importance 
when studying individuals with altered activation patterns [46, 
74], joint pathology [75] or who have received specialized 
training [76]. Finally, the present research focused on the knee 
joint, yet the computational system is fully generic and could 
be applied to other musculoskeletal structures. While some 
limitations need to be addressed before translating this 
technology to clinical practice, merging real-time estimation 
of forces inside the human body with subject-specific 
anatomical models [77] can provide clinicians with accurate 
and relevant estimates of musculoskeletal loading, and has the 
potential to revolutionize the current use of post-hoc gait 
analysis for rehabilitation and training. 
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