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Abstract 

  

Midbrain dopamine neurons play critical roles in reward- and aversion-driven associative 

learning. However, it is not clear whether they do this by a common mechanism or by separate 

mechanisms that can be dissociated. In the present study we addressed this question by testing 

whether a partial lesion of the dopamine neurons of the rat SNc has comparable effects on 

conditioned place preference (CPP) learning and conditioned place aversion (CPA) 

learning. Partial lesions of dopamine neurons in the rat substantia nigra pars compacta (SNc) 

induced by bilateral intranigral infusion of 6-hydroxydopamine (6-OHDA, 3 �g/side) or 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 200 �g/side) impaired learning of conditioned place 

aversion (CPA) without affecting conditioned place preference (CPP) learning. Control 

experiments demonstrated that these lesions did not impair motor performance and did not alter 

the hedonic value of the sucrose and quinine. The number of dopamine neurons in the caudal 

part of the SNc positively correlated with the CPP scores of the 6-OHDA rats and negatively 

correlated with CPA scores of the SHAM rats. In addition, the CPA scores of the 6-OHDA rats 

positively correlated with the tissue content of striatal dopamine. Insomuch as reward-driven 

learning depends on an increase in dopamine release by nigral neurons, these findings show 

that this mechanism is functional even in rats with a partial lesion of the SNc. On the other hand, 

if aversion-driven learning depends on a reduction of extracellular dopamine in the striatum, the 

present study suggests that this mechanism is no longer functional after the partial SNc lesion.  
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Introduction 

 

Strong evidence exists that dopamine release in the nucleus accumbens (NAc) by 

neurons of the ventral tegmental area (VTA) is critical for reward-driven associative learning 

(Salamone, 1994, Phillips et al., 2003b, Bassareo et al., 2007, Kim et al., 2012, Chaudhri et al., 

2013, Ilango et al., 2014a, Ilango et al., 2014b, Sciascia et al., 2014) and that the dopamine 

neurons of the substantia nigra pars compacta (SNc) play a key role in aversion-driven 

associative learning (Bracs et al., 1984, Da Cunha et al., 2001, Ferro et al., 2005, Manago et al., 

2009, Boschen et al., 2011, Kravitz et al., 2012, Dombrowski et al., 2013, Ilango et al., 2014b, 

Boschen et al., 2015, Pauli et al., 2015). Less, but relevant, evidence also exists that VTA -to-

NAc dopamine plays a role in aversion-driven associative learning (Wadenberg et al., 1990, 

Salamone, 1994, Setlow and Mcgaugh, 1998, 2000, Lalumiere et al., 2005) and that the dorsal 

striatal dopamine is important for some kinds of reward-driven associative learning (Zaghloul et 

al., 2009, Kravitz et al., 2012, Rossi et al., 2013, Ilango et al., 2014b, Ramayya et al., 2014, 

Pauli et al., 2015).  

A widely accepted model of reward-driven associative learning proposes that the 

dopamine released in the striatum in response to “better-than-expected” rewards (positive 

prediction error) reinforces synapses between: neurons encoding a conditioned stimulus (CS) 

and neurons encoding a conditioned response (CR); neurons encoding a discriminative stimulus 

(S) and neurons encoding the response that caused the reward (R); and between neurons 

encoding the expectation of a rewarding outcome (O) and neurons encoding the instrumental 

action (A) that caused the reward (Schultz and Dickinson, 2000, Waelti et al., 2001, Yin et al., 

2008, Da Cunha et al., 2009, Schultz, 2016). In the same way, it is possible that the pause in 

the firing of midbrain dopamine neurons caused by omission of an expected reward (negative 

prediction error) (Schultz, 1998) weakens the above mentioned associations. A solid body of 

evidence supports the hypothesis that most midbrain dopamine neurons fire as if they encode 

both positive and negative prediction errors (Schultz, 2010, Hart et al., 2015, Schultz, 2016). 

