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Abstract. This article demonstrates the applicability of the parallel-in-time method Parareal to the
numerical solution of the Einstein gravity equations for the spherical collapse of a massless scalar field. To

account for the shrinking of the spatial domain in time, a tailored load balancing scheme is proposed and
compared to load balancing based on number of time steps alone. The performance of Parareal is studied
for both the sub-critical and black hole case; our experiments show that Parareal generates substantial
speedup and, in the super-critical regime, can reproduce Choptuik’s black hole mass scaling law.

1. Introduction

Einstein’s field equations of general relativity (GR) consist of ten coupled, non-linear, hyperbolic-elliptic
partial differential equations (PDEs). Because gravity couples to all forms of energy, there is an enormous
dynamic range of spatiotemporal scales in GR. Hence, usually only the application of advanced numerical
methods can provide solutions and in numerical relativity [2, 4] extensive use of high-performance computing
(HPC) is made [28, 34].

Today, almost all HPC architectures are massively parallel systems connecting large numbers of compute
nodes by a high-speed interconnect. In numerical simulations, the power of these systems can only be
harnessed by algorithms that feature a high degree of concurrency; every algorithm with strong serial
dependencies can only provide inferior performance on massively parallel computers. For the solution of
PDEs, parallelization strategies have been developed mainly for spatial solvers. However, in light of the
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2 TIME PARALLEL GRAVITATIONAL COLLAPSE SIMULATION

rapid increase in the number of cores in supercomputers, methods that offer additional concurrency along
the temporal axis have recently begun to receive more attention.

The idea of parallelization-in-time was introduced in 1964 [37]. In the 1980s and 1990s, time and
spacetime multigrid methods were studied [24–26]. More recently, the now widely used time parallel method
Parareal was proposed [33]. Other recently introduced parallel-in-time methods are PFASST [13, 35],
RIDC [10], or MGRIT [14]. A historical overview is offered in [19].

Given the demonstrated potential of parallel-in-time integration methods for large-scale parallel sim-
ulations [44], these methods could be beneficial for the numerical relativity community. However, their
application is not straightforward and often it is unclear a priori if good performance can be achieved. In
this article, we therefore investigate the principal applicability of the time parallel Parareal method to solv-
ing Einstein’s equations describing spherical, gravitational collapse of a massless scalar field. The system
is also referred to as an Einstein-Klein-Gordon system because it is equivalent to a Klein-Gordon equation
expressed in the context of GR, i.e. on a back-reacting, curved geometry. It defines a basic gravitational
field theory and is of interest therefore not only in numerical relativity but also in, e.g., quantum grav-
ity [27, 31, 46]. A summary of numerically derived results is given in [23]; the work by Choptuik [8] brought
forward novel, physical results and is of particular interest here because we will show that Parareal correctly
reproduces the expected mass scaling law.

Mathematical theory shows that Parareal performs well for diffusive problems with constant coeffi-
cients [21]. For diffusive problems with space- or time-dependent coefficients, numerical experiments show
that Parareal can converge quickly too [32]. However, given the theory for basic constant-coefficient hy-
perbolic PDEs [21], it can be expected that Parareal applied to convection dominated problems converges
too slowly for meaningful speedup to be possible. Special cases with reasonable performance are discussed
in [17] and for certain hyperbolic PDEs it was found that some form of stabilization is required for Parareal
to provide speedup [7, 12, 20, 42]. Surprisingly, no stabilization is required for the equations describing
gravitational collapse; we demonstrate that plain Parareal can achieve significant speedup. A detailed an-
alytical investigation of why this is the case would definitely be of interest but is left out for future work.
One reason could be that we solve in characteristic coordinates for which the discretization is aligned with
the directions of propagation [18, 30].

The article is structured as follows: In Section 2 we define the system of Einstein field equations that
we solve using Parareal. In addition, we give details on the numerical approach and discuss the interplay
between Parareal and the particular structure of the spatial mesh. In Section 3 we discuss the Parareal
method. Then, in Section 4 numerical results are presented. Finally, in Section 5 we conclude with a
summary and discussion.

2. Equations

2.1. Gravitational collapse. The Einstein field equations in Planck units normalized to 4πG/c4 = 1 are

(2.1.1) Gµν = 2Tµν ,

where µ, ν ∈ {0, 1, 2, 3} index time (via 0) and space (via 1, 2, and 3).1 Once the non-gravitational matter
content is specified by a definition of the energy-momentum tensor Tµν , possibly along with equations of
state that together satisfy the continuity equations ∇µTµν = 0, Equation (2.1.1) defines a set of ten partial
differential equations for ten unknown metric tensor field components gµν .

