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A PSEUDOEXPONENTIAL-LIKE STRUCTURE
ON THE ALGEBRAIC NUMBERS

VINCENZOMANTOVA

Abstract. Pseudoexponential fields are exponential fields similar to complex exponentiation which
satisfy the Schanuel Property, i.e., the abstract statement of Schanuel’s Conjecture, and an adapted form of
existential closure.
Here we show that if we remove the Schanuel Property and just care about existential closure, it is

possible to create several existentially closed exponential functions on the algebraic numbers that still have
similarities with complex exponentiation. The main difficulties are related to the arithmetic of algebraic
numbers, and they canbeovercomewithknown results about specialisations ofmultiplicatively independent
functions on algebraic varieties.

§1. Introduction. Pseudoexponentiation is a structure introduced by Zilber in [7]
in order to find out howCexp should look like if it were well-behaved, at least for the
criteria of a model theorist. The unavoidable problem of Cexp is that it defines the
ring of integers, hence Peano’s arithmetic, defying the model-theoretic tools widely
used in the last decades.
However, Zilber proved that ifCexp satisfies certain algebraic conjectures, Peano’s
arithmetic is in some sense the only true problem. He showed that there is a sen-
tence Ψ, in the infinitary language L�1,�(Q), which is uncountably categorical, and
that describes an exponential field which is reasonably similar to Cexp. Its models
havebeen called pseudoexponential fields, perfect exponential fields, or Zilber fields.
The two main statements contained in Ψ, which are currently only conjectures for
Cexp, are the Schanuel Property and the Strong Exponential-algebraic Closure.
TheSchanuel Property is just a rephrasing of Schanuel’sConjecture for anabstract
exponential functionE, and it asserts that for any z1, . . . , zn in the base field we have

tr.deg.(z1, . . . , zn, E(z1), . . . , E(zn)) ≥ lin.d.Q(z1, . . . , zn).
It is well known that the Schanuel Property is not enough to characterise well
an exponential function, as formally shown by Hyttinen in [1]: there are 22

ℵ0 pair-
wise nonisomorphic surjective exponential functions on C satisfying the Schanuel
Property and whose kernel is a cyclic group.
Here we show a related result, in a quite different vein, about the Exponential-
algebraic Closure. We show that if we drop all the assumptions about transcendence
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1340 VINCENZOMANTOVA

in Zilber’s axiom Ψ, then we can construct several model where the Schanuel
Property is falsified in the most drastic way: everything is algebraic!

Theorem 1.1. There is a function E : Q → Q
∗
such that

(1) E(x + y) = E(x) ·E(y) for all x, y ∈ Q;
(2) ker(E) = �Z for some � ∈ Q

∗
;

(3) E is surjective;
(4) for any absolutely free variety V over Q there is a z ⊂ Q such that
(z,E(z)) ∈ V , and the points of this form are Zariski-dense in V .

If we consider the class of structuresKE , whereK is a field andE is an exponential
function with cyclic kernel, then QE is existentially closed: whenever QE ⊂ KE′ ,
and some finite system of polynomial exponential equations and inequations with
parameters in Q has a solution in KE′ , then it already has a solution in QE .
The proof of Theorem 1.1 is given using an explicit inductive construction very
similar to the one of [4] and it is described, along with the list of Zilber’s axioms,
in Section 2. The fact that the construction itself is well-defined, and it works as
desired, is proved in Section 3, thanks to some arithmetic properties of number
fields about specialisations that were analysed in [6].
The author would like to thank his supervisor Prof. Alessandro Berarducci, who
proposed to study pseudoexponential fields, Jonathan Kirby for having proposed
the problem solved in this paper, Profs. David Masser and Umberto Zannier for
the suggestions about the number-theoretic part of this paper that greatly simplified
the discussion, and an anonymous referee for the useful corrections. This work was
part of the author’s PhD work at the italian Scuola Normale Superiore of Pisa, and
it has been partially supported by the PRIN-MIUR 2009 “O-minimalità, teoria
degli insiemi, metodi e modelli nonstandard e applicazioni”, the EC’s Seventh
Framework Programme [FP7/2007–2013] under grant agreement no. 238381, and
the FIRB 2010 “Nuovi sviluppi nella Teoria dei Modelli dell’esponenziazione”.

