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Role of entanglement in calibrating optical quantum gyroscopes
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We consider the calibration of an optical quantum gyroscope by modeling two Sagnac interferometers,
mounted approximately at right angles to each other. Reliable operation requires that we know the angle between
the interferometers with high precision, and we show that a procedure akin to multiposition testing in inertial
navigation systems can be generalized to the case of quantum interferometry. We find that while entanglement is
a key resource within an individual Sagnac interferometer, its presence between the interferometers is a far more
complicated story. The optimum level of entanglement depends strongly on the sought parameter values, and
small but significant improvements may be gained from choosing states with the optimal amount of entanglement
between the interferometers.
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I. INTRODUCTION

Quantum metrology and quantum parameter estimation
offer great potential improvements in precision measurement.
Recent experiments have demonstrated quantum improve-
ments in measuring protein concentration [1], tracking lipid
granules in yeast cells [2], and searching for gravitational
waves [3]. In optical systems, the standard way to frame
problems in quantum metrology is as a measurement of the
phase of an optical signal. The aim is to improve the precision
of such measurements from the classical shot noise limit
(SNL) to the quantum mechanical Heisenberg limit [4]. It
has been recognized that any practical implementation of
quantum metrology requires methods to deal with effects due
to environmental noise and dissipation [5]. Quantum error
correction has been proposed to combat the effect of noise
[6–8], and loss-tolerant metrology protocols have been de-
signed and implemented to address some of the negative effects
of dissipation [9–12]. It has been shown that the measurement
of d phases in an interferometer can obtain an improvement of
a factor O(d) in the precision when multimode entanglement
is used [13]. This behavior persists in the presence of photon
loss [14], even though multimode entanglement is highly
susceptible to such processes [15]. When the loss parameters
are also estimated, there is a trade-off between the attainable
precision of the phase estimation and the estimation of these
parameters [16]. However, loss and noise are not the only
causes for imperfect metrology. The accuracy of a composite
sensor system is only partially determined by the precision of
the individual measurements. Other sources of imperfection
can include badly characterized responses to nonstandard
stimuli, or couplings between the parameters of interest. The
performance of any larger scale system, i.e., one containing a
number of individual sensors, will be limited by the presence
of such nuisance parameters, but this aspect of quantum
metrology has been somewhat overlooked.

In this paper, we address the problem of nuisance param-
eters arising from unwanted couplings between sensors in
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practical quantum parameter estimation. Such couplings affect
the measurement precision—defined by the mean square error
(MSE)—and must also be estimated, even if we are ultimately
not interested in their numerical value [17]. For a single pa-
rameter, the quantum Cramér-Rao bound (QCRB) puts a lower
limit on the MSE, determined by the inverse of the quantum
Fisher information (QFI) [18,19]. Multiple parameters lead
to a QFI matrix, the inverse of which provides lower bounds
for the MSE covariance matrix [20,21]. Nuisance parameters
are part of this multiparameter estimation problem. While
the QCRB for a single parameter can generally be attained,
this is not always true of the QCRB for multiple parameters
[22,23]. Where multiple parameters are being estimated, it
matters whether the generators of translation of the parameters
commute or not, with implications for the optimal strategies
of the parameter estimation procedures [24–29]. Even though
multimode entanglement can be used to improve the estimation
of multiple phase parameters beyond the classical SNL [13],
this is not always the case. For the example considered in this
paper, we show that the optimum entanglement is a function
of the nuisance parameters being estimated and that—for
a range of parameter values with practical relevance—the
presence of entanglement can be detrimental to the estimation
process.

We consider a simplified optical gyroscope configuration
based on two Sagnac interferometers, shown in Fig. 1, in which
the two (nominally) orthogonal interferometers are misaligned
by a small angle θ . We find that in such circumstances en-
tanglement can hinder the calibration of the misalignment. In
fact, we will show that entanglement (or classical correlations)
in the quantum state shared by the two interferometers can
limit the precision of the estimation process for θ , while
entanglement can assist in the determination of the phases
of interest, ϕy and ϕz. These results are valid for a wide range
of physically relevant parameter values, and we indicate how
the calibration process can be generalized to a set of three
Sagnac interferometers measuring arbitrary three-dimensional
rotation rates.