Voltammetry evidence further supports this hypothesis (Brown et al., 2011, Oleson et al., 2012, 

Sunsay and Rebec, 2008, Saddoris et al., 2015, Hart et al., 2014). For example, even the 

observation of unpredicted reward delivery to a conspecific can cause dopamine release in the 

ventral striatum (Kashtelyan et al., 2014). There is also substantial evidence supporting the 

proposal that dopamine release in dorsal and ventral striatum reinforces different types of 

associative learning including conditioned stimulus-conditioned response (Parkinson et al., 

2002, Phillips et al., 2003a, Dalley et al., 2005, Sunsay and Rebec, 2008, Lex and Hauber, 
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2010, Darvas et al., 2014), stimulus-response and action-outcomeassociations (Tombaugh et 

al., 1979, Nakajima, 1986, Kim et al., 2012). 

The role of midbrain dopamine neurons in aversion-driven associative learning is less 

understood. Aversive stimuli cause a pause in the firing of most midbrain dopamine neurons 

(Mirenowicz and Schultz, 1996, Brischoux et al., 2009, Matsumoto and Hikosaka, 2009, Ilango 

et al., 2012, Schultz, 2016), but also cause an increase of tonic dopamine in the striatum as 

measured by microdialysis (Dunn and File, 1983, Sorg and Kalivas, 1991, Imperato et al., 1992, 

Salamone, 1994, Bassareo et al., 2002, Ventura et al., 2007, Dombrowski et al., 2013). A few 

electrophysiological studies reported cases in which some dopamine neurons were activated by 

both aversive and rewarding stimuli (Brischoux et al., 2009, Matsumoto and Hikosaka, 2009, 

Berridge and Kringelbach, 2015). Voltammetry studies reported that aversive stimuli elicit both 

phasic decrease (Roitman et al., 2008, Badrinarayan et al., 2012, Budygin et al., 2012, Oleson 

et al., 2012) and phasic increase (Anstrom et al., 2009, Badrinarayan et al., 2012, Budygin et 

al., 2012, Oleson et al., 2012) in dopamine release in different areas of the striatum. However, it 

is unclear whether dopamine neurons are encoding an aversion response (Ilango et al., 2014a) 

or nonselective response driven by the physical salience of the stimulus (Schultz, 2016). It is 

also under debate whether the dopamine neurons that are activated by aversive stimuli belongs 

to different categories (Bromberg-Martin et al., 2010) or whether they simply differ in the 

intensity to which they respond to salient stimuli (Schultz, 2016). An important property of the 

midbrain dopamine neurons is that even those inhibited by aversive stimuli present rebound 

activation when the stimulus ends (Brischoux et al., 2009, Matsumoto and Hikosaka, 2009, 

Schultz, 2016). This may serve as a negative reinforcement signal to drive inhibitory avoidance 

learning: the released dopamine could reinforce the association between the predictive stimulus 

and the inhibitory avoidance response. However, it is not clear whether the above mentioned 

evidence of phasic dopamine changes observed in studies using CSs with clear phasic 

onset/offset also applies to contextual avoidance learning tasks where the association is with 

static environmental stimuli.  

Conditioned active avoidance learning is more complex than inhibitory avoidance insofar 

as it is thought to depend on two processes: the learning that a phasic or contextual CS predicts 

the onset of an aversive stimulus, followed by the learning that this aversive stimulus can be 

avoided by an instrumental response. Initially, the subject does not know that a particular 

response causes avoidance of the aversive stimulus. Such an outcome is therefore “better than 

expected” – a positive prediction error. There is evidence that termination of an aversive event 

triggers phasic dopamine response (Brischoux et al., 2009; Oleson et al., 2012), and that the 
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consequent release of dopamine reinforces the association between the CS (i.e. a tone) and the 

instrumental avoidance response (Dombrowski et al., 2013). Therefore, in addition to reward-

driven learning, avoidance learning may also depend on prediction-error triggered dopamine 

release. 

In summary, there is evidence that midbrain dopamine neurons play critical roles in 

reward- and aversion-driven associative learning but it is not clear whether they do this by a 

common mechanism or by mechanisms that can be dissociated. While the role of dopamine 

neurons of the VTA in associative learning is comparatively well understood (Salamone, 1994, 

Phillips et al., 2003b, Bassareo et al., 2007, Chaudhri et al., 2010, Kim et al., 2012, Chaudhri et 

al., 2013, Ilango et al., 2014a, Ilango et al., 2014b, Sciascia et al., 2014), that of the laterally 

located dopamine neurons in SNc is less clear. Therefore, in the present study we addressed 

this issue by testing whether a partial lesion of the dopamine neurons of the rat SNc affects 

conditioned place preference (CPP) learning and conditioned place aversion (CPA) learning to 

the same extent.  