§2. The construction.
2.1. Zilber’s original axiomatisation. For the sake of clarity, we briefly recall the
axiomatisationof actualpseudoexponential fields.AfieldKE is a pseudoexponential
field if it satisfies the following list of axioms. The terms in quotation marks are
not defined here; we shall only explain the meaning of the properties that actually
matter for our purposes. We refer the reader to [5,7] for a more complete treatment
of the subject.

2.1.1. Trivial properties of Cexp.

(ACF0) K is an algebraic closed field of characteristic 0.
(E) E is a homomorphism E : (K,+)→ (K∗, ·).

(LOG) E is surjective (every nonzero element has a logarithm).
(STD) the kernel is a cyclic group, i.e., kerE = �Z for some � ∈ K∗.

2.1.2. Axioms conjecturally true on Cexp.

(SP) Schanuel Property: for every z1, . . . , zn ∈ K
tr.deg.(z1, . . . , zn, E(z1), . . . , E(zn)) ≥ lin.d.Q(z1, . . . , zn).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2014.41
Downloaded from https://www.cambridge.org/core. University of Leeds, on 26 Jul 2017 at 15:38:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2014.41
https://www.cambridge.org/core


A PSEUDOEXPONENTIAL-LIKE STRUCTURE ON THE ALGEBRAIC NUMBERS 1341

(SEC) Strong Exponential-algebraic Closure: for every irreducible “absolutely
free rotund” algebraic variety V ⊂ Kn × (K∗)n , and every finite subset
c ⊂ K such thatV is defined over c, there is a z ∈ Kn such that (z,E(z))
is a generic point of V over c.

2.1.3. A non-trivial property of Cexp [7, Lemma 5.12].

(CCP) CountableClosureProperty: for every irreducible “absolutely free rotund”
algebraic variety V ⊂ Gn over K of “depth 0”, and every finite subset
c ⊂ K such that V is defined over c, the set of the points of V of the
form (z,E(z)) that are generic over c is at most countable.

For the purposes of this paper, we actually only care about the meaning of “abso-
lutely free”. The additional properties “rotund” and “depth 0” are deeply related to
the presence of the Schanuel Property, and moreover they have rather complicated
definitions, so we will omit them here.

Definition 2.1. An irreducible algebraic variety V ⊂ Kn × (K∗)n is additively
free over L ⊂ K if its projection onto Kn is not contained in a proper Q-linear
subspace defined over L. In other words, the coordinate functions of the factor
Kn restricted to V are Q-linearly independent from L.

We can state a similar property for the multiplicative side (K∗)n.

Definition 2.2. An irreducible algebraic variety V ⊂ Kn × (K∗)n is multi-
plicatively free over M ⊂ K∗ if its projection onto (K∗)n is not contained in a
proper algebraic subgroup of (K∗)n defined over M . In other words, the coordi-
nate functions of the factor (K∗)n restricted to V are multiplicatively independent
fromM .

Absolute freeness is when we have both properties with L = K andM = K∗.

Definition 2.3. A variety V ⊂ Kn × (K∗)n is absolutely additively free if it is
additively free over K .
V is absolutely multiplicatively free if it is multiplicatively free over K∗.
V is absolutely free if it is both absolutely additively free and absolutely
multiplicatively free.