The misalignment of gyroscopic sensors is a well-known
problem in the construction of inertial navigation systems
[30,31]. Fiber-optical Sagnac interferometers are often used
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FIG. 1. Two nearly orthogonal (coupled) Sagnac interferometers
that are misaligned by an angle θ . The entire system rotates
with angular velocity ω, and the resulting phase shifts ϕy and
ϕz in the interferometers can be used to estimate ω. For clarity,
the third interferometers measuring ϕx and the photodetectors are
omitted.

in modern “strapdown” inertial navigation systems (i.e., fixed
sensors within the body of the navigation system) [32].
In such systems, three fiber-optical gyroscopes and three
accelerometers are mounted in the inertial measurement unit of
the navigation system. The gyroscopes provide measurements
of the rotation rates about their axes, where the axes are
normally designed to form an orthogonal triad. Integrating the
rotation rates provides estimates of the angles of rotation of the
system, relative to a set of reference axes. The angles are used
to determine the system’s orientation, but they are also used
to resolve the measured accelerations into the reference axes
to determine the system’s translational motion (i.e., velocity
and position). As a result, the accuracy of the gyroscopic
sensors is often a limiting factor in the overall performance
of an inertial navigation system. The gyroscopes will have
misalignment errors due to mechanical tolerances in their
construction and systematic errors in the measurement devices,
both of which limit the accuracy of the sensors. Calibrating
these errors, and correcting for them in software, is one way
to improve the accuracy of the inertial navigation system,
and this has become standard practice in many applications
[30,31]. After production, an inertial measurement unit will
undergo a “multiposition” test. It is rotated through a set of
known rotations, using a very accurate reference system, to
obtain a static measurement value and then subjecting the
unit to a known rotation rate after each rotation—normally,
at least six different rotations or orientations are used to
calibrate nonorthogonality within the triads of sensors, static
bias measurement errors in each sensor, and scaling errors
in the measurement of the known rotation rates [30,31]. In
this paper, we are primarily interested in the example where
there is coupling between two nonorthogonal gyroscopes,
measuring rotation rates about the y and z axes, so we
will consider the simplest of these calibration processes,
the measurement of a fixed (but otherwise unknown) rota-
tion rate, followed by another measurement after a rotation
by π/2 about the x axis—although we will also indicate
how this may be extended to deal with a triad of three
gyroscopes.

II. COUPLED SAGNAC INTERFEROMETERS

The Sagnac interferometer [33] can be described quantum
mechanically in a very similar way to the Mach-Zehnder
interferometer, but instead of two spatially different paths in
the latter, the Sagnac interferometer has a single loop with two
counterpropagating modes, a and b. The phase shift induced
by a rotation of the interferometer can be written as a unitary
transformation

U (t) = exp[−iω · e(n̂a − n̂b)t], (1)

where ω is a normalized rotation rate, e is the normal
vector to the plane of the interferometer, and n̂a and n̂b

are the number operators in modes a and b. (The Sagnac
phase shift is dependent on a number of device-specific
parameters—including operating wavelength, path length, and
enclosed area [32]—and it is proportional to the angular
velocity vector applied to the interferometer, so we will use
a normalized rotation rate to remove the explicit dependence
on these parameters and to simplify the presentation of the
results below.) For simplicity, we assume that the Sagnac
interferometer lies entirely in the xy plane (e = êz), and we
define ϕj ≡ ωj t and n̂ ≡ n̂a − n̂b. Then we can write the
transformation in Eq. (1) as U (ϕz) = exp[−iϕzn̂]. In the usual
notation where U = exp(−iH t/�), the Hamiltonian becomes
H = �ωzn̂ with t the interaction time (assumed to be known
with arbitrary precision), and we will now set � = 1. Clearly,
measurements of the phase ϕz can be used to determine the
rotation rate ωz applied to the gyroscope. We can construct
a second Sagnac interferometer in the xz plane (e = êy) to
determine the rotation rate ωy , and a third can be added to
determine ωx . The use of three such gyroscopes allows a
general rotation rate about an arbitrary axis to be determined
[34]. We concentrate on the case with two interferometers for
clarity, but the generalization to three interferometers will also
be discussed below.

In any practical construction, the two Sagnac interfer-
ometers will not be perfectly perpendicular (and when the
interferometer is constructed from optical fibers it may not lie
perfectly in a plane). Let n̂y be the number difference operator
for the counterpropagating modes of the interferometer in the
xz plane, and n̂z the equivalent operator for the interferometer
in the xy plane. Furthermore, let θ be the angle with which the
ϕz interferometer is misaligned, shown in Fig. 1:

ê′
z = cos θ êz + sin θ êy . (2)

The transformation of the optical state inside the interferome-
ters then becomes

U (ϕ) = exp[−i(ϕyn̂y + cos θ ϕzn̂z + sin θ ϕyn̂z)], (3)

leading to a Hamiltonian for the system

H = ωyn̂y + cos θ ωzn̂z + sin θ ωyn̂z. (4)

There is now a coupling between the two interferometers
given by the term sin θ ωyn̂z. As a consequence, we have
three unknown parameters, ϕy , ϕz, and θ , but we measure
only two observables, n̂y and n̂z. The problem is therefore
underdetermined, and we cannot extract the true values of
ϕy,ϕz without an unknown bias.
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FIG. 2. The coordinate system and the normal vectors to the
Sagnac interferometers. Gyroscopes 1© and 2© take one set of
measurements, and after a rotation of π/2 + δ, gyroscopes 3© and
4© take another set of measurements. Gyroscope 1© rotates to 3©, and
2© rotates to 4©.

