This is a repository copy of *Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/115093/

Article:
Dunning, L.T., Lundgren, M.R., Moreno-Villena, J.J. et al. (5 more authors) (2017)
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives. Evolution. ISSN 0014-3820

https://doi.org/10.1111/evo.13250

This is the peer reviewed version of the following article: Dunning, L. T. et al (2017), Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives. Evolution, which has been published in final form at https://doi.org/10.1111/evo.13250. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Introgression and repeated co-option facilitated the recurrent emergence of C₄ photosynthesis among close relatives

Luke T. Dunning¹,², Marjorie R. Lundgren¹,², Jose J Moreno-Villena¹,², Mary Namaganda³, Erika J. Edwards⁴, Patrik Nosil², Colin P. Osborne², Pascal-Antoine Christin²,⁵

¹ These authors contributed equally to the work.
² Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
³ Makerere University, Kampala, Uganda.
⁴ Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
⁵ Corresponding author: p.christin@sheffield.ac.uk, +44-114-222-0027

Running title: Complex transitions among photosynthetic types

Keywords: ancestral state, complex trait, co-option, species tree, reticulate evolution

Data archival location: All raw RNA-Seq data have been deposited in the NCBI Sequence Read Archive (project identifier SRP072730), and transcriptome assemblies are deposited in the NCBI Transcriptome Shotgun Assembly repository (Bioproject PRJNA310121).

Acknowledgments

This work was funded by a Royal Society Research Grant (grant number RG130448) to PAC. PAC and PN are supported Royal Society University Research Fellowships (grant numbers URF120119 and URF130423, respectively), LTD is supported by a NERC grant (grant number NE/M00208X/1), and MRL is supported by an ERC grant (grant number ERC-2014-STG-638333).
Abstract

The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origin of C₄ photosynthesis, an adaptation to warm and dry conditions, in the grass *Alloteropsis*. We dissect the C₄ trait into its components, and show two independent origins of the C₄ phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C₄ state from a common ancestor with an intermediate phenotype that had some C₄ anatomical and biochemical components. Molecular dating of C₄ genes confirms the introgression of two key C₄ components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C₄ components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Introduction

Inferences of transitions among character states along species phylogenies provide powerful tools to test specific hypotheses about the timing and rate of functional diversification, correlations among functional and ecological traits (e.g., Pagel 1999; Edwards et al. 2010; Danforth et al. 2013; Moreau and Bell 2013; McGuire et al. 2014; Halliday et al. 2016), and speciation rates (Rabosky et al. 2013; Cantalapiedra et al. 2017; Cooney et al. 2017). However, distinguishing between a single origin of a trait with subsequent losses versus multiple independent origins can be problematic (Whiting et al. 2002; Pagel 2004; Wiens et al. 2006; Gamble et. al. 2012), particularly when some character states affect the rates of speciation and/or extinction, when rates of transitions are high and asymmetrical, or variable among clades and through time (Maddison 2006; Goldberg and Igic 2008; Beaulieu et al. 2013; Igic and Busch 2013; King and Lee 2015). Indeed, transition rates might be higher in taxonomic groups possessing evolutionary precursors that increase the likelihood of evolving a specific trait (Blount et al. 2008, 2012; Marazzi et al. 2012; Christin et al. 2013a, 2015; Werner et al. 2014). This can lead to an unbalanced distribution of character states across the tree, with clusters forming in certain clades. However, a low rate of origins would lead to similar patterns if the rate of reversals is high (Wiens 1999; Danforth et al. 2003; Trueman et al. 2004; Pyron and Burbink 2014). Difficulties worsen if hybridization and introgression disconnect the history of underlying traits from the species tree (Pardo-Diaz et al. 2012; Meier et al. 2017).

An alternative approach to analysing the phenotypes as different character states is to decompose them into their constituent parts, then carefully analyse the evolution of each element independently to understand how the trait has been assembled or lost (Christin et al. 2010; Oliver et al. 2012; Niemiller et al. 2013; Kadereit et al. 2014). The use of distinct
components can be interpreted as evidence for multiple origins, while reversals could leave a
signature of the lost trait that can be detected when components are compared with those from
species that never evolved it (Protas et al. 2006; Christin et al. 2010; Oliver et al. 2012; Niemiller
et al. 2013). Identifying the mutations that underlie a trait further helps to distinguish shared
origins and reversals (Igic et al. 2006; Shimizu et al. 2008; Niemiller et al. 2013; Meier et al.
2017). Evaluating the number of origins of each component of a complex trait would reconstruct
the order of modifications that led to the trait of interest. This approach is applied here to the
photosynthetic diversity exhibited within a five-species taxonomic group.

C₄ photosynthesis is a complex phenotype that improves the efficiency of carbon
fixation in warm and dry conditions when compared to the ancestral C₃ photosynthetic pathway
(Sage et al. 2012; Atkinson et al. 2016). The C₄ advantages are achieved by increasing the
concentration of CO₂ around Rubisco, the enzyme responsible for inorganic carbon fixation in
the Calvin cycle of all photosynthetic organisms (von Caemmerer and Furbank 2003; Sage et al.
2012). To function, C₄ photosynthesis requires the co-ordinated action of numerous anatomical
and biochemical components that lead to the emergence of a novel biochemical pathway, usually
across two types of cells; the mesophyll and bundle sheath cells (Hatch 1987; Prendergast et al.
1987; Gowik et al. 2011; GPWGII 2012; Bräutigam et al. 2014). Besides the increased
expression of genes co-opted for a C₄ function, several other changes are known to occur during
the evolution of C₄ photosynthesis, including: an expansion of bundle sheath tissue, a
concentration of chloroplasts within it, and the adaptation of the enzymes to the new catalytic
context (Fig. 1; Bläsiing et al. 2000; von Caemmerer and Furbank 2003; McKown and Dengler
Despite its apparent complexity, C₄ photosynthesis evolved multiple times independently, and is present in distantly related groups of plants (Sinha and Kellogg 1996; Kellogg 1999; Sage et al. 2011). As with any complex trait, C₄ photosynthesis likely evolved in incremental steps, via stages that are functionally intermediate and gradually increase carbon assimilation in warm and dry conditions (Fig. 1; Sage et al. 2012; Heckmann et al. 2013; Williams et al. 2013; Mallmann et al. 2014; Christin and Osborne 2014). An increase in bundle sheath size and the relocation of the chloroplasts/Rubisco to these cells can sustain a photorespiratory bypass (Hylton et al. 1988; Bräutigam and Gowik 2016). Subsequent increases in C₄ enzyme abundances can generate a weak C₄ cycle, which assimilates some of the atmospheric CO₂, complementing the C₃ cycle in C₃+C₄ plants (referred to as 'type II C₃-C₄ intermediates' in the specialized literature; Fig. 1; Heckmann et al. 2013; Mallmann et al. 2014). The transition to a full C₄ state involves further increases of the bundle sheath tissue and gene expression, while selective pressures adapt the C₄ enzymes for the new biochemical context (Fig. 1; Bläsing et al. 2000; McKown and Dengler 2007).