2.2. Axioms for QE . Our goal is to build an exponential field QE as similar as
possible to pseudoexponentiation, but clearly without the axiom (SP). We definitely
want, and actually we can, keep the trivial properties of Cexp as they are. Moreover,
the axiom (CCP) doesn’t even need to be mentioned, as Q itself is countable. The
only axiom that requires some changes is (SEC), as it requires the points (z,E(z))
to be “generic”, and in particular of transcendence degree more than zero, which is
not possible in Q.
The axiom (SEC) is a special formof existential closure adapted to the presence of
(SP) and toHrushovski’s amalgamation: if a system of equations and inequations in
KE has a solution in some “strong kernel preserving extension”, than it has already a
solution inKE , plus a genericity assumption. For our purpose, we shall require that
if a system of equations has a solution in some kernel preserving extension of QE ,
then it has a solution in QE . We drop genericity, and we simplify the discussion
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1342 VINCENZOMANTOVA

by also dropping the word “strong”, which is due to the presence of (SP) and it is
therefore irrelevant for our purposes.
It can be easily verified that this condition is equivalent to the following:

(EC) For any absolutely free variety V ⊂ Q
n× (Q∗

)n there is a z ∈ Q
n
such that

(z,E(z)) ∈ V , and the points of this form are Zariski-dense in V .
The two differences with (SEC) are that we do not require V to be rotund, which
is essentially linked to the use of strong extensions and the presence of (SP), and
that we explicitly force the points (z,E(z)) to be Zariski-dense, while in (SEC) this
is automatic by genericity. (As we will note later, a quite standard argument can be
used to show that the density condition is actually redundant.)

2.3. The construction. The construction is quite similar to other construction
techniques [3, 4]. We define the function E by induction using a back-and-forth
procedure.
Let us fix � ∈ Q

∗
and let us define our base function as E−1(pq �) = �

p
q , for

p, q ∈ Z, where {�q}q∈Z is a “coherent” system of roots of unity, where by coherent
we mean that �ppq = �q for all p, q ∈ N. This yields ker(E−1) = �Z.
Now let {αn} be an enumeration of Q∗

and Vn an enumeration of all the irre-
ducible absolutely free algebraic varieties Vn. At each step n < � we proceed
as follows:

(1) If αn is not in the domain of En−1, we choose some � ∈ Q
∗ \ img(En−1) and

we define

E1n−1

(
α +

p

q
αn

)
:= En−1(α) · �p/q,

for all α ∈ dom(En−1) and p, q ∈ Z, where �1/q is a coherent system of roots
of � . If αn is in the domain, we just define E1n−1 := En−1.

(2) If αn is not in the image, we choose some � ∈ Q \ dom(E1n−1) and we define

E2n−1

(
α +

p

q
�

)
:= E2n−1(α) · αp/qn ,

for all α ∈ dom(E1n−1) and p, q ∈ Z. If αn is already in the image, we just
define E2n−1 := E

1
n−1.

(3) If Vn ⊂ Q
k × (Q∗

)k , we take a point (α1, . . . , αk, �1, . . . , �k) ∈ Vn such that
(a) α1, . . . , αk is Q-linearly independent from dom(E2n−1);
(b) �1, . . . , �k is multiplicatively independent from img(E2n−1);

and we define En
(
α + p1q1 α1 + · · ·+ pkqk αk

)
:= E2n−1(α) · �p1/q11 · · · · · �pk/qkk

for all α ∈ dom(E2n−1) and pi , qi ∈ Z.

The limit function E :=
⋃
n<� En is the function we looked for in Theorem 1.1. We

can verify that the above construction is sound; the only critical step is (3), since it
is not completely trivial that such a choice of αi and �i is possible. However, their
existence canbededuced fromProposition 3.5,which is described in the next section.

Proof of Theorem 1.1. It is immediate to see that the steps (1) and (2) can always
be performed, as dom(En), img(En), dom(E1n) and img(E

1
n) are always finite-rank

groups, and therefore we can always find a suitable � .
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A PSEUDOEXPONENTIAL-LIKE STRUCTURE ON THE ALGEBRAIC NUMBERS 1343

Since dom(E2n) and img(E
2
n) are finite-rank subgroups as well, Proposition 3.5

implies that Vn contains a point with the required properties for step (3).
It is again immediate to see thatEn is a well defined function, and in particularE
is well defined too, since dom(En) is always aQ-vector space, and the new elements
onwhichwe define the function are alwaysQ-linearly independent from the previous
domain. Moreover, E is defined everywhere.
Similarly, ker(E) = ker(En) = ker(E−1) = �Z, since every time we define the
new function, the new elements in the image are multiplicatively independent from
the previous image. Moreover, E is surjective.
Finally, it is clear that each absolutely free variety contains a point of the form
(z,E(z)). It is a standard argument to show that if every absolutely free variety V
contains such a point, then such points are Zariski-dense.