To remedy this, we may rotate the system of gyroscopes by
π/2, while keeping the applied rotation rate fixed with respect
to an external reference system. This allows us to measure
four different observables (two for each orientation), given
our three unknown parameters. Assuming that the system is
rigid, θ remains unchanged. However, we do need to introduce
a new nuisance parameter δ that encodes imperfections in the
π/2 rotation. This leaves us with four parameters and four
observables. We will show in Sec. III that this leads to a linearly
independent set of four estimators, but first we establish the
coordinate system local to our gyroscopes, shown in Fig. 2.
In the original position of Fig. 1, the y rotation 2© is matched
to the local y axis by definition, while the z rotation 1© is
misaligned according to Eq. (2). After a rotation of π/2 + δ

about the sensor x axis, gyroscope 3© is now aligned along the
normal ê′

y with

ê′
y = cos(θ + δ)êy − sin(θ + δ)êz, (5)

and gyroscope 4© is aligned along the normal ê′′
z with

ê′′
z = − cos δêz − sin δêy . (6)

The measured phases are decomposed in the same way as the
normal vectors (ϕj ↔ êj ). In the ideal case where θ = δ = 0
we have ϕy = ϕ′

y , and ϕz = ϕ′
z = −ϕ′′

z .
Let the joint state in the two nearly perpendicular gy-

roscopes be denoted by ρij , where i and j indicate the
gyroscopes 1©– 4© in Fig. 2. The two gyroscopic measurements
are equivalent to a single measurement with four gyroscopes
simultaneously, with a joint state ρ ≡ ρ12 ⊗ ρ34. In general,
the optimal state ρ12 for 1© and 2© will not be the same as the
optimal state ρ34 for 3© and 4©, since the evolution U12 of the
gyroscopes 1© and 2© is not equal to the evolution U34 for the

gyroscopes 3© and 4© due to the different relative rotation ω.
The transformation of the optical state due to the rotation rate
ω can be written on the joint system as U ≡ U12U34, with

U12 = exp[−i(ϕ′
zn̂z + ϕyn̂y)], (7)

U34 = exp[−i(ϕ′
yn̂

′
z + ϕ′′

z n̂′
y)], (8)

which depend in a nontrivial way on the parameters ϕ. The four
operators n̂y , n̂′

y , n̂z, and n̂′
z commute, and can be measured

simultaneously. The joint evolution then becomes

U (ϕ) = exp

{
−i

[
φyn̂y − β

(
θ + π

2

)
n̂z

]}

× exp

{
−i

[
β

(
δ + π

2

)
n̂′

y + β(θ + δ)n̂′
z

]}
, (9)

where

β(α) = φy cos α − φz sin α, (10)

and ϕ ≡ (ϕy,ϕz,θ,δ). The evolution U in Eq. (9) is expressed
entirely in terms of the measurable observables n̂y , n̂′

y , n̂z, and
n̂′

z, and the four unknown parameters ϕ. In the next section we
use this evolution to calculate the quantum Fisher information
and the Cramér-Rao bound for these parameters.

III. COVARIANCE AND FISHER INFORMATION

To determine the ultimate precision with which we can
estimate the Sagnac phases and the couplings between them,
we consider the quantum Cramér-Rao bound

Cov(ϕ) � 1

N
I−1
Q (ϕ), (11)

where Cov(ϕ) is the covariance matrix of the four variables
ϕ, N is the number of independent measurements, and IQ(ϕ)
is the quantum Fisher information (QFI) matrix of the three
variables [18,35] with elements:

[IQ(ϕ)]ij = 2∂i∂j̃ log |〈ψ(ϕ)|ψ(ϕ̃)〉|2ϕ̃=ϕ, (12)

where ∂i is the derivative with respect to ϕi , and ∂j̃ the
derivative with respect to ϕ̃j . Let G = (Gy,Gz,Gθ ,Gδ)	 be
the tuple of generators of translation in our four parameters.
Generally, a generator of translation Gα of a parameter α can
be defined as [36]

Gα ≡ iU †∂αU. (13)

This allows us to relate the derivative of the quantum state |ψ〉
with respect to ϕi to the generator Gi via a Taylor expansion
of U . Evaluating the matrix elements of the QFI matrix for
pure states |ψ〉 then yields

[IQ(ϕ)]ij = 4

(
1

2
〈{Gi,Gj }〉ϕ − 〈Gi〉ϕ〈Gj 〉ϕ

)

≡ 4[CS(G)]ij , (14)

where 〈O〉ϕ ≡ 〈ψ(ϕ)|O|ψ(ϕ)〉 for some operator O, and
[CS(G)]ij is the symmetrized covariance matrix element
between operators Gi and Gj , originating from the fact that
the quantum Fisher information matrix in Eq. (12) is derived
from the symmetric logarithmic derivative [18]. Since all
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our generators commute with each other, we can ignore this
technical requirement and drop the subscript S.