2 In all generality, the equations
are coupled, non-linear, and hyperbolic-elliptic in nature. Six of the ten equations are hyperbolic evolution
equations, while the remaining four are elliptic constraints on the initial data; they represent the freedom
to choose spacetime coordinates. For the matter content, we consider a minimally coupled massless scalar
field φ with energy-momentum tensor

(2.1.2) Tµν = ∇µφ∇νφ−
1

2
gµνg

αβ∇αφ∇βφ.

For the metric tensor field gµν in spherical symmetry it is natural to introduce a parametrization in terms of
Schwarzschild coordinates (t, r). Here, t is the time coordinate of a stationary observer at infinite radius r,

1We omit the addition of the cosmological constant term Λgµν on the left-hand side in Equation (2.1.1) because observations

suggest 0 < Λ ≪ 1 (see, e.g., [29]); the term’s impact on black hole formation as studied here can be neglected.
2We use the Einstein summation convention.
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which measures the size of spheres centered at r = 0. In [8] the resulting Einstein field equations are analyzed
numerically. In particular, adaptive mesh refinement [5] is used to resolve the black hole formation physics.
In [22] the same investigation is carried out in double null or characteristic coordinates (τ, ρ) without mesh
refinement (see, however, [41, 45]). Finally, in [31] the effect of quantum gravity modifications on the
collapse is studied in adjusted characteristic coordinates. Here we use characteristic coordinates (τ, ρ) as
well but exclude quantum gravity modifications. Also, for simplicity, we will refer to τ as a time coordinate
and to ρ as a space coordinate.

Making the ansatz

(2.1.3) gµνdx
µdxν = −2∂ρrHdτdρ+ r2(dϑ2 + [sin(ϑ)dϕ]2)

for the metric tensor field and using an auxiliary field h for the spacetime geometry along with an auxiliary
field Φ for the matter content, the complete field equations are

(2.1.4) ∂τr = −
h

2
, ∂τΦ =

(H − h)(Φ− φ)

2r
,

for r and Φ, and

(2.1.5) ∂ρφ =
∂ρr

r
(Φ− φ), ∂ρH =

∂ρr

r
H(Φ− φ)2, ∂ρh =

∂ρr

r
(H − h),

for φ, H, and h (see [22]). Overall the system can be seen as a wave equation for the massless scalar field
φ on a back-reacting, curved geometry. Boundary conditions at (τ, ρ = τ) are r = 0 and regularity of Φ, φ,
H, and h, which implies Φ = φ and H = h at the boundary [11, 30]. Consistent initial data at (τ = 0, ρ)
are

(2.1.6) r =
ρ

2
, Φ = (1 + ρ∂ρ)φ,

where we choose for φ the Gaussian wave packet

(2.1.7) φ(0, ρ) = φ0
ρ3

1 + ρ3
exp

(

−

[

ρ− ρ0
δ0

]2
)

.

We also performed tests for initial data similar in shape to the hyperbolic tangent function much like
Choptuik did in [8] for purely serial time stepping. Since in this case we found Parareal’s performance to
resemble strongly that for the case of the Gaussian wave packet we do not include these results here. The
initial scalar field configuration is thus characterized by an amplitude φ0, mean position ρ0, and width δ0.
Depending on the value of these parameters, the solution to Equations (2.1.4) and (2.1.5) can describe a
bounce of the wave packet or black hole formation near the boundary at r = 0. A black hole appears when
the outward null expansion

(2.1.8) Θ+ =
1

r

√

2h

H
,

which measures the relative rate of change of a cross-sectional area element of a congruence of out-going
null curves, approaches zero [38]. The black hole mass is

(2.1.9) M =
r

2
,

evaluated at the point (τ+, ρ+) toward which Θ+ vanishes.

2.2. Numerical solution. The numerical grid is depicted in Figure 1a. It is parametrized by the charac-
teristic coordinates τ and ρ, which are used for numerical integration; τ is used as coordinate representing
time and ρ as coordinate representing space. Integration thus takes place on a right triangle with initial
data defined along the lower right-hand leg. Clearly, the spatial domain becomes smaller as the solution
is advanced in τ . Note that the domain is not exactly a right triangle because at the upper-most corner a
small sub-triangle is missing. This “buffer” zone of extent λ is needed for the spatial part of the numerical
stencil to fit. The computational domain thus consists of all points (τ, ρ) ∈ [0, L− λ]× [0, L] with L = 80,
λ = 0.625, and ρ ≥ τ .

As a time stepping method for the solution of the equations in (2.1.4), we use a second-order Lax-
Wendroff Richtmyer two-step method on a fine spacetime grid (see [30]). To employ the time parallel
method Parareal (see Section 3), we need a second, computationally cheap, time integration method. Here,
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also when the bounce occurs in τ .