Indeed, letV be a given irreducible absolutely free algebraic variety inQ
k×(Q∗

)k

and letW ⊂ V be a Zariski-closed proper subset of V . Without loss of generality,
we may assume that there is a polynomial p(x) ∈ K [x1, . . . , x2k ] such that W =

V ∩ {p(x) = 0}. It is now sufficient to consider the variety H ⊂ Q
k+1 × (Q∗

)k+1

defined by the same equations defining V on the first 2k coordinates of Q
k+1
and

of (Q
∗
)k+1, and by the equation p(x)x2k+1 = 1, where x2k+1 is the last coordinate

of Q
k+1
. This variety must contain a point of the form (z ′, E(z ′)); its projection

on Q
k × (Q∗

)k is a point of V outside ofW . On varyingW , this shows that such
points are Zariski-dense in V . �
Free exponential closure. We want to remark the fact that our construction
actually satisfies the following “free” version of exponential-algebraic closure:

(FEC) Free Exponential-algebraic Closure: for every irreducible absolutely free
algebraic variety V ⊂ Q

n × (Q∗
)n, and every finite subset c ⊂ Q, there is

a z ∈ Kn such that (z,E(z)) ∈ V and z isQ-linearly independent from c.
This behaviour mimics the genericity assumption in (SEC), and it is in fact deeply
related to it: it is shown in [2] that (SP) and (FEC) taken together imply (SEC).

§3. Points with independent coordinates. In order to finish the proof, we need to
verify that absolutely free algebraic varieties always contain the points needed for
step (3).
It is known that if we take a varietyV and some functions on it that aremultiplica-
tively independent (the functions are allowed to be constant), then for “most” points
P ∈ V (Q) the values of the functions at P are still multiplicatively independent [6].
Similarly, it is also not difficult to show that for “most” points the specialisations
of Q-linearly independent functions are still Q-linearly independent (again, the
functions are allowed to be constant). In order to put together the two statements,
we first intersect our variety with hyperplanes, using Bertini’s theorem, to reduce to
the case when V is a curve, and then we prove the case of curves. We first take care
of the additive part.

Proposition 3.1. Let C be an absolutely irreducible curve defined over a field K ,
and let k = Q ∩ K . Let z1, . . . , zn be some Q-linearly independent functions in K(C)
(possibly constant).
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1344 VINCENZOMANTOVA

There is a number d > 0 such that for any nonconstant x ∈ K(C), for any α ∈ Q

with [k(α) : k] > d , and for any nonsingular point P ∈ x−1(α), the specialisations
of z1, . . . , zn at P are Q-linearly independent.

Proof. Let e be the maximum of [K(C) : K(zi )] as zi ranges among the
nonconstant functions in the set {zi}ni=1.
By assumption, ifm1, . . . , mn are some integer numbers, not all zero, the function
m1z1 + · · ·+mnzn is not null. In particular, if it is constant, it never vanishes, while
if it is nonconstant, its degree is at most ne, and therefore it vanishes on at most ne
points of C.
Now let d := ne and let α and P be given as in the hypothesis: α is an algebraic
number such that [k(α) : k] > d andP is a nonsingular point in x−1(α). LetL be a
normal extension of K that defines P. Clearly, L∩Q ⊃ k(α) is a normal extension
of k by the assumption k = K ∩Q. Since C is absolutely irreducible, we can extend
the Galois action of Gal(L/K) to Gal(L(C)/K(C)). Suppose by contradiction that
there are integers m1, . . . , mn , not all zero, such that

m1z1(P) + · · ·+mnzn(P) = 0,
then by conjugation we obtain several other �(P)’s satisfying the same equality.
Since x(�(P)) = �(α) and [k(α) : k] > ne, we find thatm1z1 + · · ·+mnzn vanishes
at more than ne distinct conjugates of P, contradicting our previous observation,
as desired. �
Corollary 3.2. Let C be an absolutely irreducible curve defined over a field k. Let
z1, . . . , zn be some Q-linearly independent functions in k(C).
There is a number d ′ > 0 such that for any P ∈ C(k) with [k(P) : k] > d ′, the
specialisations of z1, . . . , zn at P are Q-linearly independent.