Applying Eq. (13) to U (ϕ) in Eq. (9) for the parameters ϕy ,
ϕz, θ , and δ, we obtain the generators

Gy = n̂y + sin θ n̂z − sin δ n̂′
y + cos(θ + δ)n̂′

z,

Gz = cos θ n̂z − cos δ n̂′
y − sin(θ + δ)n̂′

z,

Gθ = β(θ )n̂z + β

(
θ + δ + π

2

)
n̂′

z,

Gδ = −β(δ)n̂′
y + β

(
θ + δ + π

2

)
n̂′

z. (15)

The relation between the generators Gj and the observables
n̂k is linear and can be expressed in matrix form as G = Mn̂
with

M =

⎛
⎜⎝

1 sin θ cos(θ + δ) − sin δ

0 cos θ sin(θ + δ) − cos δ

0 β(θ ) β(θ + δ + π/2) 0
0 0 β(θ + δ + π/2) −β(δ)

⎞
⎟⎠, (16)

and n̂ = (n̂y,n̂z,n̂
′
y,n̂

′
z)

	. The determinant of this matrix is

det M = [β(θ ) + β(δ)]β

(
θ + δ + π

2

)
cos(θ )

−β(θ )β(δ) sin(θ + δ), (17)

which is nonzero for most values of ϕ, and in particular
for our case of interest of small values of θ and δ. The
four observables can therefore be used to determine the four
parameters unambiguously.

We calculate the QFI in terms of the matrix M:

[IQ(ϕ)]ij = 4[〈GiGj 〉 − 〈Gi〉〈Gj 〉]
= 4

∑
kl

MikMjl[C(n̂)]kl, (18)

or

IQ(ϕ) = 4MC(n̂)M 	, (19)

where [C(n̂)]kl = 〈n̂kn̂l〉 − 〈n̂k〉〈n̂l〉 are covariances that de-
pend only on the state inside the interferometers (all the align-
ment information is encoded in M). This expression contains
a large number of variables in C(n̂), corresponding to the
extensive freedom to choose input states of the interferometers.
However, we can drastically reduce the number of variables
using simple symmetry arguments: Since the state ρ is a tensor
product ρ12 ⊗ ρ34, the 2 × 2 off-diagonal submatrices of C(n̂)
are zero due to the fact that for this case 〈n̂kn̂l〉 = 〈n̂k〉〈n̂l〉.
Moreover, to keep the resources in the gyroscopes identical
between rotations, we take the photon number differences
(n̂y)2 and (n̂z)2 the same in the gyroscope setting 1©+ 2©
and 3©+ 4©. This leads to the covariance matrix

C(n̂) =

⎛
⎜⎜⎝

(n̂y)2 C(12)
yz 0 0

C(12)
yz (n̂z)2 0 0
0 0 (n̂y)2 C(34)

yz

0 0 C(34)
yz (n̂z)2

⎞
⎟⎟⎠, (20)

where C
(ij )
yz = 〈n̂y n̂z〉 − 〈n̂y〉〈n̂z〉 for gyroscope pair i and j .

A priori there is no reason to choose different probe states for

the two orientations 1©+ 2© and 3©+ 4© during normal operation.
However, during the calibration stage of the gyroscopes the
rotation ω is a precisely known rotation in an external reference
frame, and its value will generally determine different optimal
states ρ12 and ρ34. Here we choose ρ12 = ρ34 to keep the
analysis tractable. The optimal strategy for different ρ12 and
ρ34, as well as the optimal rotation direction ω will be the
subject of future work.

Without prior knowledge of θ and δ there is no reason
to require different values for (n̂y)2 and (n̂z)2. We can
therefore take

(n̂y)2 = (n̂z)
2 ≡ (n̂)2 (21)

and

C(ij )
yz = λ(n̂)2, (22)

with −1 � λ � 1 the correlation coefficient. Note that the
correlation in this context means entanglement, since the
optimal states are pure states [19], and classical correlations
require mixed states.

The diagonal elements of Cov(ϕ) are the variances of the
parameters of interest, namely, Var ϕy , Var ϕz, and the nuisance
parameters Var θ and Var δ. We can choose to optimize any one
of these variances, two or three of them, or all four. In the latter
case, we need to choose a quantum state that minimizes

Tr[Cov(ϕ)] � 1

N
Tr

[
I−1
Q (ϕ)

]
. (23)

The right-hand side of Eq. (23) provides a bound on the
optimal joint estimation of ϕ that may be achieved in the
asymptotic limit of large N . Another interesting optimization
is to minimize the combination Var ϕy + Var ϕz. The values
of the nuisance parameters θ and δ are only interesting in
as far as they can be used to improve the accuracy of the
overall sensor. They do not convey information about the
rotation of the gyroscopes per se, but—once calibrated—they
can be used to correct fixed errors due to couplings between
the measurements of the interferometers. The MSE for a
typical case of θ = 0.02 rad, δ = 0.013 rad, ϕy = 0.66 rad,
and ϕz = 0.17 rad is shown in Fig. 3.