Figure 1. The computational domain (left) and sub-critical gravitational scalar field evo-
lution (right).

we choose the explicit first-order Euler method on a coarse spacetime mesh. For Parareal to be efficient,
the cost of the coarse method has to be small compared to that of the fine one: by choosing a simple
first-order method on the coarse grid for C we obtain a good coarse-to-fine ratio (see Section 3.4). For
optimal speedup, the right balance between the difference in accuracy and difference in cost between C and
F has to be found.

For the integration in space of the equations in (2.1.5) we use a second-order Runge-Kutta method [30].
Snapshots of scalar field evolution resulting from the chosen fine grid discretization are shown in Figure 1b,
where φ evolves along constant lines of ρ until a bounce occurs at r = 0. The figure also shows how the
size of the domain decreases during the evolution: for τ = 0 the left boundary is at ρ = 0 while for τ = 20
it is at ρ = 20.

2.3. Mass scaling. In practice, the simulation terminates when a black hole forms because H grows
without bound in this case (see [11] for details). Figure 2a provides a simplified illustration of a black hole
region (dotted portion) and shows where the simulation comes to a halt (dashed line). Thus, to determine
the black hole mass M , we record minimal expansion values via the scalar (rΘ+)mi = minρ{rΘ

+} derived
from Equation (2.1.8). The last such recorded minimal value before the termination of the simulation
defines a characteristic coordinate (τ+, ρ+) (see again Figure 2a), which we can use to define an r and M
via Equation (2.1.9). The scalar (rΘ+)mi approaches 0 when (τ, ρ) nears (τ+, ρ+), as is shown in the lower
portion of Figure 2b.

Based on numerical experiments, Choptuik presents, among other things, a relation between the ampli-
tude φ0 of the Gaussian in Equation (2.1.7) and the black hole mass M [8]. He shows that there is a critical
value φ⋆

0 such that for φ0 < φ⋆
0 there is a bounce (sub-critical case), while for φ0 > φ⋆

0 there is a black hole
(super-critical case). Based thereon, he demonstrates that the black hole mass scales with φ0 − φ⋆

0 > 0
according to the law M ∝ (φ0 − φ⋆

0)
γ with γ being a positive constant of the same value for various initial

data profiles. We demonstrate that Parareal can correctly capture this black hole mass scaling law although
our coarse level Euler method alone cannot. Also, Parareal requires less wall-clock time than F, which can
be beneficial for the investigation of the high-accuracy demanding critical solution [8, 23] that requires the
simulation of numerous black holes [22]. This analysis however is omitted in this article and left for future
work.
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Figure 2. Illustrations to clarify super-critical gravitational collapse.

3. Parareal

3.1. Algorithm. Parareal [33] is a method for the solution of initial value problems

(3.1.1) ∂τu(τ) = f(τ, u(τ)), u(0) = u0, 0 ≤ τ ≤ T.

Here, as is outlined in the previous section, f comes from discretizing Equations (2.1.4) and (2.1.5), and
T = L−λ marks the end time. Parareal starts with a decomposition of the time domain into Npr temporal
subintervals (TSs) defined in terms of times τp such that

(3.1.2) [τ1, τ2] ∪ ... ∪ [τNpr−1, τNpr ] = [0, L− λ].

Now denote by F some serial time integration method of high accuracy and cost (in our case this is the
second-order Lax-Wendroff Richtmyer two-step method), and by C a cheap and possibly much less accurate
method (in our case this is the explicit first-order Euler method). Instead of running the fine method
subinterval by subinterval serially in time, Parareal performs the iteration

(3.1.3) up+1
[i+1] = C

(

up

[i+1]

)

− C

(

up

[i]

)

+ F

(

up

[i]

)

,

where super-scripts index time or process number p ∈ {1, ..., Npr} and sub-scripts iterations i ∈ {1, ..., Nit}.
The advantage is that the expensive computation of the fine method can be performed in parallel over all
TSs at once. Here, we assume that the number of TSs is equal to the number Npr of cores (or processes)
used for the time direction. Good speedup can be obtained if C is fast in comparison to F but still accurate
enough for Parareal to converge rapidly. See Section 3.4 for a more detailed discussion of Parareal’s speedup.

In Section 2.2 we hinted at the interchangeability of the characteristic coordinates τ and ρ for the
numerical integration. Therefore, theoretically, Parareal could also be used for the spatial integration to
simultaneously parallelize both time and space. However, such an interweaving of two Parareal iterations
is not discussed in this article; it is put aside for future work.