 

Experimental procedures 

 

Animals 

 Ninety male Wistar rats from Universidade Federal do Parana (UFPR) vivarium were 

used, weighing 280-310 g at the time of surgery. Rats were maintained in a temperature-

controlled room (22±2°C) on a 12/12 light/dark cycle (lights on at 7 a.m.) with food and water ad 

libitum, except for some groups of animals that underwent food restriction as described below. 

Body weight and water intake were monitored every 3 days. All possible efforts were made to 

minimize the number of animals used and their discomfort during the experimental procedures. 

After the end of the experiments, rats were humanely killed by decapitation under deep 

ketamine/xylazine (140/10 mg/kg) anesthesia. All procedures were approved by the Animal 

Care and Use Committee of the UFPR (protocol numbers 664 and 846) and conducted in 

accordance with the Brazilian law (11.794/8 October 2008) and the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals.  

 

Neurotoxic lesion of the SNc with 6-OHDA or MPTP 

 Animals were anesthetized with 3 ml/kg equithesin (1% sodium thiopental, 4.25% chloral 

hydrate, 2.13% magnesium sulfate, 42.8% propylene glycol, and 3.7% ethanol in water) and 

secured in a stereotaxic frame. Next, 2 �L of saline (0.9% NaCl), 3 �g 6-OHDA (Sigma, 
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dissolved in 2 �L of the following solution: 8.66 g NaCl, 0.205 g KCl, 0.176 g CaCl2.2H2O, 0.173 

g MgCl2.6H2O and Milli-Q purified water sufficient to complete a final volume of 50 ml) or 200 �g 

MPTP (Sigma, dissolved in 2 �L of saline) were infused bilaterally into the SNc in the following 

coordinates: AP -5.0 mm from bregma, ML ± 2.1 mm from midline, DV -7.7 mm from skull, with 

incisor bar 3.3 mm below the interaural line (Paxinos and Watson, 2005, Dombrowski et al., 

2013). We used 6-OHDA and MPTP doses known to cause cognitive deficits without motor 

impairments (Da Cunha et al., 2001, Gevaerd et al., 2001a, Gevaerd et al., 2001b, Perry et al., 

2004, Ferro et al., 2005, Bortolanza et al., 2010). Rats of the SHAM group received saline or the 

6-OHDA solution vehicle instead of MPTP or 6-OHDA, respectively. Because there were no 

significant difference between the measures made in the animals that received saline or vehicle, 

data were pulled and the animals of these two control subgroups are referred to as SHAM. 

 

Open field test 

The open field test was carried out 22-27 days after surgery. Each animal was allowed 

to freely explore an open field for 5 min. The field was a circular arena (100 cm diameter x 45 

cm height) with lines dividing the arena in 18 areas of the same size. The number of times the 

animal crossed the lines, the number of rears, and the number of grooming episodes were 

scored (Frussa-Filho et al., 1999). 

 

Place preference testing box 

We used a wooden box with a design adapted from White and Carr (1985). The box had 

two lateral compartments (40x22x30 cm) and a central compartment (10x22x30 cm). A rat could 

be confined in one of the compartments by inserting guillotine-like dividers. The right lateral 

compartment had a textured glass floor and vertical stripes painted on the walls. The left lateral 

compartment had a smooth wooden floor and horizontal stripes painted on the walls. 

   

Conditioned place preference (CPP)  

The same rats used in the open field test were later used to test CPP learning. Before 

surgery these animals were tested for sucrose consumption. In this test each rat was placed in 

a Plexiglas cage (similar to the home cage) for 3 consecutive days with 10 sucrose pellets each 

day. The rat had 15 min to eat the pellets on the first day, 10 min on the second day, and 5 min 

on the last day. All animals ate the sucrose pellets within the designated times.  