A. Variances for well-aligned gyroscopes

The QFI in Eq. (19) based on the generators in Eq. (15)
and the covariance matrix in Eq. (20) is easily calculated. The
diagonal elements of its inverse can be written as

[
I−1
Q (ϕ)

]
kk

= 1

4[(n̂)2[det M(ϕ)]2

Fk(ϕ,λ)

(1 − λ2)
, (24)

where the functions Fk are lengthy expressions in ϕ and λ

(given in full in Appendix). Note that the diagonal elements
of the inverse QFI are all proportional to (n̂)−2, as well as
the squared determinant of M . This confirms our intuition
that we should maximize the variance (n̂)2 in each Sagnac
interferometer (for example, using NOON states [37]).

We can also investigate the dependence of [I−1
Q (ϕ)]kk on

the correlations in the states between the interferometers, λ.
Consider first a perfect gyroscope with θ = δ = 0. Solving the
simpler problem of only two generators n̂y and n̂z and ignoring
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FIG. 3. The log10 MSEs for ϕy , ϕz, θ , and δ as a function
of (a) the variance in the photon number (n̂)2 in each Sagnac
interferometer—assuming all four interferometers have the same
(n̂)2 with λ = 0, and (b) the correlation coefficient λ between photon
number difference in two Sagnac interferometers. Here, θ = 0.02 rad,
δ = 0.013 rad, ϕy = 0.66 rad, ϕz = 0.17 rad, and (n̂)2 = 10. The
curve legend for the variances of ϕy , ϕz, θ , and δ applies to both
figures.

the nuisance parameters entirely we obtain

Var ϕy � 1

4N

(n̂z)2

(n̂y)2(n̂z)2 − C2
yz

,

Var ϕz � 1

4N

(n̂y)2

(n̂y)2(n̂z)2 − C2
yz

. (25)

On the other hand, taking the limit of θ,δ → 0 in the four-
parameter problem and setting κ ≡ ϕy/ϕz yields a different
result for Var ϕz:

Var ϕz � 1

8N

(n̂y)2 + κ2(n̂z)2 + 2κCyz

(n̂y)2(n̂z)2 − C2
yz

, (26)

and this reduces to Eq. (25) only in the limit where κ → 0
[up to an overall factor of 2, since Eq. (26) contains two
independent sets of measurements—initial and rotated by
π/2—in this limit]. The reason for the discrepancy between
Eqs. (25) and (26) is that the former does not take into account
the nuisance parameters at all, while the latter takes into
account the uncertainty in the nuisance parameters θ and δ

when their mean value is equal to zero.
When we consider the mean square errors in Eq. (25),

we see that the right-hand side is minimized when Cyz = 0.
Since these are effectively two separate single-parameter
measurements, the quantum Cramér-Rao bound is attainable
asymptotically, and we conclude that, in the absence of
alignment errors, any correlation between the input states in
the two Sagnac interferometers—including entanglement—is
detrimental to the precision of the optical quantum gyroscope.

B. Correlation coefficients for misaligned gyroscopes

When alignment errors are introduced, the situation is much
more complicated. Figure 3(a) shows the dependence of the
parameter errors as a function of (n̂)2. Figure 3(b) indicates
that, for the values of ϕy and ϕz shown, the combination
Var ϕy + Var ϕz is optimal for some nonzero value of the
correlation coefficient λ, while the minimum mean squared
errors in the nuisance parameters, θ and δ, are close to
zero correlation for this example. This demonstrates that

TABLE I. The sum of the variances Var ϕy + Var ϕz for selected
values of ϕy and ϕz with (n̂)2 = 10, both when no entanglement is
present between the gyroscopes (λ = 0) and when the optimal probe
state is used (λ = λopt). Here, θ = 0.02 rad, and δ = 0.013 rad.

Var ϕy + Var ϕz Var ϕy + Var ϕz

ϕy ϕz (λ = 0) (λ = λopt) λopt

0.01 0.01 0.05 0.0467 –0.2679
0.01 –0.30 0.0375 0.0375 0.0111
0.20 0.01 5.0375 5.0251 –0.0498
0.20 0.20 0.05 0.0467 –0.2679
0.20 –0.30 0.0431 0.0414 0.2014
–0.30 0.01 11.288 11.275 0.0333
–0.30 0.20 0.0656 0.0597 0.3139
–0.30 –0.30 0.05 0.0467 –0.2679

entanglement can be beneficial in some circumstances, at
least for a subset of the unknown quantities, and the optimum
correlation is not necessarily the same for all of the parameters.
We therefore need to study this behavior in more detail.