In the angiosperm phylogeny, C₄ taxa form clusters, many of which have multiple C₄ clades that are separated by non-C₄ branches (Sage et al. 2011; GPWGII 2012). Thus, establishing past photosynthetic transitions is difficult when photosynthetic type is modeled as a simple binary character (Ibrahim et al. 2009; Christin et al. 2010; Hancock and Edwards 2014; Bohley et al. 2015; Fisher et al. 2015; Washburn et al. 2015). Overall, non-homology of key C₄ components among some closely related C₄ groups, including the cells, enzymes, and genes modified to generate the C₄ pathway (Prendergast et al. 1987; Soros and Dengler 2001; Bräutigam et al. 2014; Lundgren et al. 2014; Wang et al. 2014), points to a predominance of C₄ origins (Sinha and Kellogg 1996; Christin and Besnard 2009; Christin et al. 2010). However, the
possibility of evolutionary reversals to a non-\(\text{C}_4\) state is still debated (e.g. Kadereit et al. 2014; Bohley et al. 2015; Washburn et al. 2015). Furthermore, some components of the \(\text{C}_4\) phenotype (e.g. expansion of bundle sheaths and migration of chloroplasts; Fig. 1) may have evolved relatively few times, and have then been recurrently utilized for independent transitions to \(\text{C}_3+\text{C}_4\) or \(\text{C}_4\) photosynthesis (Christin et al. 2011, 2013a).

One of the proposed candidates for an evolutionary reversal from \(\text{C}_4\) to \(\text{C}_3\) is in the grass genus *Alloteropsis* (Ibrahim et al. 2009). Within this genus, the species *Alloteropsis semialata* contains \(\text{C}_3\), \(\text{C}_3+\text{C}_4\), and \(\text{C}_4\) genotypes (Ellis 1974; Brown 1975; Lundgren et al. 2016). In molecular phylogenies based on either plastid or nuclear markers, this species is sister to the \(\text{C}_4\) *A. angusta*, and the two species form a monophyletic clade sister to the three remaining closely-related \(\text{C}_4\) species: *A. cimicina*, *A. paniculata*, and *A. papillosa* (Ibrahim et al. 2009; Christin et al. 2012; Olofsson et al. 2016). The \(\text{C}_4\) *A. semialata* and *A. cimicina* use different cell types for the segregation of \(\text{C}_4\) reactions (Renvoize 1987), which suggests independent realizations of \(\text{C}_4\) photosynthesis (Christin et al. 2010). However, the evolutionary origins of \(\text{C}_4\) biochemistry and the situation within the *A. angusta* / *A. semialata* group remain largely unexplored.

In this study, we focus on the genus *Alloteropsis* and its \(\text{C}_3\) outgroup, to test the competing hypotheses of multiple origins versus fewer origins followed by reversals, independently for each \(\text{C}_4\) component. A \(\text{C}_4\) phenotype generated via of distinct cells, genes, or amino acid mutations would indicate independent origins. In contrast, a reversal may lead to a derived state that retains traces of its past \(\text{C}_4\) state when compared to the ancestral one (i.e. approximated by the \(\text{C}_3\) outgroup here). We combined different approaches to investigate different components of the complex \(\text{C}_4\) trait. (i) Focusing on anatomical characters, we evaluate
the most likely number of episodes of movement of chloroplasts to the bundle sheath, and
expansion of this tissue. (ii) Using transcriptome analyses to estimate gene expression, we then
determine the most likely number of origins of a C₄ cycle via the upregulation of known C₄
photosynthetic genes. (iii) The number of episodes of enzyme adaptation for the C₄ cycle is
estimated using positive selection analyses, with scenarios corresponding to episodes of
adaptation along different sets of branches. (iv) Finally, we compare divergence times across
genes, to detect potential introgression of C₄ components, as suggested within this genus for two
C₄ genes (Olofsson et al. 2016). Our multifaceted effort highlights the power of comparative
analyses that directly consider genes and other components involved in the trait of interest, rather
than modeling complex phenotypes as states of a single character. Using this approach, we show
that recurrent origins of C₄ photosynthesis in Alloteropsis arose via a complex mixture of co-
option of traits increasing C₄ accessibility, hybridization, and independent adaptation of the
phenotype.

Methods

Taxon Sampling

The different datasets were obtained from plants grown under controlled conditions (See
Supplementary Methods 1.1 for detailed description of growth conditions), including one
Alloteropsis cimicina (C₄) accession, one Alloteropsis paniculata (C₄) accession, two
Alloteropsis angusta (C₄) accessions, and up to ten different Alloteropsis semialata accessions
collected from separate populations that encompass the global genetic and photosynthetic
diversity of this species (one C₃, two C₃+C₄ intermediates with a weak C₄ cycle, and seven C₄
accessions; Table S1; Lundgren et al. 2016). The over representation of C₄ A. semialata
accessions mirrors their natural abundance, with C₄ accessions spread throughout Africa, Asia, and Australia, C₃ accessions only reported in Southern Africa, and C₃+C₄ individuals restricted to central East Africa (Lundgren et al. 2015). We also make use of species representing the C₃ sister group to *Alloteropsis* (*Panicum pygmaeum* and *Entolasia marginata*), previously identified using plastid markers (GPWGII 2012). Using the above taxa, we conduct four complementary sets of analyses, each providing insight into the origins or spread of distinct components of C₄ in *Alloteropsis*.

i) Comparing leaf anatomies among photosynthetic types

Leaf cross sections were analyzed to identify the leaf compartment being used for the segregation of Rubisco and the modifications that increased the proportion of bundle sheath tissue in C₃+C₄ and C₄ accessions. Co-option of different tissues and distinct modifications among accessions would support independent origins, while a reversal should result in the leaves of C₃ individuals having reverted to a state that retain traces of their past C₄ state when compared to the ancestral condition (e.g. enlarged bundle sheath cells and/or chloroplasts in the bundle sheath).

We generated new anatomical data for nine *A. semialata* accessions and *A. angusta* (Table S2), which supplemented previously published anatomical data for *E. marginata*, *P. pygmaeum*, *A. cimicina*, and *A. paniculata* (Christin et al. 2013a). Images of *A. semialata* and *A. angusta* leaves in cross-section were obtained by fixing the centre portion of a mature leaf blade in 4:1 ethanol:acetic acid, embedding them in methacrylate embedding resin (Technovit 7100, Heraeus Kulzer GmbH, Wehrhein, Germany), sectioning on a manual rotary microtome (Leica Biosystems, Newcastle, UK), staining with Toluidine Blue O (Sigma-Aldrich, St. Louis, MO,
USA), then photographing them with a camera mounted atop a microscope (Olympus DP71 and
BX51, respectively. Olympus, Hamburg, Germany), as described in Lundgren et al. (2016).