3.2. Spatial coarsening in Parareal. In order to make C cheaper and improve speedup, we not only use
a less accurate time stepper for C but also employ a coarsened spatial discretization with a reduced number
of degrees-of-freedom. Therefore, we need a spatial interpolation I and restriction R operator. In this case
(see, e.g., [15]), the Parareal algorithm is given by

(3.2.1) up+1
[i+1] = IC

(

Rup

[i+1]

)

− IC
(

Rup

[i]

)

+ F

(

up

[i]

)

.
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As restriction operator R we use point injection. For the interpolation operator I we use polynomial (i.e.
Lagrangian) interpolation of order 3, 5, and 7.3 It has been shown that, even for simple toy problems,
convergence of Parareal can deteriorate if spatial coarsening with low-order interpolation is used. As
demonstrated in Section 4.1, this also holds true for the here studied problem.

3.3. Implementation. We have implemented two different realizations of Parareal. In a “standard” ver-
sion Pst (see Listing 3a), the Parareal correction is computed on each TS up to a uniformly prescribed
iteration number. In contrast, in the “modified” implementation Pmo (see Listing 3b), Parareal corrections
are only performed on TSs where the solution may not yet have converged. Because Parareal always con-
verges at a rate of at least one TS per iteration, we only iterate on a TS if its assigned MPI rank is greater
than or equal to the current Parareal iteration number (see line 8 in Listing 3b). Otherwise, no further
iterations are needed and performed, and the process remains idle. Thus, as the iteration progresses, more
and more processes enter an idle state. In an implementation to be realized in future work, the criterion
for convergence used here will be replaced by a check for some residual tolerance [3]. This could negatively
affect the observed performance since it requires essentially one more iteration to compute the residual.4 It
also bears mentioning that it has very recently been demonstrated that parallel-in-time integration methods
are good candidates to provide algorithm-based fault tolerance [36, 43].

Another difference between the standard and modified implementation is that in the former, after each
time parallel fine evolution, a copy of the fine grid solution has to be created (see line 10 in Listing 3a). In
the modified Listing 3b this copying is circumvented by the use of two alternating indices “j” and “k” in
lines 9 and 10, respectively. The iteration number determines their value which, in turn, determines the
fine grid solution buffer that is used to send or receive data by means of the corresponding MPI routines
(see lines 14 and 22 in Listing 3b). The two implementations also have slightly different requirements in
terms of storage. As can be seen in line 15 in Listing 3a, in Pst on the first TS or, equivalently, for the
first MPI rank, the fine grid solution has to be assigned initial data at the beginning of each iteration. This
requires one additional buffer to be held in storage. Other than that both implementations need one coarse
grid solution buffer and three fine grid buffers for each TS.

3.4. Speedup. We denote by Rco the coarse and by Rfi the fine time stepper’s runtime. Recalling that
Nit denotes the number of iterations required for Parareal to converge given Npr processes, Parareal’s
theoretically achievable speedup is

(3.4.1) S =

[(

1 +
Nit

Npr

)

Rco

Rfi
+

Nit

Npr

]

−1

≤ min

{

Npr

Nit
,
Rfi

Rco

}

,

as is discussed, e.g., in [35]. The estimate is valid only for the ideal case, where runtimes across subintervals
are perfectly balanced. In the presence of load imbalances in time however, i.e. differences in the runtimes of
C and F across TSs, maximum speedup is reduced [32]. Because the spatial domain we consider is shrinking
in time, a tailored decomposition of the time axis has to be used to provide well balanced computational
load, as is discussed in the next section.

3.5. Load balancing. Because we integrate over a triangular computational spacetime domain (see Fig-
ure 1a), a straight forward, uniform partitioning of the time axis results in imbalanced computational load
in time. The first load balancing (LB) strategy, which henceforth we will refer to as LB1, is based on this
straight forward, basic decomposition of the time axis. It assigns to each TS the same number of time steps
without regard to their computational cost. Because of the shrinking domain, TSs at later times carry fewer
spatial degrees-of-freedom so that the per-process runtimes Rp

co and Rp
fi of the coarse and fine time stepper,

respectively, are larger for the earlier TSs than for the later ones. Figure 4a shows how this partition leads
to an imbalanced computational load in time because the portion extending across the “early-middle” TS
[e,m] covers a larger area and thus a larger number of grid points than the portion over the “middle-late”
TS [m, l].

3We also tested barycentric interpolation [6, 16] but found the performance in terms of runtimes and speedup (see Sec-
tions 3.4 and 4) to be inferior.