When operating as a gyroscope, the input states should be
selected to minimize the variance of the measured Sagnac
phases, ϕy and ϕz, thereby improving the accuracy of the
rotation rates measured by the sensor. This is the asymmetric
condition shown in Fig. 3(b), minimizing the combination
Var ϕy + Var ϕz to find the optimum correlation coefficient
λopt. Some example values are shown in Table I. The variances
depend strongly on the actual values of ϕy and ϕz but the
gain in precision by choosing λopt instead of λ = 0 appears to
be modest for these examples. The optimal states for a given
parameter can be found by constructing equal superpositions
of the eigenstates with minimum and maximum eigenvalues of
the corresponding generator of translations Gj in Eq. (15) [4].
It is generally difficult to create these optimal states, and in
addition we require a strategy to choose between different
probe states optimized for different parameters. Given the
modest improvement in precision it is questionable whether
the extra effort would be merited. The typical reduction in
the variances shown in Table I is of the order of 5%–10%.
However, it is important to remember that the accuracy of
gyroscopes in a strapdown inertial navigation affects the
accuracy of all of the derived quantities, because the orientation
information provided by the gyroscopes is used to resolve
the measured accelerations into a set of reference axes to
then determine the velocity and position information. This
sensitivity to errors in orientation can mean that even marginal
gains in the accuracy of the gyroscopes may be important for
the overall performance of the system. The trade-off between
the difficulty in preparing the entangled states and the benefits
of using these states will therefore be application specific.

The case that we are considering here is not the general
operation of a gyroscope, it is the situation where the
gyroscope is being calibrated to estimate the misalignment of
the individual sensors, using the multiposition test described
above. In cases where the phases are completely unknown
initially, a reasonable approach is to examine the behavior
of this optimum value of λ as a function of θ and δ when
averaged over all possible values for ϕy and ϕz. These results
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FIG. 4. The correlation coefficient λ that produces the lowest joint variance Var ϕy + Var ϕz for (n̂)2 = 10 as a function of (a) θ and (b)
δ, both averaged over all values for the phases, for different values of δ and θ , respectively. The averaged values are calculated by averaging
over values of δ,θ = ±0.01, ±0.1, ±0.2, and ±0.3 rad. (c) and (d) give the same calculations for specific values of the measured phases, ϕy =
0.66 rad and ϕz = 0.17 rad, and the nuisance parameters.

are shown in Figs. 4(a) and 4(b), minimizing the errors in
the measured phases Var ϕy + Var ϕz as before. The optimum
value of λ for a wide range of the nuisance parameters is very
close to zero (−π

6 < θ,δ < π
6 ), when averaged. In particular,

the optimum value is zero for small values of θ and δ, and
the response of each is only very weakly dependent on the
value of the other nuisance parameter. (A nonzero value for λ

would indicate that entanglement is beneficial in improving the
overall precision of the optical gyroscope.) This implies that, in
the absence of information regarding the measured phases, the
calibration of small nuisance parameters alone will be hindered
by the presence of correlated input states. It is only when the
coupling between the two gyroscopes becomes significant that
correlated input states and entanglement could be beneficial.
This is in contrast to the case where the measured phases are
known initially, Figs. 4(c) and 4(d), where the optimal value of
the correlation coefficient is given as a function of the nuisance
parameters for ϕy = 0.66 rad and ϕz = 0.17 rad. In the cases
shown, the optimum value for λ is strongly dependent on θ

and δ. There is clearly a complicated relationship between
the optimal degree of correlation between the two Sagnac
interferometers, which varies significantly not only with θ and
δ, but also with ϕy and ϕz.

Starting with unknown values for the measured phases, the
results shown in Figs. 4(a) and 4(b) indicate that correlated
inputs will not necessarily help to improve the accuracy of
the estimates of the nuisance parameters, for small values
of θ and δ at least. However, as the estimates of the
Sagnac phases ϕy and ϕz improve, the results shown in
Figs. 4(c) and 4(d) indicate that the optimum value for λ

becomes strongly dependent on the values of the nuisance
parameters. This implies that the optimal calibration process
could involve an adaptive approach, with the selected value
of λ being dependent on the estimated values and expected
errors in ϕy and ϕz and the estimated nuisance parameters
themselves. The problem becomes even more complicated
when one takes into consideration that the optimum value of λ

calculated in Fig. 4 is the value that minimizes the combination
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FIG. 5. The correlation coefficient λ that minimizes the variance in the estimates of the nuisance parameters for (n̂)2 = 10, averaged over
all values for the phases: (a) λ as a function of θ minimizing Var θ , (b) λ as a function of δ minimizing Var δ, (c) λ as a function of θ minimizing
Var δ, and (d) λ as a function of δ minimizing Var θ—each for several values of the other nuisance parameter and when averaged over values
of δ,θ = ±0.01, ±0.1, ±0.2, and ±0.3 rad.