The CPP protocol used was adapted from White and Carr (1985) and started 3 weeks 

after surgery. From this day to the end of the experiment, these rats were food restricted to 
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maintain 85-90% of their free-feeding body weight. In order to check for a priori preference for 

one of the 2 test compartments, after 3 days of food restriction each rat was given 10 min to 

explore the CPP box freely with the sliding doors opened. Excluding the time spent in the 

central compartment, the time that each rat spent exploring the right lateral compartment plus 

the time spent in the left lateral compartment was taken as 100%. Four out of the 6 rats of the 

SHAM group, 5 out of the 7 rats of the 6-OHDA group and 3 out of the 7 rats of the MPTP group 

spent between 41% and 48% of the time exploring the left compartment and spent between 

51% and 59% of the time exploring the right compartment. The other rats presented the 

opposite pattern of time distribution between these compartments. These differences did not 

meet the criterion used for a priori place-preference: spend more than 60% in one of the 

compartments. The compartment in which the animal spent more time was assigned to be the 

neutral (empty) compartment and the other compartment was assigned to be the appetitive 

compartment (paired with sucrose pellets). Following this rule resulted in counterbalanced 

numbers of animals in which a specific compartment was assigned as appetitive (N = 12) and 

the number of animals in which the same specific compartment was assigned as neutral (N = 

8): this 12 versus 8 distribution is not significantly different from a 10 versus 10 distribution (p = 

0.52, Chi-square test).  

Starting the next day, rats were given 6 sessions of CPP training (1 session per day) and 

1 session of place preference testing. Each training session consisted in confining the rat for 20 

min in the appetitive compartment and, immediately after, confining it for 20 min in the neutral 

compartment. The appetitive compartment had 10 sucrose pellets (70 mg/pellet) and the neutral 

compartment was empty (no pellets). In the test session, the rat was placed in the center 

compartment with the doors opened. This session was videotaped and the time spent in each 

compartment was scored by using the ANY-maze software (Stoelting, IL).  

In the following 6 days, rats were given one extinction session per day. These sessions 

were similar to the training sessions, except that both the right and left compartments were 

empty. On the next day, place preference was tested again.  

  

Conditioned place aversion (CPA) 

 Three CPA protocols were deployed: (i) naive rats were exposed to a place paired with 

quinine pellets; (ii) rats were first exposed to a place paired with sucrose pellets, then submitted 

to extinction sessions in the same location now paired with quinine pellets; and (iii) a quinine 

solution was delivered orally to naive rats who were then exposed them to a place. In all cases 

rats were given an alternative choice of a neutral place – not paired either with quinine or 
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sucrose. Except for the use of quinine pellets or quinine solutions, all CPA protocols were 

similar to that used for CPP. 

For protocols (i) and (ii) the aversive pellets were made of white painted epoxy spheres, 

immersed in 1.5 mg/ml quinine HCl (Sigma-Aldrich) for 24 h and allowed to dry. They looked 

identical to the sucrose pellets. Rats trained under protocol (iii) were gently restrained and 

received 200 µL of a 1 mM quinine solution into the mouth with a syringe. Immediately 

afterwards, the rat was confined in the aversive compartment for 20 min. During this period the 

rat received additional doses of quinine every 5 minutes. Next, no solution was given and the rat 

was confined in the neutral compartment for 20 min. As in the protocol used for CPP, rats were 

given 1 training session per day for 6 training days and 1 testing day.  

 

Unconditioned responses to sucrose and quinine 

Additional groups of rats were used in the two experiments described next. First, 

SHAM, 6-OHDA and MPTP lesioned rats were anesthetized with ketamine/xylazine (140/10 

mg/kg) and two bilateral oral cannulae (heat-flared polyethylene tubing) were implanted by 

according to the protocol published previously by Roitman et al., (2008). Each cannula entered 

the mouth just lateral to the first maxillary molar with an ethyl vinyl acetate washer flush 

against the molar. The other end of each tubing was exteriorized and held at the top of the 

head with a second washer. After recovery, the external end of each tubing was connected to 

a syringe. The rat was placed in a transparent box and videotaped from the bottom. Every 

minute the rat received 200 �L of a 10% sucrose solution through intraoral cannula for 4 times. 