All species used in this study have two bundle sheath layers, differentiated as inner
and outer bundle sheaths, which create concentric circles around each vein (Fig. S1). The sheath
co-opted for the segregation of Rubisco was identified by a concentration of chloroplasts
producing starch. We also recorded the presence of minor veins, and measured the following
traits on one cross-sectional image per accession, as described in Christin et al. (2013a), using
ImageJ software (Schneider et al. 2012): the interveinal distance (IVD; the average distance
between centers of consecutive veins), the number of mediolateral mesophyll cells between
veins, the average width of all outer and inner bundle sheath cells within a leaf segment, and the
ratio of outer to inner bundle sheath cell widths (OS:IS). One leaf cross section was used per
accession, with previous work showing the traits we are measuring exhibit little variation within
species or populations (Lundgren et al. 2016).

ii) Comparing gene expression profiles among photosynthetic types

We use RNA-Seq to identify the genes co-opted by the different accessions performing a C₄
cycle, as those encoding C₄-related enzymes that reach high abundance in C₄ leaves. Variation in
the co-opted loci would support multiple origins of a weak C₄ cycle, while a reversal might lead
to high expression of C₄-related genes in individuals without a C₄ cycle or loss of functions of
genes previously used for the C₄ cycle.

For RNA-Seq, we sampled the highly photosynthetically active distal halves of
fully expanded new leaves and fresh roots midway into the photoperiod, which were
subsequently flash frozen. Two different photoperiods (i.e., 10 and 14 hours) were used to ensure
that the identification of the most highly expressed genes did not differ among light regimes. Data from root libraries were only used in this study for transcriptome assembly, while all leaf samples were used for both assembly and quantification of transcript abundances. For a full list of individuals, conditions, and tissues sampled please see Supplementary Table S3.

Total RNA was extracted, Illumina TruSeq libraries generated, and sequencing performed using standard laboratory procedures, and transcriptomes were assembled using available pipelines (see Supplementary Methods 1.2 for a detailed description of RNA-Seq protocol and assembly statistics). For each assembled contig, the transcript abundance was calculated as reads per million of mapped reads (rpm). Using a previously developed phylogenetic annotation pipeline (Christin et al. 2013b, 2015), the transcript abundance was then calculated for each gene lineage encoding C₄-related enzymes. For each gene family, all sequences descending from a single gene in the common ancestor of grasses via speciation and/or duplication were considered as the same gene lineage (i.e., these are grass co-orthologs). These groups include potential lineage specific paralogs (i.e., also known as inparalogs). When different Alloteropsis genes were identified within the same group of co-orthologs through detailed phylogenetic analyses, the abundance of each group was estimated independently. In Alloteropsis, this is the case only for genes previously shown to have been acquired laterally from distantly related C₄ lineages (Christin et al. 2012; see Results). In short, the reference datasets, composed of Arabidopsis thaliana coding sequences annotated as encoding C₄-related enzymes, and homolog sequences from other completely sequenced plants including five grasses, were retrieved from Christin et al. (2013b; 2015), or generated following the same approach for additional C₄-related enzymes identified in more recent studies (Mallmann et al. 2014; Li et al. 2015; Fig. S2). Contigs with similar sequences from the transcriptomes generated
here were identified using BLASTn, with a minimal e-value of 0.01, and a minimal matching length of 50bp. Only the portion of the contig matching the references was considered to remove UTRs, potential introns, and other very variable segments. Each sequence retrieved this way was then aligned independently to the reference dataset using Muscle (Edgar 2004), and a phylogenetic tree was inferred using Phylm (Guindon and Gascuel 2003) with a GTR+G+I model, a model that fits the vast majority of genes (e.g., Fisher et al. 2016) and is appropriate to infer a large number of trees. Phylogenetic trees were automatically screened, and each contig was assigned to the previously identified gene lineages in which it was nested. The sum of rpm values of all transcriptome contigs assigned to the same gene lineage produced transcript abundance per group of grass co-orthologs or distinct genes within these groups, which were subsequently transformed into rpm per kilobase (rpkm) values. Rpkm values were then compared among accessions to identify similarities and differences in the expression of C₄ photosynthetic genes.

iii) Gene trees and detection of enzyme adaptation for C₄ photosynthesis

Phylogenetic trees were inferred for C₄-related genes that were highly abundant in the leaf transcriptomes of at least two C₄ Alloteropsis samples (identified from transcriptome data; see Results) and their co-orthologs in other C₃ and C₄ grasses (see Supplementary Methods 1.3 for a detailed description of phylogeny construction). The inferred gene trees were used to verify that C₄-related genes were placed as expected based on the species tree, as opposed to a position suggesting an acquisition from distant C₄ relatives. In addition, the gene tree topologies were used for positive selection analyses to detect traces of past episodes of enzyme adaptation for the new catalytic context after the initial emergence of a C₄ cycle (Fig. 1; Blasing et al. 2000; Christin et al. 2007; Besnard et al. 2009; Wang et al. 2009; Heckmann et al. 2013; Mallmann et
al. 2014; Huang et al. 2017). Positive selection on branches leading to each C₄ group would support independent transitions to a full C₄ cycle via enzyme adaptation, while an early origin followed by a reversal should result in positive selection in the common ancestor of all C₄ accessions and possibly in the lineages that reversed back to the previous state.

For each set of genes encoding core C₄ enzymes in at least two Allotropis accessions, identified via transcriptome analyses, we optimized several codon models (site and branch-site models) to test for adaptive evolution using codeml as implemented in PAML (Yang 2007). The best-fit model was identified among those that assume (0) no positive selection (M1a null model), and the branch-site models that assume shifts in selection pressure, either to relaxed selection (model BSA) or to positive section (model BSA1), at the base of: (1) Allotropis (one round of enzyme adaptation), (2) both A. cimicina and A. angusta + A. semialata (two rounds of enzyme adaptation), and (3) A. cimicina, A. angusta, and A. semialata (three independent episodes of enzyme adaptation). Foreground branches for all models were specified as the branch leading to the identified node plus all descending branches (i.e., using a '#' sign as opposed to a '$'). Models involving positive selection in only one of the C₄ lineages were also considered (see Supplementary Methods 1.3 for additional details of positive selection analysis). For each gene lineage, the best-fit model was identified based on the corrected Akaike information criterion (AICc), selecting the model with the lowest AICc after checking that its ΔAICc score was at least 5.22 units below that of the M1a null model. An ΔAICc score = 5.22 corresponds to a p-value threshold of 0.01 for a likelihood ratio test comparing these two models using two degrees of freedom. C₄ species other than Allotropis were removed prior to analysis to avoid an influence of positive selection in these taxa affecting our conclusion. Analyses were repeated using only codons with fixed nucleotides within each lineage (i.e., A. angusta, C₃ A. semialata, C₃+C₄ A.
semialata, and C. A. semialata), to verify that short terminal branches with unfixed mutations did
not significantly inflate the dN/dS ratio, and therefore alter our conclusion. Finally, to assess the
effect of gene tree topology on our conclusions, we repeated the positive selection analyses using
100 bootstrap pseudoreplicate topologies.

iv) Dating the divergence of adaptive loci to identify introgression

To determine whether introgression has spread C₄ adaptations among species, we performed
molecular dating of markers from across the transcriptomes, including those used for C₄ by at
least two Alloteropsis accession and their paralogs. The divergence times between species
estimated from introgressed genes are expected to be younger than those estimated from other
genomes (e.g. Smith & Kronforst 2013; Li et al. 2014; Marcussen et al. 2014; Li et al. 2016),
resulting either in outliers (if few genes are introgressed) or a multimodal distribution of ages (if
many genes are introgressed).