Var ϕy + Var ϕz, i.e., the variance in the phase measurements,
not the variance in the nuisance parameters. Figure 5 shows
the behavior of the optimum correlation coefficient when
minimizing the variance in the estimated value for each of
the nuisance parameters, again averaged over the measured
phases.

While the different optimization criteria shown in Fig. 5 do
show qualitative and quantitative differences when compared
with the results shown in Figs. 4(a) and 4(b), the results are not
inconsistent—meaning that the optimal values for λ are zero
or close to zero in each case, i.e., in the physically relevant
regime where the misalignment parameters are small. It is
only when δ is relatively large (|δ| � 0.3 rad) that the optimal
value for the correlation is nonzero at θ � 0.0. This means that
an adaptive calibration method should be feasible, although the
precise form that it should take will depend on the criteria being
optimized and the quality of the a priori knowledge regarding
the rotation rates applied to the system, and the corresponding
Sagnac phase measurements. Ideally, the calibration would

be performed using a rotation rate that had been selected to
produce a minimum variance for the parameter estimates, and
these vary significantly, as can be seen in Table I. Figure 6
shows the mean square errors in the four estimated parameters
as functions of the applied Sagnac phases.

C. Three-dimensional gyroscopes

In our discussion so far we have ignored the third dimen-
sion. Here we give a simple argument that shows that the
calibration process for quantum interferometers can be gener-
alized to three dimensions in a straightforward way. Consider
the three axes determined by three Sagnac gyroscopes. We
pick one axis as a reference axis—such as the y axis in
the discussion above. The remaining two axes deviate from
a perfect triad in three angles, namely, the angles for the x

and z axes with the y-axis, and the angle between the x axis
and the z axis. These are three nuisance parameters θ (now a
three-dimensional vector) arising from the physical tolerances
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FIG. 6. The log10 MSEs for ϕ as functions of (a) ϕy with
ϕz = 0.17 rad, and (b) ϕz with ϕy = 0.66 rad, for (n̂)2 = 10, θ =
0.02 rad, and δ = 0.013 rad. The blue solid line indicates the
combined log MSE in ϕy and ϕz, while the orange dotted line indicates
the combined log MSE in θ and δ. Calibration using specially selected
ϕy and ϕz achieve the best results when adaptive strategies are used,
i.e., when the values of ϕy and ϕz are chosen based on the inferred
values of θ and δ.

inherent in any manufacturing process. Calibration requires
that we determine these angles with high precision. During
operation, any Sagnac phase measurements can be corrected by
removing the coupling introduced by the nuisance parameters
in post-processing.

The calibration consists of applying a well-defined rotation
rate to the system, fixed with respect to an external frame,
which leads to expected values of the phases ϕx , ϕy , and ϕz.
We must estimate these phases with the gyroscope. We then
rotate the gyroscope sensor through a known angle and repeat
the measurements with the same rotation rate applied. For
each independent set of phase measurements we take three
readings, namely, the photon number difference in x, y, and z.
The question is now if we can take enough different readings
by applying these known rotations to the three-dimensional
gyroscope several times, taking into account that each finite
rotation is itself associated with a nuisance parameter, such
as the parameter δ above. If we take K sets of readings,
after each rotation about an arbitrary angle, δj (1 � j � K),
we introduce—in principle—three new nuisance parameters
for each δj . It is easy to see that the total number of
parameters stays ahead of the total number of readings by
three, and we will not be able to establish all parameter
values unambiguously. To overcome this problem, we rotate
the gyroscope around the same externally defined axis that
determines the calibration signal (ϕx,ϕy,ϕz). This will incur
only a single nuisance parameter for every rotation (after the
first set of measurements), namely, the rotation angle, and it
still allows us to rotate the gyroscope in any direction we
wish. Suppose we take a set of measurements in K gyroscope
orientations. We will have the three components of the applied
rotation rate, three angles corresponding to the misalignment
of the Sagnac axes, plus K − 1 rotation angles, giving a
total of K + 5 parameters that need to be estimated from 3K

measurements of the Sagnac phases. A successful calibration
therefore requires

3K � K + 5, (27)

which means that we need at least three sets of measurements.
If we then wish to relate the gyroscope orientation to an
external reference frame we need another three parameters, and
this can be achieved by taking another set of measurements at a
fourth orientation. This analysis implies that the generalization
of our analysis to three dimensions does not pose a major
obstacle—which is to be expected since similar processes are
already used in inertial navigation systems and can include
more complicated sequences of rotations and applied rotation
rates to characterize other errors [30,31]—and there is no
reason to believe that the main results given above for
entangled input states would simplify significantly in moving
from two to three dimensions. If anything, the optimization
of the input states in three dimensions would be expected to
be an even more complicated problem than the case presented
here.

IV. CONCLUSIONS

We have studied the role of entanglement in the calibration
and operation of an optical quantum gyroscope, relying on
measurements of the Sagnac phase shift. The accuracy of the
gyroscope is an important factor in inertial navigation systems,
and any imperfections in the system must be well characterized
for reliable operation as a rotation sensor. The interferometers
are sensitive to rotation rates, which must be integrated with
respect to time to generate orientation information, which
can then be used to resolve acceleration measurements into
a reference frame, thereby allowing changes in velocity and
position to be determined.