Three minutes later, the rat received 200 �L of a 1 mM quinine solution through the 

contralateral cannula for 4 times (once per minute). Immediately after the infusion of the 

sucrose or quinine solutions the orofacial expressions elicited were recorded for 1 min. The 

behavior of fast diagonal tongue protrusions was scored and classified as an appetitive 

response, while gaping responses were scored as an aversive reaction (Berridge and 

Robinson, 1998).  

Behavioral responses to self-administered quinine and sucrose pellets were also 

recorded. Each rat was placed in a glass cylinder (20 cm diameter, 19 cm high) within a (50 

cm long, 23.5 cm wide, and 35 cm high) wooden box with mirrors on the internal walls; this 

allowed the animal’s interaction with the pellets to be videotaped independent of the animal’s 

position (adapted from Grill and Norgren, 1978). On the first day, each rat was given 5 min 

habituation inside the empty cylinder. The next day the animal was returned to the cylinder 

with 10 sucrose pellets on the floor. The animal was videotaped from the front and the 
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recording time started from the moment the animal stood with 4 paws on the floor and ended 1 

min after all pellets had been eaten. The following behaviors were scored: (i) time to pick up 

the first pellet; (ii) time interacting with all pellets (elapsed time from picking up the first pellet to 

finish eating the last pellet) (iii) inter-pellet intervals (elapsed time from picking up one pellet to 

picking up the next pellet); (iv) total time spent eating (the sum of the time spent only eating 

the 10 pellets). On the 3rd day, the animals were returned to the same cylinder but with 10 

quinine pellets. Because the quinine pellets could not be consumed, the following differences 

were made in testing and scoring: (i) the session lasted for 20 min (the mean length of the 

CPA training sessions); (ii) chewing behavior was scored instead of eating behavior; (iii), the 

number of times the animal picked up the pellets was scored instead of the number of pellets 

eaten. The number of rats that presented gaping behavior in response to the quinine pellets 

was recorded. The typical appetitive orofacial expression that was observed in response to the 

sucrose solution was not observed when the rats tasted the sucrose pellets.  

 

Evaluation of the nigrostriatal lesion 

 The brains of 5 rats of each group were processed for tyrosine hydroxylase (TH) 

immunohistochemistry. The midbrains were dissected and stored for at least 24 h in 

paraformaldehyde 4% w/v at 4°C, and saturated in a sucrose solution 30% w/v in PBS 0.1 M, 

frozen on dry ice, sliced in cryostat (Leica Biosystems). One of every 6 coronal slices of 40 �m 

was collected and incubated in primary anti-TH antibody (1:500; cat # AB152 Chemicon), then 

transferred to a biotin conjugated secondary antibody solution (1:200, cat # S-1000 Vector 

Laboratories); next it was transferred to an ABC system solution (cat # PK6101, Vectastain ABC 

Elite kit, Vector Laboratories), and finally incubated with a 25 mg/ml 3,3’-diaminobenzidine 

solution. The slices were mounted on glass slides and scanned in a motorized Axio Imager Z2 

microscope (Carl Zeiss) equipped with automated scanning VSlide (MetaSystems). TH-

immunoreactive neurons were counted in all collected slices of the rostral (-4.6 to -5.3 mm from 

bregma) and caudal (-5.4 to -5.9 mm from bregma) SNc and VTA as determined by the rat brain 

atlas of Paxinos and Watson (2005). 

 The brains of 12 SHAM, 7 6-OHDA, and 9 MPTP rats were quickly removed on ice and 

the whole striata were dissected and stored at -80ºC. Concentrations of dopamine and 3,4-

dihydroxyphenylacetic acid (DOPAC) in the striatum were separated and quantified by HPLC 

with electrochemical detection. The striatal tissue samples were homogenized with an ultrasonic 

cell disrupter (Sonics, Newton, USA) in 0.1 M perchloric acid containing 0.02% sodium 

metabisulfite (Sigma), and 50 ng/ml of the internal standard 3,4-dihydroxybenzylamine 
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hydrobromide (Sigma). After centrifugation at 10,000 g at 4ºC for 30 min, 20 �l of the 

supernatant was injected in a HPLC system (Shimadzu) with a Synergi Fusion-RP C-18 

reverse-phase column (150 x 4.6 mm, 4 �m particle size; Phenomenex) and integrated with a 

coulometric 197 electrochemical detector (ESA Coulochem III) equipped with a working 

electrode set at +450 mV vs. a palladium reference electrode (for details, see Dombrowski et 

al., 2013). 