4In [3] a version of Parareal is discussed that can be used to proceed the integration beyond a given end time. It is based
on an optimized scheduling of those tasks which become idle in our implementation.
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1 i f p > 1 then // Initialization

2 Coarse ( co ; τ1 → τp )

3 In te rp ( co 7→ f i [ 0 ] )
4 i f p < Npr then // Prediction

5 Coarse ( co ; τp → τp+1 )

6 In te rp ( co 7→ f i [ 2 ] )
7 for i = 1 : Nit do // Iteration

8 i f p < Npr then

9 Fine ( f i [ 0 ] ; τp → τp+1 )
10 f i [ 1 ] = f i [ 0 ]
11 f i [ 1 ] −= f i [ 2 ]

12 i f p > 1 then

13 MPI Recv ( f i [ 0 ] ; p ⇐ p− 1)

14 else

15 I n i t ( f i [ 0 ] )
16 Re s t r i c t ( f i [ 0 ] 7→ co )

17 i f p < Npr then

18 Coarse ( co ; τp → τp+1 )
19 In te rp ( co 7→ f i [ 2 ] )

20 f i [ 1 ] += f i [ 2 ]
21 i f p < Npr then

22 MPI Send ( f i [ 1 ] ; p ⇒ p+ 1)

(a) The standard Parareal implementation Pst.

1 i f p > 1 then // Initialization

2 Coarse ( co ; τ1 → τp )

3 In te rp ( co 7→ f i [ 0 ] )
4 i f p < Npr then // Prediction

5 Coarse ( co ; τp → τp+1 )

6 In te rp ( co 7→ f i [ 2 ] )
7 for i = 1 : Nit do // Iteration

8 i f p >= i then

9 j = ( i +1) % 2
10 k = i % 2
11 i f p < Npr then

12 Fine ( f i [ j ] ; τp → τp+1 )
13 i f p > i then

14 MPI Recv ( f i [ k ] ; p ⇐ p− 1)

15 f i [ j ] −= f i [ 2 ]
16 Re s t r i c t ( f i [ k ] 7→ co )

17 i f p < Npr then

18 Coarse ( co ; τp → τp+1 )
19 In te rp ( co 7→ f i [ 2 ] )

20 f i [ j ] += f i [ 2 ]
21 i f p < Npr then

22 MPI Send ( f i [ j ] ; p ⇒ p+ 1)

(b) The modified Parareal implementation Pmo.

Figure 3. Pseudo code for the standard and modified Parareal implementation. The
variable “co” denotes the coarse grid solution and “fi” an array of three fine grid buffers.
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(a) Imbalanced load in time

from load balancing LB1.
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ρ

τ

τ = e

τ
=

m

τ = l

(b) Balanced load in time from

load balancing LB2.

Figure 4. Illustration of two different approaches for the decomposition of the time do-
main, i.e. LB1 (left) and LB2 (right).

Figure 4 suggests that early in time TSs should have a shorter extent in time than later ones. Thus,
in the second strategy, which in the following we will refer to as LB2, we also consider the cost of time
steps in order to balance the runtime Rp

co + Rp
fi over all processes p. We use a decomposition of the time

axis in TSs such that the sum of the total coarse and fine runtime is balanced over all TSs, i.e. such that
Rco +Rfi = Npr(R

p
co +Rp

fi) for any process p. This is done by a bisection approach, making use of the fact
the we use explicit rather than implicit time integrators (cf. the discussion in [32]), and thus that the cost
of a time step from τ to τ +∆τ is directly proportional to the number of spatial degrees-of-freedom at τ .
Therefore, the total spacetime domain is first divided into two parts of roughly equal number of grid points
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as is sketched in Figure 4b. Then, each part is divided again and again until the required number of TSs
is reached. Note that this limits the possible numbers of TSs to powers of 2.

Figure 5 shows Vampir5 traces for one simulation featuring LB1 (Figure 5a) and one LB2 (Figure 5b).
The horizontal axes correspond to runtime, while the vertical axes depict MPI rank numbers from 1 (lower)
to 8 (upper). In each case, three Parareal iterations are performed. Green regions indicate the coarse and
fine integrators carrying out work. Time spent in MPI receives (including waiting time) is shown in red.
We observe how LB1 leads to load imbalance and incurs significant wait times in processes handling later
TS. In contrast, the processes’ idle times (shown in red) in MPI receives are almost invisible in the case of
LB2. Elimination of wait times leads to a significant reduction in runtime and increase in speedup, as will
be shown in Section 4.

(a) Vampir trace for LB1. The Parareal runtime is Rpa = 7.964 (s).

(b) Vampir trace for LB2. The Parareal runtime is Rpa = 5.436 (s).

Figure 5. Vampir traces for the implementation Pmo with (Npr, Nit) = (8, 3) for two
different load balancing strategies.