For a perfectly aligned gyroscope, the optimal state in
each individual interferometer will be highly entangled,
NOON states for example, with no entanglement or other
correlations between the interferometers. The Sagnac phase
measurements are essentially independent, and the quantum
Cramér-Rao bound can be achieved asymptotically. When the
interferometers are not perfectly orthogonal to each other, the
appearance of nuisance parameters (the misalignment of the
sensors) will give rise to couplings between the measured
values for the rotation rates. Knowing the values of these
nuisance parameters allows the effect of these couplings to
be reduced or removed, thereby improving the accuracy of the
system. To this end, the system must be calibrated by taking
readings from the gyroscope in a variety of known orientations.
In two dimensions, we have demonstrated that the optimal
states for such systems are dependent on the values of the
nuisance parameters and the condition that is being optimized.
Specifically, the states that would be optimal for the operation
of the gyroscope as a sensor—i.e., the states that minimize the
variance of the phase measurements—can be different from
states that optimize the calibration of the nuisance parameters.
In fact, the calibration of the optical quantum gyroscope is
complicated by the fact that the variances of our estimators
depend strongly on the values of the various parameters in
the problem. In addition, we have found that the precision
of the measurements of both the nuisance parameters and
the applied signal is highly dependent on the amount of
entanglement, as indicated by the correlation coefficient λ.
These dependencies must be fully understood, as the use of
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suboptimal probe states can make the calibration worse. Small
improvements in the estimation of the nuisance parameters
may seem to come at the expense of hard to engineer quantum
probe states, but the nature of error accumulation in inertial
navigation means that even modest gains in accuracy can
lead to an important operational improvement of slower error
divergence.

An important open question is how to establish the optimal
quantum strategy for the calibration of the optical quantum
gyroscope: what are the optimal quantum states to send into
the three interferometers, and how should we divide our
resources between the different probe states? Even when
the measured observables commute, it is not immediately
clear how the probe states must be chosen in order to
maximize the information gain about the different parameters
in the gyroscope. These questions will be addressed in future
work.
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APPENDIX: EXPLICIT FORMS FOR Fk

Here we give the explicit forms for Fk in Eq. (24) in the
case where (n̂y)2 = (n̂z)2 ≡ (n̂)2 and Cyz = λ(n̂)2. For
notational compactness, let γ = β(θ + δ + π/2), βθ ≡ β(θ ),
and βδ ≡ β(δ). The functions Fk then become

Fy = [γ (βδ + βθ ) cos θ − βδβθ sin(δ + θ )]2 = (det M)2, (A1)

Fz = γ 2
[
β2

δ (2λ sin θ + sin2 θ + 1) + 2βδβθ sin δ(sin θ + λ) + β2
θ (sin2 δ + 1)

] + β2
δ β

2
θ [cos2(δ + θ ) + 1]

− 2γβδβθ {βδ cos(δ + θ )(sin θ + λ) + βθ [sin δ cos(δ + θ ) + λ]}, (A2)

Fθ = γ 2 cos2 θ [(sin δ − sin θ )(sin δ − sin θ − 2λ) + 2] + β2
δ

[
3
2 − λ sin(2δ + 3θ ) + sin δ sin(δ + 2θ ) + 1

2 cos(2δ + 4θ ) + λ sin θ
]

− γβδ cos θ{λ[cos(2δ + θ ) − 3 cos(δ + 2θ ) + cos δ + cos θ ] + 3 sin(δ + θ ) + sin(2δ + 2θ ) − sin(δ + 3θ ) − sin 2θ},
(A3)

Fδ = γ 2 cos2 θ [(sin δ − sin θ )(sin θ − sin δ + 2λ) − 2] − β2
θ {(sin2 δ + 1) sin2(δ + θ ) + cos2 θ [cos2(δ + θ ) + 1]

− 2 cos θ sin(δ + θ )[sin δ cos(δ + θ ) + λ]} + γ cos θβθ [λ(cos(2δ + θ ) + cos(δ + 2θ ) + cos δ − 3 cos θ )

+ 3 sin(δ + θ ) + cos(2θ + 2δ) sin(θ − δ) − sin 2δ]. (A4)

[1] A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal,
R. Ramponi, R. Osellame, and J. L. O’Brien, Appl. Phys. Lett.
100, 233704 (2012).

[2] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A.
Bachor, and W. P. Bowen, Nat. Photonics 7, 229 (2013).

[3] The LIGO Scientific Collaboration, Nat. Phys. 7, 962 (2011).
[4] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5, 222

(2011).
[5] M. Tsang, New J. Phys. 15, 073005 (2013).
[6] W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Phys. Rev. Lett.
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