Groups of genes descending from a single gene in the common ancestor of
Panicoideae (Panicoideae co-orthologs), the grass subfamily that includes Alloteropsis, were
identified through phylogenetic analyses of our transcriptomes and completely sequenced
genomes that were publicly available. Our automated pipeline started with gene families
previously inferred for eight plant genomes (homologs: i.e. all the paralogs and orthologs; Vilella
et al. 2009), including two Panicoideae grasses (Setaria italica and Sorghum bicolor), two non-
Panicoideae grasses (Brachypodium distachyon and Oryza sativa), and four non-grass species
(Amborella trichopoda, Arabidopsis thaliana, Populus trichocarpa, and Selaginella
moellendorffii). To ensure accurate annotation, we restricted the analysis to gene families that
included at least one Arabidopsis thaliana sequence. The coding sequences (CDS) from the
above genomes were then used to identify similar sequences in our transcriptomes using
BLASTn with a minimum alignment length of 500 bp.

Stringent alignment and filtering methods were used to ensure reliable alignments
of the above sequences for each gene family for phylogenetic inference (see Supplementary
Methods 1.4 for full details). In total, 2,797 1:1 Panicoideae co-ortholog datasets were used for
subsequent molecular dating, as implemented in Beast v. 1.5.4 (Drummond and Rambaut 2007).
For each dataset, divergence times were estimated based on 3rd codon positions, to decrease the
risk of selective pressures biasing the outputs. A log-normal relaxed clock was used, with a
GTR+G+I substitution model, and a constant coalescent prior. The Sorghum sequence was
selected as the outgroup and the root of the tree was fixed to 31 Ma (using a normal distribution
with a standard deviation of 0.0001), based on estimates from Christin et al. (2014). There is
uncertainty around this date, and the low species sampling used here probably leads to
overestimation of both divergence times and confidence intervals, but the use of consistent
sampling and calibration points among markers allows for the comparison of relative (rather than
absolute) ages, which is the point of these analyses. Each Beast analysis was run for 2,000,000
generations, sampling a tree every 1,000 generations after a burn-in period of 1,000,000. For
nodes of interest, divergence times were extracted from the posterior distribution as medians.
Divergence times were also estimated for key genes used for C₄ photosynthesis in
Alloteropsis (identified based on transcriptomes; see Results), using the same parameters. To
guarantee a consistent species sampling, the taxa included in the transcriptome-wide analyses
were retrieved from manually curated alignments for C₄-specific genes as well as other groups of
orthologs from the same gene families, obtained as described above for C₄-specific forms. In
addition, plastid genomes for the same species were retrieved from Lundgren et al. (2015), and
reanalysed with the same parameters. For each of these datasets, the median, 95% CI, and 0.25 and 0.75 quantiles were extracted from the posterior distribution, using the R package APE (Paradis et al. 2004).

Results

i) Different realizations of C₄ leaf anatomy in A. cimicina and A. semialata/A. angusta

Grasses ancestrally possess two concentric rings of bundle sheath cells and either can be co-opted for C₄ photosynthesis (Brown 1975; Lundgren et al. 2014). The closely related C₄ *A. cimicina* and *A. paniculata* co-opted the outer bundle sheath for Rubisco segregation, as evidenced by the proliferation of chloroplasts in this tissue (Fig. S1; Table S2). In these species, the overall proportion of outer bundle sheath tissue within the leaf is increased via enlarged outer bundle sheath cells. Indeed, the outer sheath is 7.8-fold larger than the inner sheath in C₄ *A. cimicina* and *A. paniculata*, compared to a 1.2-0.6 fold differences in C₄ *A. semialata* and *A. angusta* (Table S2). This contrasts strongly with the anatomy of the C₄ *A. semialata* and *A. angusta* (Fig. S1). Both of these species use the inner bundle sheath for Rubisco segregation and increase the overall proportion of this tissue via the proliferation of minor veins, and enlargement of the inner sheath cell size (Fig. S1; Table S2).

Staining by Toluidine Blue O indicates some starch production occurs in the inner bundle sheaths of both the C₃ and C₃+C₄ *A. semialata* (Fig. S1), which implies some Rubisco activity in these cells, confirming previous reports (Ueno and Sentoku 2006; Lundgren et al. 2016). The absence of minor veins in the C₃ and C₃+C₄ *A. semialata* results in a larger proportion of mesophyll compared to C₄ *A. semialata* (Table S2; Fig. S1). In the C₃ and C₃+C₄ *A. semialata*, the outer bundle sheath is slightly larger than the inner one (1.2-1.8 fold; Table S2), while the C₃
outgroup species *P. pygmaeum* and *E. marginata* have outer bundle sheaths that are considerably larger than their small inner sheaths (4.5 and 5.3 fold; Fig. S1; Table S2).

In summary, our comparative studies of leaf anatomy indicate that the C₄ *A. cimicina* and *A. semialata/A. angusta* use different tissues for Rubisco segregation and achieve high bundle sheath proportions via distinct modifications, supporting independent origins of C₄ anatomical components in these two groups. Some Rubisco activity is suggested in the inner sheath of the C₃ *A. semialata*, which supports an early origin migration of chloroplasts to this tissue (Fig. 2). In addition, a slight enlargement of the inner sheath, absent in the C₃ outgroup, is common to all non-C₄ *A. semialata*.

ii) *A. cimicina* uses different enzymes and genes for C₄ biochemistry than *A. semialata/A. angusta*.

All *Alloteropsis C₃+C₄* and C₄ accessions have high expression abundance in their leaves of co-orthologs encoding phosphoenolpyruvate carboxylase (PEPC), the enzyme used for the initial fixation of atmospheric carbon into organic compounds in C₄ plants. However, the gene lineage most highly expressed varies among accessions (Fig. 3 and 4). The close relationships between some of the genes for PEPC and one for phosphoenolpyruvate carboxykinase (PCK) isolated from *Alloteropsis* and those of distantly-related C₄ species was confirmed by our phylogenetic analyses (Fig. S3 and S4), supporting the previous conclusion that these genes were acquired by *Alloteropsis* via lateral gene transfer (LGT; Christin et al. 2012). Based on the read abundance, *A. cimicina* uses *ppc-1P3_LGT-M*, while *A. angusta* uses *ppc-1P3* (Fig. 4). There is variation within *A. semialata*, with C₃+C₄ and C₄ accessions using either a combination of one or several gene lineages (Fig. 4).
From the expression profiles (Fig. 3), the carbon shuttle of *A. cimicina* relies on enzymes and transporters associated with the most common form of C₄ photosynthesis (NADP-malic enzyme type; Gowik et al. 2011; Bräutigam et al. 2014; Mallman et al. 2014). This expression profile differs markedly from that observed in the C₄ *A. semialata* and *A. angusta* accessions. These two species mainly use the PCK decarboxylating enzyme, through the high expression of the same gene (*pck-1P1_LGT-C*; Fig. 4). There is little evidence in these species for an involvement of the auxiliary transporters observed in *A. cimicina* (Fig. 3; Table S4), and some of the core enzymes are not shared by *A. cimicina* and *A. semialata/A. angusta* (Fig. 3).