  

Statistical analyses 

 Numerical data were tested for normality (D'Agostino-Pearson omnibus’ test) and equal 

variance (standard unpaired t test for unequal variance). Apart from grooming, and the 

unconditioned responses to sucrose, and quinine pellets, which were analyzed by Kruskal-

Wallis ANOVA followed by Dunn’s multiple comparison post-hoc contrasts, all other data met 

these criteria. Open field test data were analyzed by one-way ANOVA. Percent of time spent in 

the neutral versus appetitive compartments and percent of time spent in the neutral versus 

aversive compartments data were analyzed by two-way ANOVA followed by Bonferroni-

corrected, post-hoc contrasts. Number of neurons, dopamine and DOPAC levels were analyzed 

by one-way ANOVA followed by the Dunnett’s post-hoc contrasts. Sphericity for data of body 

weight, food intake, water intake, and time spent in neutral and appetitive compartments before 

CPP training, after CPP training and after extinction were confirmed; these data were analyzed 

by repeated-measures ANOVA followed by Bonferroni-corrected post-hoc contrasts. 

Correlations between two variables were analyzed by the Pearson’s test. Parametric data were 

expressed as mean ± SEM and non-parametric data as median (25% percentile / 75% 

percentile). Differences were considered significant if p < 0.05. Calculations were made with the 

GraphPad Prism for Windows software (version 6.01). 

 

Results 

 

Post-mortem evaluation of midbrain dopamine neuron loss and striatal dopamine 

depletion 

 Compared with the SHAM control group, significantly fewer TH immunostained neurons 

were found in SNc of the MPTP and 6-OHDA lesioned rats (Fig. 1). Statistical analysis 

confirmed this result in all parts of the SNc; for rostral and caudal counts (group factor F(2,21) = 

14.70, p < 0.001) and for medial and lateral counts (group factor, F(2,19) = 17.10, p < 0.001). 

No significant differences were found between number of TH-immunoreactive neurons in the 
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rostral and caudal parts of the SNc (location factor, F(1,21) = 3.11, p = 0.09; interaction group X 

location factor (F(2,21) = 0.84, p = 0.44) or between the medial and lateral parts of the SNc 

(location factor, F(1,19) = 1.77, p = 0.20; interaction group X location factor, F(2,19) = 0.42, p = 

0.66). The lesions were confined to the SNc, as no significant differences were found between 

the groups in the number of TH-immunostained neurons found in the rostral or caudal parts of 

the VTA (group factor, F(2,17) = 0.54, p = 0.59; location factor, F(1,17) = 2.79, p = 0.11; 

interaction group X location, F(2,17) = 1.32, p = 0.29).  

 Compared to the SHAM group, lesions of the SNc with MPTP or 6-OHDA caused 

equivalent and significant reductions in tissue levels of dopamine (F(2,25) = 10.47, p < 0.5) and 

DOPAC (F(2,25) = 7.78, p = 0.02) in the striatum.  

 

Body weight, food and water intake  

 After surgery, animals of all groups exhibited reduced levels of body weight, eating and 

water drinking over the first few days. SNc-lesioned rats lost more weight (Fig. 2A) and ate less 

(Fig. 2B) than SHAM-lesioned rats. No significant difference in water intake was observed 

among groups and food restriction did not alter water drinking (Fig. 2C). No significant 

difference among groups was observed in body weight, food intake and water drinking when 

training in the CPP and CPA tasks started.  

Repeated-measures ANOVA of weight (Fig. 2A) yielded significant main effects of lesion 

(F (2, 22) = 172.4 p < 0.001) and time (F(7,154) = 190.2, p < 0.001), and a significant interaction 

between these factors (F (14,154) = 19.64, p < 0.001). Repeated-measures ANOVA of food 

intake (Fig. 2B) yielded significant main effects of lesion (F (2, 22) = 172.4 p < 0.001) and time 

(F (7,154) = 190.2, p < 0.001), and a significant interaction between these factors (F (14,154) = 

19.64, p < 0.001). Repeated-measures ANOVA of drinking (Fig. 2C) revealed a significant main 

effect of time (F(7,154) = 48.03, p < 0.001), but no significant effect of the lesion (F(2,22) = 2.37, 

p = 0.11) or interaction between these factors (F(14,154) = 0.94, p =0.94). 