4. Results

Speedup and runtime measurements were performed on the Cray XC40 supercomputer Piz Dora6 at the
Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland. It features 1,256 compute nodes,
which all hold two 12-core Intel Xeon E5-2690v3 processors. This results in a total of 30,144 compute cores
and a peak performance of 1.254 PFlops; it occupies position 56 in the Top500 November, 2014 list.7 On
Piz Dora, we used the GNU compiler collection8 version 4.9.2 and the runtimes we provide do not include
the cost of I/O operations. Some simulations measuring convergence were performed on a machine located
at the Università della Svizzera italiana that is maintained by members of the Institute of Computational
Science of the Faculty of Informatics.9

For the results presented in the following we use a coarse grid resolution of (∆τ)co = (∆ρ)co = ∆co =
L/2,048 ≈ 0.039 and a fine grid resolution of ∆fi = ∆co/8 ≈ 0.005. We have also determined a reference

solution to approximately measure the serial fine stepper’s discretization error. For this we have used again
the serial fine time stepper but with a step size of ∆re = ∆fi/4 ≈ 0.001.

4.1. Sub-critical. First we consider the sub-critical case, where no black holes form. Figure 6 shows for
Npr = 256 and two different sets of initial data parameters the relative defect

(4.1.1) D[i] =
‖r[i] − rfi‖2

‖rfi‖2
,

5https://www.vampir.eu/
6http://user.cscs.ch/computing systems/piz dora/
7http://www.top500.org/list/2014/11
8https://gcc.gnu.org
9https://www.ics.usi.ch/index.php/ics-research/resources

https://www.vampir.eu/
http://user.cscs.ch/computing_systems/piz_dora/
http://www.top500.org/list/2014/11
https://gcc.gnu.org
https://www.ics.usi.ch/index.php/ics-research/resources
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which measures the difference between the Parareal solution r[i] after i iterations and the serial fine solution
rfi as a function of the characteristic coordinate τ .

In Figure 6a we use the initial data parameters (φ0, ρ0, δ0) = (0.035, 20, 1), which results in an “early”
bounce of the wave packet at about τ = 20. For the simulations in Figure 6b, the values are (φ0, ρ0, δ0) =
(0.01, 75, 1), which leads to a “late” bounce at about τ = 75. Defects are plotted for Nit ∈ {1, 2, 3, 4}
along with the serial coarse and fine solution’s estimated discretization error ‖rco − rre‖2/‖rfi‖2 and ‖rfi −
rre‖2/‖rfi‖2 labeled “Coarse” and “Fine”, respectively. We observe that in Figure 6a, the data for Nit = 3
is somewhat jagged because for LB2 there are various start and end times of TSs near the bounce region.
In any case, Parareal converges in two iterations: for Nit = 2, the defect is below the discretization error for
all τ . In fact, without the bounce region near τ = 20, only one iteration would be required for convergence.
For the late bounce scenario in Figure 6b, we also observe that the rate of convergence at the final time
τ = L− λ gives an indication of the convergence at all τ . In the following we thus focus on convergence at
the final time. Convergence for the other evolved field Φ is not shown but was found to be at least as good
as for r.10
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Figure 6. Defect in r between Parareal and the fine method over time for fixed Npr = 256.

Figures 7a and 7b illustrate the defect of Parareal at the end of the simulation at τ = L− λ for various
values of Npr with third-order interpolation (left) and fifth-order interpolation (right). For third-order
interpolation, Parareal does not converge at all. The configuration stalls at a defect of about 10−2 until the
iteration count equals Npr. There, Parareal converges by definition but cannot provide any speedup. In
contrast, Parareal shows good convergence behavior for fifth-order interpolation. For Npr less than 64, the
defect of Parareal falls below the approximate discretization error of the fine method after a single iteration.
Otherwise, for Npr ≥ 64 up to Npr = 512, two iterations are required.

The resulting speedups with correspondingly adjusted values for Nit are shown in Figure 7c for both load
balancing strategies (see the discussion in Section 3.5). In addition, the projected speedup according to
Equation (3.4.1) is shown. The fine-to-coarse ratio Rfi/Rco was determined experimentally and found to be
about 74. Up to Npr = 64, for the advanced load balancing, speedup closely mirrors the theoretical curve
while the basic load balancing performs significantly worse. For Npr ≥ 64, measured speedups fall short
of the theoretical values, peak at Npr = 256, and then start to decrease. Note that the theoretical model
(blue line in Figure 7c) does take into account the scaling limit from the serial correction step according to
Amdahl’s law. The difference between theory and measured speedup is therefore due to other overheads
(communication and transfer between meshes) as analysed below.