Furthermore, even when the same enzyme family is used, it is not necessarily encoded by the same locus (e.g., *A. cimicina* expresses *aspat-2P3* and *A. semialata/A. angusta* express *aspat-3P4*; Fig. 3).

The transcriptomes of the C₃+C₄ *A. semialata* show elevated levels of some of the genes used by the C₄ *A. semialata*, with a slightly higher abundance of those encoding the NADP-malic enzyme (*nadpme-1P4*; Fig. 3; Table S4). In terms of the expression levels of genes encoding C₄-related enzymes, the transcriptome of the C₃ *A. semialata* is not markedly different from that of the C₃ outgroup *P. pygmaeum* (Fig. 3; Table S4).

Our comparative transcriptomics therefore indicate that *A. cimicina* uses different genes and different enzymes for the C₄ pathway than *A. semialata/A. angusta*, suggesting multiple origins of the C₄ cycle (Fig. 2). The only C₄-related genes used by some C₄ *Alloteropsis* that are abundant in the C₃ *A. semialata* (*bca-2P3* and *tpt-1P1*) are also highly expressed in the C₃ outgroup and in other distantly related C₃ taxa (Fig. 3; Külahoglu et al. 2014; Ding et al. 2015), indicating that high levels in leaves is not specific to our group of species. For the C₄-related used by the C₄ *Alloteropsis*, but not abundant in the outgroup, there is no evidence for
high expression or pseudogeneization in the C₃ A. semialata. Evidence is thus lacking that the C₃ A. semialata represent a reversal from an ancestor with a C₄ cycle.

iii) Independent episodes of C₄-related positive selection in each C₄ species

The codon models do not support positive selection on any genes involved in C₄ photosynthesis at the base of Allotropis or along the branch leading to the A. angusta/A. semialata group (Table 1). In two cases (nadpme-1P4 and ppdk-1P2), analyses including all Allotropis accessions clearly point to changes in selective pressures specifically in the branch leading to A. cimicina (Table 1; Fig. S5). No evidence of positive selection was found for the two other genes analyzed on the three Allotropis species (aspat-2P3 and alaat-1P5; Table 1). When testing for selection only in the A. angusta/A. semialata clade, no positive selection was found on ppdk-1P2, while positive selection on ppc-1P3 was identified only on the branch leading to A. angusta (Table 2). For the two other genes (nadpme-1P4 and aspat-3P4), the model that assumes positive selection after the split of the two species was favored (Table 2). A majority of the amino acid sites identified as under positive selection by the Bayes Empirical Bayes analysis overlapped with those previously identified in other C₄ taxa (e.g. site 241 in nadpme-1P4; Fig. 5; Christin et al. 2009), or were shared with other C₄ species in our phylogenies (e.g. Fig. 5), supporting their link to C₄ photosynthesis. For aspat-3P4, more amino acid substitutions were fixed in A. angusta than in A. semialata. This variation among A. semialata C₄ accessions indicates repeated bouts of positive selection during the diversification of this species (Fig. S6). Conclusions based on the selection tests were also supported using only codons with fixed nucleotides within a lineage (i.e., photosynthetic type in A. semialata, and A. angusta), with the exception of nadpme-1P4 for which no positive selection was inferred after removing the unfixed codons (Tables S5, S6).
Furthermore, gene tree topology had no effect on our conclusions, since all bootstrap replicates supported the same model, with the exception of 2% of nadpme-1P4 bootstrap replicates (Tables S7, S8).

Overall, our positive selection tests point to independent episodes of enzyme adaptation for the C₄ context in each of the C₄ groups (Fig. 2). None of the models that included adaptive evolution on branches leading to C₃ and/or C₃+C₄ A. semialata were favoured, suggesting a lack of evolutionary loss of a full C₄ cycle.

iv) Genes for PEPC and PCK were spread across species boundaries

The 2,797 groups of orthologs extracted from genomes and transcriptomes led to a wide range of estimated divergence times, with 95% of the medians falling between 6.51 and 17.92 Ma for the crown of Allotropopsis, and between 4.17 and 11.27 Ma for the split of A. semialata and A. angusta (Fig. 6). The peak of values (i.e., 50% of the points) ranged between 9.38 and 13.07 Ma for the crown of Allotropopsis and 5.93 and 8.18 Ma for the split of A. semialata and A. angusta (Fig. 6). Finally, 95% of the markers estimated the crown of A. semialata between 1.88 and 7.77 Ma, with a peak between 3.12 and 5.07 Ma (Fig. 6). Note that monophyly of the groups was not enforced, and various combinations of A. semialata accessions were included across markers, contributing to the observed variation.

Most of the C₄-related genes, as well as the plastomes, provided age estimates ranging from 5.54 to 10.32 Ma for the split of A. semialata and A. angusta, which matches the distribution of estimates from the transcriptome-wide data (Fig. 6A), and indicates their transmission followed the species tree. The only exception is the gene pck-1P1_LGT-C, for which the last common ancestor of A. semialata and A. angusta was estimated at 2.77 Ma (Fig.
6A), which is smaller than all but four of the 2,797 estimates from the transcriptome-wide markers. While the confidence intervals of the estimate for this gene do overlap with those of almost all other markers, this estimate matches more closely the diversification of *A. semialata* accessions (Fig. 6A).

The different markers selected for detailed analyses similarly yielded estimates for the crown of *Alloteropsis* matching those obtained from transcriptome-wide data, between 9.38 and 16.46 Ma (Fig. 6B). The only exception is the gene *ppc-1P3_LGT-M*, for which the last common ancestor of *A. cimicina* and *A. semialata* is estimated at 3.25 Ma (Fig. 6B), which is smaller than all estimates based on markers extracted from the transcriptomes. The 95% CI of the divergence estimate based on this gene does not overlap with many of those based on other markers, and again matches closely with the diversification of *A. semialata* accessions (Fig. 6B).

Overall, our dating analyses support an introgression of these two genes among *Alloteropsis* species after their divergence, whilst the other genes were transmitted following the species tree (Fig. 2).