Proof. Let us take a nonconstant function x ∈ k(C) and let e be its degree.
Let d be the number obtained by Proposition 3.1 applied to x and z1, . . . , zn , and
let d ′ be a number large enough so that d ′ ≥ d · e and such that any point P with
[k(P) : k] > d ′ is nonsingular.
Now, if P is a point with [k(P) : k] > d ′, then x(P) is defined, finite and
[k(x(P)) : k] > d . By the previous proposition, the specialisations of z1, . . . , zn at
P are Q-linearly independent. �
An analogous but different statement holds in the multiplicative case for varieties
of dimension greater than 1.

Proposition 3.3. Let V be an absolutely irreducible variety defined over a field
k withdim(V ) > 1. Letw1, . . . , wn be some functions ink(V ) that aremultiplicatively
independent over k

∗
.

There is a nonconstant function x ∈ k(V ) such that the restrictions of w1, . . . , wn
at V ∩ x−1(α) are multiplicatively independent over k∗ for almost all α ∈ k.
Proof. Up to birational equivalence, we may assume that V is smooth and
projective.
Since w1, . . . , wn are multiplicatively independent modulo constants, it means
that the Weil divisors of w1, . . . , wn are Q-linearly independent. Up to taking a
multiplicative combination of the wi ’s, we may assume that there areW1, . . . ,Wn
distinct prime divisors such that wi has a pole in Wi , but has no zeroes and poles
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A PSEUDOEXPONENTIAL-LIKE STRUCTURE ON THE ALGEBRAIC NUMBERS 1345

among the remaining Wj ’s; in other words, the matrix (oWi (wj))i,j is diagonal,
where oWi (wj) is the order of wj atWi .
Up to enlarging k, we may assume that these prime divisors have degree 1 and
are all defined over k. It is clear that among all the hyperplanes H that intersect
V properly, the ones such that H ∩Wi = H ∩Wj , with i 	= j, form a proper
Zariski-closed subset. By Bertini’s theorem, it is also true that the ones such that
H ∩ V is not smooth and absolutely irreducible, and similarly the ones such that
H ∩Wi is not smooth and absolutely irreducible, form proper Zariski-closed sets.
Therefore, we can find an hyperplaneH represented by the equation x = 0 such
that x−1(α)∩Wi and x−1(α)∩V are all smooth and distinct absolutely irreducible
varieties for almost all α ∈ k. But then the restrictions ofw1, . . . , wn to x−1(α)∩V
are such that (oH∩Wi (wj))i,j is still a diagonal matrix, which implies that their
divisors are still Q-linearly independent, hence the restrictions are multiplicatively
independent over k

∗
. �

We shall use the above statements to reduce to the case of curves. For curves, we
adopt a different strategy.
Proposition 3.4. Let C ⊂ Q

n × (Q∗
)n be an irreducible curve over Q and L < Q,

M < Q
∗
be two finite-rank subgroups. If C is absolutelymultiplicatively free, and addi-

tively free overL, then there is a point (α1, . . . , αn, �1, . . . , �n) ∈ C such thatα1, . . . , αn
are Q-linearly independent from L, and such that �1, . . . , �n are multiplicatively
independent fromM .
Proof. Without loss of generality, wemay assume that C is absolutely irreducible.
Let z1, . . . , zn and w1, . . . , wn be the coordinate functions of Q

n × (Q∗
)n restricted

to C and a1, . . . , am be a finite set of divisible generators ofM . Let k be a number
field defining C and containing a1, . . . , am.
Using the notation of [6], we define
• C(d, h) the set of all points of C of degree at most d and height at most h;
• E(d, h) the set of all points of C of degree at most d and height at most h such
that the specialisations of w1, . . . , wn are multiplicatively dependent onM ;

• �(S), for a finite set S, the minimum degree of an hypersurface containing all
the points of S.