10Convergence seems to be unaffected by the load balancing. In tests not documented here we found that for LB1 it takes
two iterations for Parareal to converge as well.
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Although the load balancing strategy LB2 results in significantly better speedup than the basic approach
LB1, the peak value provided by both schemes is essentially the same. This is because for increasingly large
numbers of cores, the computational load per TS eventually becomes small and imbalances in computational
load insignificant. Instead, runtime is dominated by overhead from, e.g., communication in time. The
communication load is independent of the chosen load balancing and depends solely on the number of TSs;
for every TS one message has to be sent and received once per iteration (save for the first and last TS).
Therefore, it can be expected that ultimately both approaches to load balancing lead to comparable peak
values. Below we demonstrate that the saturation in speedup is related to a significant increase in time
spent in MPI routines; eventually, communication cost starts to dominate over the computational cost left
on each time slice and the time parallelization saturates just as spatial parallelization does.

1 8 64 512

10
−14

10
−11

10
−8

10
−5

10
−2

Iterations Nit

D
e
fe

c
t
D

[i
]
a
t
τ
=

L
−

λ

Npr = 2

Npr = 8

Npr = 32

Npr = 128

Npr = 512

Coarse

Fine

(a) Defect for late bounce and
interpolation order 3.

1 8 64 512
10

−15

10
−12

10
−9

10
−6

10
−3

Iterations Nit

D
e
fe

c
t
D

[i
]
a
t
τ
=

L
−

λ

Npr = 2

Npr = 8

Npr = 32

Npr = 128

Npr = 512

Coarse

Fine

(b) Defect for late bounce and
interpolation order 5.

2 8 32 128 512

0

15

30

45

60

75

90

Cores Npr

S
p
e
e
d
u
p
S

Theory
LB2
LB1

(c) Parareal speedup for fifth-order
interpolation.

Figure 7. Parareal’s performance for the sub-critical case in terms of convergence for
polynomial interpolation orders 3 and 5, and in terms of speedup.

Figure 8 illustrates the reason behind the drop-off in speedup beyond Npr = 256. First, define

(4.1.2) Rp
pa = Rp

co +Rp
fi +

∑

st

Rp
st,

where Rp
st denotes runtime spent in stages that are different from coarse and fine integration on the TS

assigned to process p. For now, we consider only overhead from sending and receiving data as well as from
interpolation; other overheads are not further analyzed here. Next, we introduce the total overhead on a
TS as the sum of all stage-runtimes or

(4.1.3) Op
to =

∑

st

Rp
st,

which is also the runtime spent neither in the coarse nor fine integrator for a given p. The average overhead
is now defined as the geometric mean value of Op

to over all TSs, which is

(4.1.4) Oav =

∑Npr

p=1 O
p
to

Npr
.

Finally, we define the relative overhead for individual stages on a TS as

(4.1.5) Op
st =

Rp
st

Rp
pa

,

where Rp
pa is the runtime of Parareal at processor p. Ideally, as is assumed for the derivation of the speedup

model given in Equation (3.4.1), Rp
co and Rp

fi are the dominant costs. In this case, Rp
co +Rp

fi ≈ Rp
pa so that

according to Equation (4.1.2) we have Op
to ≈ 0 and therefore Oav ≈ 0 by definition. However, as can be seen

in Figure 8a, Oav is small only for small values of Npr. For Npr ≥ 32 it increases rapidly, which indicates
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that the overhead from communication and other sources starts to play a more dominant role when Npr is
increased.

Figure 8b shows the relative overhead from Equation (4.1.5) for Npr ∈ {32, 512} and p ∈ {1, ..., Npr}
for the three different stages st ∈ {Interpolation, Send,Receive}; “Send” and “Receive” refer to the corre-
sponding MPI routines. There is a significant increase in relative overhead in all three stages as the number
of cores grows, causing the eventual drop-off in speedup for increasing Npr.
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Figure 8. Overhead from communication and other sources increases with Npr, which
leads to Parareal’s speedup decay.

4.2. Super-critical. We consider now the more complex case in which a black hole forms at some time
during the simulation. The goal is to compute the black hole’s position via Equation (2.1.8) so that its
mass can be determined from Equation (2.1.9) (see Section 2.3). Because the characteristic coordinates
(τ, ρ) do not allow us to continue the simulation past the black hole formation event, we need a way to keep
the simulation from terminating when Θ+ approaches 0 (see Figure 2b).

To avoid the need to adaptively modify the decomposition of the time domain, we carry out the super-
critical case study using initial data parameter values near (φ0, ρ0, δ0) = (0.01, 75, 1), which we have also
used for the results in Figure 6b. With these parameters and in particular for φ0 ≥ 0.01, for all investigated
partitions of the time axis with Npr ≤ 256, the black hole generated by the fine time integrator forms in
the last TS unless φ0 becomes too large (ρ0 and δ0 are fix). Thus, Parareal can be used over all TSs except
for the last one, where only the fine method is executed to compute the black hole’s position. The C++
implementation uses a try-throw-catch approach to prevent complete termination of the simulation; if the
radicand in the definition of Θ+ in Equation (2.1.8) fails to be non-negative, an exception is thrown such
that the Parareal iteration can continue. As the Parareal iteration converges and better and better starting
values are provided for F on the last TS, the accuracy of the computed black hole position improves. A
more general implementation aiming at production runs would need to allow for black hole formation in
TSs before the last one but this is left for future work. In this article, the focus lies on investigating the
principal applicability of Parareal to the simulation of gravitational collapse.