Discussion

Two independent transitions from C$_3$ to C$_4

The earliest split in *Alloteropsis* separates the lineage containing *A. cimicina* from *A. angusta* and *A. semialata* (Fig. 2). These two lineages co-opted different tissues for the segregation of Rubisco activity and achieved a large proportion of bundle sheath tissue via different modifications (Fig. S1). The evidence therefore strongly supports two independent origins of C$_4$ anatomical properties, which is generally accepted as the first step during the C$_3$ to C$_4$ transition (Fig. 1; Sage et al. 2012; Heckmann et al. 2013). Gene expression analyses show that the two
clades use different enzymes for parts of the C₄ cycle, express different genes encoding the same enzyme family when there is an overlap (Fig. 3), and positive selection analyses show that the enzymes were independently adapted for their C₄ function (Table 1). We therefore conclude that the different transitions to C₄ biochemistry occurred independently after the split of these two lineages (Fig. 2). The only exception to the distinctiveness of *A. cimicina* and the two other C₄ species is the gene ppc-1P3_LGT-M, used by both *A. cimicina* and some C₄ *A. semialata* accessions (Fig. 4). This gene is absent from other accessions (Olofsson et al. 2016) and, as such, we previously concluded that it was acquired early during the diversification of the group and then recurrently lost (Christin et al. 2012). This hypothesis is falsified by our dating analyses here, which show that this gene was only recently transferred among species boundaries, likely as a result of a rare hybridization event (Fig. 6).

One independent C₃ to C₄ transition includes two separate C₃+C₄ to C₄ shifts

The C₄ phenotype is realized in *A. angusta* and *A. semialata* via identical anatomical modifications, using the same enzymes, and the same genes encode these enzymes. Chloroplasts are present in the inner sheaths of all *A. semialata* and *A. angusta* accessions, independent of their photosynthetic type, which suggests that this characteristic represents the ancestral condition for the clade (Fig. 2). The C₄ cycle is realized using the same set of genes in *A. angusta* and *A. semialata*, which can be explained by convergent evolution (e.g., as indicated for other C₄ grasses; Christin et al. 2013b) or a single origin of a weak C₄ cycle (C₃+C₄), followed by a reversal to expression levels that resemble the ancestral condition in the C₃ accessions (Fig. 2).

Differentiating these two scenarios would require retracing the origin of the mutations responsible for the increased expression of C₄ enzymes to identify where they occurred on the phylogeny. Unfortunately, the molecular mechanisms controlling C₄ gene expression are poorly understood.
known, and can involve both cis- and trans-acting elements (Gowik et al. 2004; Brown et al. 2011; Williams et al. 2016).

The positive selection analyses indicate that enzyme adaptation happened independently in *A. angusta* and *A. semialata* (Table 2). Together with the variation observed within the *C₄* *A. semialata* (Fig. 4, S6), this evidence strongly suggests that the biochemical adaptation allowing the transition to a full *C₄* cycle happened recently, and independently in the two species (Fig. 2). The dramatic increase in the proportion of the inner bundle sheath tissue via the proliferation of minor veins is limited to the *C₄* *A. semialata* and *A. angusta* (Fig. S1). The genetic control of these features is unknown, preventing a comparison of the causal mutations. However, the distribution of anatomical characters among grasses indicates that the vast majority of *C₄* lineages that co-opted the inner bundle sheath increased its proportion via the addition of minor veins (Renvoize 1987; Christin et al. 2013a).

With the current state of knowledge, we hypothesize that the common ancestor of *A. semialata* and *A. angusta* had chloroplasts in the inner bundle sheath, and that this facilitated the emergence of a weak *C₄* cycle via the upregulation of some enzymes. Following their split, *A. angusta* strengthened its *C₄* anatomy via the proliferation of minor veins, and enzyme adaptations led to a strong *C₄* cycle (Fig. 2). In the *A. semialata* lineage, some isolated populations acquired mutations that added minor veins and adapted the enzymes, leading to a *C₄* cycle. Other populations, potentially under pressures linked to the colonization of colder environments (Lundgren et al. 2015), might have lost the weak *C₄* cycle by down-regulating the genes (Fig. 2). However, the details of the changes leading to *C₃* photosynthesis in some *A. semialata* will need to be confirmed by comparative genomics, when mutations regulating expression of *C₄* enzymes and anatomy are identified.
Introgression of \(C_4 \) components among species

Our dating analyses suggest that the gene \(\text{pck-1P1}_\text{LGT-C} \) that encodes the decarboxylating enzyme PCK was introgressed among some members of \(\text{A. semialata} \) and \(\text{A. angusta} \) (Fig. 2 and 6). The \(C_4 \) cycle carried out before this event was likely based on NADP-malic enzyme, an enzyme still abundant in the \(C_3+C_4 \) \(\text{A. semialata} \) and some \(C_4 \) accessions (Fig. 4; Frean et al. 1983). The acquisition of \(\text{pck-1P1}_\text{LGT-C} \), a gene already adapted for the \(C_4 \) context, probably added a PCK shuttle, which alters the stoichiometry of the pathway and the spatial distribution of its energy requirements, increasing its efficiency under some conditions (Bellasio and Griffiths 2014; Wang et al. 2014). This important component of the \(C_4 \) cycles of extant \(\text{A. semialata} \) and \(\text{A. angusta} \) populations first evolved its \(C_4 \)-specific properties in the distantly-related \(\text{Cenchrus} \) (Fig. S3; Christin et al. 2012), and therefore never evolved within \(\text{Alloteropsis} \). Instead, it represents the spread of a component of a complex physiology across multiple species boundaries. Therefore, in addition to the possibility that the sequential steps generating a complex physiology can happen on different branches of a species phylogeny (Fig. 2), introgression among close relatives can disconnect the origins of key components from the species tree.

On the inference of transitions among character states

Inferences of transitions among character states are a key component of numerous macro-evolutionary studies (e.g. Cantalapiedra et al. 2017; Cooney et al. 2017). However, species trees per se are not always able to disentangle the complex scenarios underlying the appearance or losses of multi-component adaptations, especially when complex phenotypes are modeled as different states of a single character (e.g. Goldberg and Igi 2008; Pardo-Diaz et al. 2012;
Niemiller et al. 2013; Igic and Busch 2013; King and Lee 2015). In the case of photosynthetic transitions within Alloteropsis depicted here, considering the photosynthetic type as a binary character would lead to a single C₄ origin as the most plausible scenario (Ibrahim et al. 2009), and modeling photosynthetic types based on their category of C₄ cycle does not improve the inference (Washburn et al. 2015). For traits assumed to evolve via sequential stages, the accepted sequence of changes can be incorporated in the model (e.g. Marazzi et al. 2012). However, the power of character modeling remains inherently limited by the small number of informative characters. Decomposing the phenotype into its components can solve this problem, especially when the underlying genetic determinism is considered (Oliver et al. 2012; Niemiller et al. 2013; Glover et al. 2015; Meier et al. 2017), and good mechanistic models exist for the evolution of DNA sequences (Liberles et al. 2013). Violation of model assumptions can still mislead the conclusions, but the multiplication of sources of information, coupled with the possibility to track the history of specific genes independently of the species tree, limits the risks of systematic errors. We therefore suggest that efforts to reconstruct the transitions leading to important traits should integrate as many underlying components as possible. As progresses in genome biology increase data availability and improve our understanding of causal mutations, modeling phenotypes as the results of cumulative changes in genomes will be able to solve the problems raised by the paucity of informative characters.