 

Exploratory behavior in an open field 

In the open field test the behavior of MPTP, 6-OHDA rats and SHAM control animals 

was indistinguishable (Table 1). ANOVA showed no significant differences among groups in the 

number of crossings in both lateral (F (2, 25) = 0.49, p = 0.55) and central (F (2, 25) = 0.34, p = 

0.69) areas of open field or in the number of rears (F (2, 25) = 1.32, p = 0.28). Kruskal-Wallis 

ANOVA also showed no significant differences among groups in the number of grooming 

episodes (H(2, 25) = 1.27, p = 0.55), although these were infrequent. These results suggest that 
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the partial lesion of the rat SNc with MPTP or 6-OHDA did not cause any alterations in motor 

performance (locomotion) or anxiety (time spent in center of open field) that could affect CPP 

and CPA scores. 

 

Unconditioned responses to sucrose and quinine 

 Typical unconditioned orofacial expressions were observed in animals from all groups 

when they tasted a sucrose solution (licking and tongue protrusions) or a quinine solution 

(gaping) (Fig. 3). The incidence of fast lateral tongue protrusions in response to infusions of 

sucrose did not vary among groups (F(2,10) = 0.28, p = 0.75). Similarly, the incidence of gapes 

in response to infusions of quinine also did not vary significantly between the groups (F(2,11) = 

0.62, p = 0.55. In addition, when given access to 10 sucrose pellets, rats of all groups 

consumed all sucrose pellets. These results suggest that the lesion of the SNc did not affect 

fundamental hedonic responses to these appetitive and aversive stimuli.  

Behavioral scores for eating sucrose pellets are shown in Table 2. The only significant 

difference between sham and lesioned groups was that 6-OHDA rats took significantly longer 

than SHAM rats to start eating (H(2,20) = 7.70, p < 0.05, Kruskal-Wallis ANOVA; p < 0.05 Dunn 

test). A significant difference between the time spent eating by MPTP and SHAM rats was 

significantly different (H(2.10) = 7,94, p = 0.01; p < 0.05 Dunn test). No significant group effect 

was found for the time interacting with the pellets (H (2,10) = 1.66, p = 0.43), inter-pellet interval 

(H(2, 10) = 1.94, p = 0.37), and number of pellets picked up (H (2,10) = 1.66, p = 0.43). 

Moreover, rats of the 6-OHDA and MPTP groups behaved as the rats of the SHAM group when 

they were previously habituated to eat sucrose pellets and later given access to 10 quinine 

pellets. Initially they approached and picked up the quinine pellets in the same way as they did 

for the sucrose pellets. However, immediately afterward they dropped the pellet and opened the 

mouth (gaping) many times, even though after they were no longer manipulating the pellets. No 

significant difference among groups was observed for the behavioral scores of responses to 

quinine pellets (Table 3). Kruskal-Wallis ANOVA yield non-significant group effects for latency to 

try the first pellet (H (2,10) = 1.01, p = 0.60), time interacting with the pellets (H (2,10) = 1.40, p 

= 0.49), inter-pellet interval (H(2,10) = 3.44, p = 0.17), time spent chewing (H(2,10) = 2.40, p = 

0.30), and number of pellets picked up (H (2,10) = 2.29, p = 0.31).  