Applying the main result of [6, Section 5] to Gm(k(C)) and to the group gener-
ated by w1, . . . , wn, a1, . . . , an , we find a function c1(d ) and a number k such that
�(E(d, h)) ≤ c1(d )hk , while we also find a c2 such that �(C(d, h)) ≥ exp(c2(d )h)
when d is at least the degree of C.1
Now using Corollary 3.2 on C and L we obtain a number d1 such that when
[k(P) : k] > d1 the specialisations of z1, . . . , zn at P are Q-linearly independent
from L. We may choose d1 larger than the degree of C. Now let d2, h1, h2 be
numbers such that

�(C(d2, h2)) ≥ exp(c2(d2)h2) > �(C(d1, h1)) + c1(d2)hk2 ≥
≥ �(C(d1, h1)) + �(E(d2, h2)).

1The statement of [6] is actually that �(C(d, h)) ≥ exp(ch) when d = deg(C). However, the proof
only requires that there is a dominant map � : C → Pm of degree d with m = dim C. Such maps exist,
for example, for any multiple of deg(C), as we can compose � with dominant self maps of Pm which exist
for any positive degree.
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1346 VINCENZOMANTOVA

Then there must be a point P of degree strictly greater than d1 such that the
specialisations of w1, . . . , wn at P are multiplicatively independent from a1, . . . , an,
hence from M . Since its degree is greater than d1, the specialisations of z1, . . . , zn
are also Q-linearly independent from L, as desired. �
Putting the statements together, we can prove the general version we need for
step (3).

Proposition 3.5. Let V ⊂ Q
n × (Q∗

)n be an irreducible absolutely free variety
over Q, and let L < Q, M < Q

∗
be two finite-rank subgroups. There is a point

(α1, . . . , αn, �1, . . . , �n) ∈ V such that α1, . . . , αn are Q-linearly independent from
L and �1, . . . , �n are multiplicatively independent fromM .

Proof. We prove the theorem by induction on m = dim(V ). Our inductive
hypothesis is that if V is absolutely irreducible, absolutely multiplicatively free, and
additively free over L, then it contains a point as in the conclusion. The base case
m = 1 is covered by Proposition 3.4. Let k be a number field defining V .
Let us suppose thatm > 1, and thatwehaveproven the theoremfor all thevarieties
of dimension m − 1. Let z1, . . . , zn and w1, . . . , wn be the coordinate functions of
Q
n × (Q∗

)n restricted to V . Moreover, let {b1, . . . , bm} be a Q-basis of the vector
space generated by L. By Proposition 3.3, there is a nonconstant function x such
that for almost all α ∈ k we have
(1) Vα := V ∩ x−1(α) is absolutely irreducible;
(2) dim(Vα) = m − 1;
(3) the functions {w1, . . . , wn} restricted to Vα are multiplicatively independent
over Q

∗
.

Now take any transcendence base of k(V ) of the formX ∪{x}. ThenV can be seen
also as an absolutely irreducible curve over k(X ), and x is a nonconstant function
on it.
By applying Proposition 3.1 to V seen as a curve over K := k(X ), as soon as
[k(α) : k] is sufficiently large, the functions {z1, . . . , zn, b1, . . . , bm} are Q-linearly
independent when restricted to Vα . Therefore Vα satisfies the same properties of
V , and by inductive hypothesis, it contains a point P such that the specialisations
of z1, . . . , z1 at P are Q-linearly independent from L and the specialisations of
w1, . . . , wn at P are multiplicatively independent fromM , as desired. �
Remark 3.6. The above proof relies on the results exposed in [6]. These results
depend on the Northcott Property of number fields. Using other techniques of
Diophantine geometry it is possible to obtain a similar result for other finitely
generated fields without the same quantitative statements, but still strong enough
to obtain again Proposition 3.4. This implies that this construction works also
on all algebraically closed fields of characteristic 0, and in particular of any fixed
transcendence degree.
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