Conclusions

In this study, we dissect the genetic and anatomical components of C₄ photosynthesis in Alloteropsis, a genus of grasses with multiple photosynthetic types. Our comparative efforts strongly support at least two independent origins of C₄ photosynthesis within this genus. The C₄
phenotype within these separate origins is realized via divergent anatomical modifications, the upregulation of distinct sets of genes, and independent enzyme adaptations. One of these lineages includes a range of photosynthetic types, and based on our analyses, we suggest that some \(C_4 \) components in this group evolved in the shared common ancestor, while others were acquired independently after the lineages diverged. The history of photosynthetic transitions within \textit{Alloteropsis} is furthermore complicated by the introgression of \(C_4 \) genes across species boundaries. This disconnects the spread of \(C_4 \) components from the species tree, and means that the number of origins varies among the different components of the complex \(C_4 \) trait. This scenario is unlikely to have been inferred from traditional macroevolutionary approaches based on species trees alone. We suggest that integrating genomic data and phenotypic details in future studies of character transitions might resolve similarly complicated scenarios in other groups, enabling a better understanding of the trajectories followed during the evolution of novel adaptations.
Literature Cited

Li, F. W., J. C. Villarreal, S. Kelly, C. J. Rothfels, M. Melkonian, E. Frangedakis, M. Ruhsam, E.
chimeric photoreceptor from bryophytes to ferns. *PNAS* **111**:6672-6677.

genetic mechanisms of C₄ syndrome based on transcriptome analysis of C₃ cotyledons and

Lundgren, M. R., C. P. Osborne, and P. A. Christin. 2014. Deconstructing Kranz anatomy to

W. Hattersley, R. P. Ellis, R. C. Leegood, and C. P. Osborne. 2016. Evolutionary
implications of C₃-C₄ intermediates in the grass *Alloteropsis semialata*. *Plant Cell Environ*
39:1874-85

Maddison, W. P. 2006. Confounding asymmetries in evolutionary diversification and character
change. *Evolution* **60**:1743-1746

Gowik. 2014. The role of photorespiration during the evolution of C₄ photosynthesis in the
genus *Flaveria*. *Elife* **3**:e02478

Protas, M. E., C. Hersey, D. Kochanek, Y. Zhou, H. Wilkens, W. R. Jeffery, L. I. Zon, R.

Pyron, R. A., and F. T. Burbink. 2014. Early origin of viviparity and multiple reversions to

2013. Rates of speciation and morphological evolution are correlated across the largest

768.

Figure legends

Figure 1. Schematic of expected changes during the transition from C$_3$ to C$_4$.

The continuous variation in anatomical and biochemical components can be simplified using three phenotypic categories; C$_3$ plants, C$_3$+C$_4$ intermediates, and C$_4$ plants. A schematic indicates the gain in efficiency of carbon assimilation, and the expected order of modifications is shown at the bottom for four categories of changes, with the number on the right indicating the section of our analyses where they are investigated.

Figure 2: Inferred transitions among C$_4$ components.

A schematic phylogenetic tree is presented, based on previous genome-wide analyses (Lundgren et al. 2015; Olofsson et al. 2016). Individual lines represent the transmission of individual genes within the species complex. For each of the four genes subject to C$_4$-related selection, episodes of positive selection are indicated by changes to yellow. Other lines track the spread of two genes that were originally laterally-acquired from distant relatives, and have subsequent been introgressed among *Alloteropsis* species. The inferred phenotype is represented by the background colour, in grey for C$_3$, in yellow for C$_3$+C$_4$, and in red for C$_4$. The grey hatching indicates uncertainty about the ancestral state. A simplified version of leaf anatomy is represented, for extant taxa and some hypothetical ancestors (see Fig. S1 for details of leaf anatomy of extant accessions).

Figure 3: Expression of C$_4$-related enzymes in Alloteropsis.

For each gene encoding a C$_4$-related enzyme, the shade indicates the category of transcript abundance, using averages per group. For raw values, see Table S4. Note that *ppc* abundance
varies among C₄ accessions of *A. semialata* (Fig. 4). The enzymes involved in core C₄ reactions
(left column) are grouped by functional property, gene names are written in italics on the right of
the expression values.

Figure 4: Leaf abundance of pck and ppc genes in the different accessions.
The shade indicates the relative expression (in rpkm) in the different accessions. For each
accession, the averages are used. For raw values, see Table S4.

Figure 5: Evolution of nadpme-1P4 genes in Alloteropsis and other Panicoideae.
This phylogenetic tree was inferred on 3rd positions of codons of *nadpme-1P4* genes of
Panicoideae. Bootstrap values are indicated near branches. Names of C₄ accessions are in bold.
Amino acid at positions under positive selection are indicated on the right, with those associated
with C₄ accessions in gray. Positions are indicated on the top, based on *Sorghum* gene
Sb03g003220.1. Amino acid positions with a posterior probability >0.90 of being under positive
selection are indicated on the right, asterisks indicate positions with a posterior probability >0.95.

Figure 6: Estimates of divergence times.
On the top, divergence times are shown for selected nuclear genes and plastomes for **A)** the split
of *A. angusta* and *A. semialata* and **B)** the crown of *Alloteropsis*. For each marker, the median of
the estimates is indicated by a square, with thick bars connecting the 25 and 75 percentiles and
thin bars connect the 2.5 and 97.5 percentiles. The distribution of medians for the crown of *A.
semialata* (left), the split of *A. angusta* and *A. semialata* (middle), and the crown of *Alloteropsis*
(right) over 2,797 markers extracted from the transcriptomes is shown at the bottom. The scale is given in million years ago (Ma).
Table 1: Results of positive selection analyses inferring the episodes of enzymatic adaptation in *Allotropis*.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Number of sequences</th>
<th>Site model M1a</th>
<th>One origin</th>
<th>Two origins</th>
<th>Three origins</th>
<th>Only A. cimicina</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspat-2P3</td>
<td>14</td>
<td>0.00*</td>
<td>4.02</td>
<td>4.02</td>
<td>3.94</td>
<td>4.02</td>
</tr>
<tr>
<td>nadpme-1P4</td>
<td>15</td>
<td>35.07</td>
<td>30.44</td>
<td>27.26</td>
<td>26.34</td>
<td>24.28</td>
</tr>
<tr>
<td>ppdk-1P2</td>
<td>15</td>
<td>29.45</td>
<td>32.00</td>
<td>26.35</td>
<td>32.31</td>
<td>27.17</td>
</tr>
<tr>
<td>alaat-1P5</td>
<td>14</td>
<td>0.00*</td>
<td>1.74</td>
<td>1.74</td>
<td>2.03</td>
<td>2.03</td>
</tr>
</tbody>
</table>