Figure 9a depicts the Choptuik scaling that results from solutions computed with Parareal for Npr = 256
after the first three iterations. Table 1 lists the generated values of φ⋆

0 and γ (see Section 2.3), and errors
compared to the value provided by the fine integrator, which agrees with the result in [22]. As can be
seen in Figure 9a, the coarse integrator C alone cannot adequately resolve black holes with φ0 − φ⋆

0 . 10−9

(they are too small for C to be “visible”) and its γ is wrong by about 20%. This means that the coarse
method is too “coarse” in the sense that, on its own, it cannot correctly capture the physics underlying the
investigated problem. Nonetheless, Parareal is not only capable of generating the correct black hole physics
but can do so after only one iteration.
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Figure 9. Parareal’s performance for the super-critical case.

φ⋆
0 γ

Value Error (%) Value Error (%)

Coarse 0.01057748 7.25 · 10−1 0.458 20.21
Nit = 1 0.01055915 5.51 · 10−1 0.377 1.05
Nit = 2 0.01050240 1.01 · 10−2 0.370 2.89
Nit = 3 0.01050135 9.52 · 10−5 0.381 0
Fine 0.01050134 0 0.381 0

Table 1. Approximate values and relative errors for the critical amplitude φ⋆
0 and resulting

straight line slope γ.

Figure 9b visualizes the speedup achieved in the super-critical case including the theoretical estimate
according to Equation (3.4.1). The numbers of iterations required for Parareal to converge are derived
from an analysis just like the one plotted in Figure 7b for the sub-critical case and basically the values are
identical. Up to 64 processes, good speedup close to the theoretical bound is observed. For larger core
numbers however, speedup reaches a plateau and performance is no longer increasing. As in the sub-critical
case, as Npr increases, the computing times per TS eventually become too small and Parareal’s runtime
becomes dominated by, e.g., communication (see Figure 8). Even though the temporal parallelization
eventually saturates, substantial acceleration of almost a factor of 30 using 128 cores in time is possible,
corresponding to a parallel efficiency of about 23%.

5. Conclusion

The article assesses the performance of the parallel-in-time integration method Parareal for the numerical
simulation of gravitational collapse of a massless scalar field in spherical symmetry. It gives an overview
of the dynamics and physics described by the corresponding Einstein field equations and presents the
employed numerical methods to solve them. Because the system is formulated and solved in characteristic
coordinates, the computational spacetime domain is triangular so that later time steps carry fewer spatial
degrees-of-freedom. A strategy for balancing computational cost per subinterval instead of just number of
steps is discussed and its benefits are demonstrated by traces using the Vampir tool. Numerical experiments
are presented for both the sub- and super-critical case. Parareal converges rapidly for both and, for the
latter, correctly reproduces Choptuik’s mass scaling law after only one iteration despite the fact that the
used coarse integrator alone generates a strongly flawed mass scaling law. This underlines the capability of
Parareal to quickly correct a coarse method that does not resolve the dynamics of the problem. The results
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given here illustrate that Parareal and presumably other parallel-in-time methods as well can be used to
improve utilization of parallel computers for numerical studies of black hole formation.

Multiple directions for future research emerge from the presented results. Evaluating performance gains
for computing the critical solution [8, 23] would be valuable. Next, complexer collapse scenarios such
as in the Einstein-Yang-Mills system [9], axial symmetry [39], or binary black hole spacetimes [40] could
be addressed. An extended implementation of Parareal could utilize a more sophisticated convergence
criterion [3], a more flexible black hole detection, and parallelism in space via, e.g., again Parareal. The
latter would be possible because the integration along the characteristic we took to represent space is for
the solution of initial value problems just like in the temporal direction. Another topic of interest is that
of adaptive mesh refinement [1]: how it can be used efficiently in connection with Parareal or other time
parallel methods seems to be an open problem. As discussed in the introduction, a mathematical analysis of
the convergence behavior of Parareal for Einstein’s equations would be of great interest as well, particularly
since the good performance is unexpected in view of the negative theoretical results for basic hyperbolic
problems. Finally, incorporating a parallel-in-time integration method into a software library widely used
for black hole or other numerical relativity simulations would be the ideal way to make this new approach
available to a large group of domain scientists.11
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