1 The ΔAICc values compared to the best fit model for that gene are shown. The most appropriate model is indicated with an asterisk, with the null model (M1a) only rejected if the ΔAICc was at least 5.22 (equivalent to a p-value of 0.01 with a likelihood ratio test with df = 2). Two branch-site models were used to test for a relaxation of purifying selection (BSA), and potential positive selection (BSA1).
Table 2: Results of positive selection analyses inferring the episodes of enzymatic adaption in the *A. angusta/A. semialata* clade.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Number of sequences</th>
<th>Site model M1a</th>
<th>One origin</th>
<th>Two origins</th>
<th>Only A. angusta</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspat-3P4</td>
<td>13</td>
<td>12.33</td>
<td>10.20</td>
<td>6.70</td>
<td>6.37 0.00*</td>
</tr>
<tr>
<td>nadpme-1P4</td>
<td>14</td>
<td>10.19</td>
<td>14.19</td>
<td>9.66</td>
<td>13.52 0.00*</td>
</tr>
<tr>
<td>ppc-1P3</td>
<td>9</td>
<td>72.43</td>
<td>66.62</td>
<td>66.58</td>
<td>11.70 9.85</td>
</tr>
<tr>
<td>ppdk-1P2</td>
<td>14</td>
<td>0.00*</td>
<td>4.01</td>
<td>4.01</td>
<td>4.01 4.01</td>
</tr>
</tbody>
</table>

1 The ΔAICc values compared to the best fit model for that gene are shown. The most appropriate model is indicated with an asterisk, with the null model (M1a) only rejected if the ΔAICc was at least 5.22 (equivalent to a p-value of 0.01, with a likelihood ratio test with df = 2). Two branch-site models were used to test for a relaxation of purifying selection (BSA), and potential positive selection (BSA1).
C_3 $\text{C}_3 + \text{C}_4$ C_4

- % CO$_2$ fixed by C$_4$ pathway

(i) bundle sheath size

(ii) chloroplasts in bundle sheath

(iii) C_4 gene expression

(iv) enzyme adaptation
Rubisco activity:
- Strong
- Moderate
- Limited
- Negligible

C₄ cycle:
- None
- Weak
- Strong

Genes:
- ppdk-1P2
- nadpme-1P4
- aspat-3P4
- ppc-1P3

Species:
- A. semialata
- A. angusta
- A. cimicina
- P. pygmaeum
Core C₄ genes

<table>
<thead>
<tr>
<th>P. pygmaeum</th>
<th>C₃</th>
<th>C₃+C₄</th>
<th>C₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>semialata</td>
<td>bca-1P1</td>
<td>bca-2P2</td>
<td>bca-2P3</td>
</tr>
<tr>
<td>angusta</td>
<td>ppc-1P2</td>
<td>ppc-1P3</td>
<td>ppc-1P3_LGT-A</td>
</tr>
<tr>
<td>cimicina</td>
<td>ppc-1P3_LGT-C</td>
<td>ppc-1P3_LGT-M</td>
<td>ppc-1P4</td>
</tr>
<tr>
<td>ppc-1P4</td>
<td>ppc-1P5</td>
<td>ppc-1P6</td>
<td>ppc-1P7</td>
</tr>
<tr>
<td>ppc-2P1</td>
<td>aspat-1P1</td>
<td>aspat-1P2</td>
<td>aspat-2P3</td>
</tr>
<tr>
<td>aspat-3P4</td>
<td>nadmdh-1P1</td>
<td>nadmdh-2P1</td>
<td>nadmdh-2P3</td>
</tr>
<tr>
<td>nadmdh-2P4</td>
<td>nadmdh-3P1</td>
<td>nadmdh-3P5</td>
<td>nadmdh-3P6</td>
</tr>
<tr>
<td>nadmdh-3P6</td>
<td>nadpmdh-1P1</td>
<td>nadpmdh-1P2</td>
<td>nadpmdh-2P3</td>
</tr>
<tr>
<td>nadpmdh-2P3</td>
<td>nadpmdh-3P4</td>
<td>nadme-1P1</td>
<td>nadme-2P2</td>
</tr>
<tr>
<td>nadme-2P2</td>
<td>nadpme-1P1</td>
<td>nadpme-1P2</td>
<td>nadpme-1P3</td>
</tr>
<tr>
<td>nadpme-1P3</td>
<td>nadpme-1P4</td>
<td>pck-1P1</td>
<td>pck-1P1_LGT-C</td>
</tr>
<tr>
<td>pck-1P1_LGT-C</td>
<td>alaat-1P1</td>
<td>alaat-1P2</td>
<td>alaat-1P3</td>
</tr>
<tr>
<td>alaat-1P3</td>
<td>alaat-1P5</td>
<td>pddk-1P1</td>
<td>pddk-1P2</td>
</tr>
</tbody>
</table>

Putative accessory C₄ transporters

<table>
<thead>
<tr>
<th>P. pygmaeum</th>
<th>C₃</th>
<th>C₃+C₄</th>
<th>C₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>semialata</td>
<td>dit-1P1</td>
<td>dit-2P2</td>
<td>dit-2P3</td>
</tr>
<tr>
<td>angusta</td>
<td>nhd-1P1</td>
<td>sbas-1P1</td>
<td>sbas-2P2</td>
</tr>
<tr>
<td>cimicina</td>
<td>sbas-3P1</td>
<td>sbas-4P4</td>
<td>sbas-5P5</td>
</tr>
<tr>
<td>bca-1P1</td>
<td>tdt-1P1</td>
<td>tdt-2P2</td>
<td>gpt-1P8</td>
</tr>
<tr>
<td>bca-2P2</td>
<td>gpt-1P7</td>
<td>ppt-1P4</td>
<td>ppt-1P3</td>
</tr>
<tr>
<td>bca-2P3</td>
<td>ppt-1P5</td>
<td>ppt-1P6</td>
<td>ppt-1P7</td>
</tr>
<tr>
<td>pppk-1P1</td>
<td>tpt-1P2</td>
<td><500</td>
<td>>500</td>
</tr>
<tr>
<td><500</td>
<td>>500</td>
<td>>1000</td>
<td>>2000</td>
</tr>
<tr>
<td></td>
<td>pck</td>
<td>ppc</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>A. angusta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cimicina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pygmaeum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>1P1</th>
<th>1P1_LGT-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAD1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. angusta

<table>
<thead>
<tr>
<th></th>
<th>1P2</th>
<th>1P3</th>
<th>1P4</th>
<th>1P5</th>
<th>1P6</th>
<th>1P7</th>
<th>2P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>1P3_LGT-A</th>
<th>1P3_LGT-C</th>
<th>1P3_LGT-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. angusta

<table>
<thead>
<tr>
<th></th>
<th>1P3_LGT-A</th>
<th>1P3_LGT-C</th>
<th>1P3_LGT-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. angusta

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. angusta

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. angusta

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>

A. semialata

<table>
<thead>
<tr>
<th></th>
<th>rpkm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500</td>
</tr>
<tr>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_3+C_4</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
</tr>
</tbody>
</table>