 

Testing different protocols for CPA learning 

The pilot experiments carried out with naive rats showed that protocol (i) failed to cause CPA in 

naive rats (Fig.4A). Note, this protocol was the same as that used for place conditioning, except 
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that quinine pellets instead of sucrose pellets. Failure of this protocol to cause CPA in naive rats 

probably happened because, in contrast to sucrose pellets, rats did not eat the quinine pellets – 

after they tasted a pellet they usually did not try it again. This problem was solved by using 

protocol (ii), in which rats that were previously trained in the CPP protocol followed by the 

extinction sessions underwent 6 CPA training sessions. When these rats were given free choice 

to explore the chamber, they spent significantly less time in the compartment previously paired 

with quinine, compared to the neutral compartment (Fig. 4A). Protocol (iii), in which naive rats 

received a quinine solution into the mouth and where left in the place assigned as aversive was 

also effective to cause CPA in the test session.  Consequently. a two-way ANOVA showed a 

significant main effect of compartment (F(1,32) = 33.3, p < 0.001), a non-significant effect of 

protocol (F(2,32) < 0.001, p > 0.99), and a significant interaction between compartment and 

protocol (F(2,32) = 23.0, p < 0.001). Bonferroni post hoc test showed that the time spent in 

aversive compartment was significantly less than time spent in the neutral compartment for rats 

trained under protocol (ii) and (iii) (p < 0.05), but not for rats trained under protocol (i).  

As described above, before the training and test CPA session, rats trained under 

protocol (ii) were submitted to CPP training followed by CPP extinction sessions. The data 

illustrated in Fig. 4B shows that these training and extinction sessions were effective. Thus, a 

repeated-measures ANOVA that compared scores of animals trained under protocol (ii) before 

training, after training and after extinction showed a significant compartment factor effect 

(F(1,24) = 10.9, p < 0.01), a non-significant time effect (F(2,24) = 0.0, p > 0.99), and a 

significant interaction compartment X time (F(2,24) = 17.4, p < 0.001). In this case, a post hoc 

Bonferroni’s test showed that the time spend in the appetitive compartment was significantly 

higher than the time spent in the neutral compartment (p < 0.001). It also showed that the time 

spent in the appetitive compartment after training was significantly greater than the time spent in 

this compartment before training (p < 0.01). After extinction, there was no significant difference 

between the time spent in the appetitive compartment before training and the time spent in this 

compartment after extinction (p > 0.2). 

 

SNc lesion did not impair CPP learning 

Partial lesions of the SNc with 6-OHDA or MPTP did not affect CPP learning (Fig 5A). 

Thus, time spent in the appetitive compartment was significantly higher than the time spent in 

the neutral compartment for rats of all groups (compartment factor, (F(1,34) = 63.7, p < 0.001; 

group factor (F(2,34) = 0.00, p > 0.99); group X compartment interaction (F(2,34) = 1.30, p = 
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0.28) (compartment factor, (F(1,34) = 63.7, p < 0.001; group factor (F(2,34) = 0.00, p > 0.99); 

group X compartment interaction (F(2,34) = 1.30, p = 0.28).  

 

SNc lesion impaired CPA learning 

While SHAM rats learned the CPA task, partial lesion of the SNc prevented CPA 

learning when they were trained under protocol (ii). As shown in Fig. 5B, on the test day, SHAM 

rats spent significantly less time in the aversive compartment (previously paired with quinine). 

On the other hand, the 6-OHDA rats spent significantly more time in the aversive compartment. 

Time spent by the MPTP rats in the two compartments was not significantly different. A two-way 

ANOVA of Fig. 5B data showed no significant main effects of compartment (F(1,34) = 2.85, p = 

0.10) or group (F(2,34) = 0.00, p > 0.99), but revealed a significant interaction between these 

factors (F(2,34) = 14.90, p < 0.001). It is possible that the preference of the 6-OHDA lesioned 

rats for the compartment paired with quinine was biased by the previous pairing of this 

compartment with sucrose. A positive correlation was found between the time the 6-ODHA rats 

spent in the appetitive compartment during the CPP test and the time they spent in the aversive 

compartment in the CPA test (r = 0.71, p < 0.05, Pearson’s test). However, no significant 

correlation between these scores was found for the SHAM (r = - 0.36, p = 0.25) and MPTP rats 

(r = 0.04, p = 0.93).  

 To further test whether naive SNc-lesioned rats could learn a CPA task, additional 

SHAM and 6-OHDA lesioned rats were trained under protocol (iii). This protocol forced the rats 

to taste a quinine solution which was infused in the mouth immediately before they were 

confined in the aversive compartment. On the test day, SHAM rats spent significantly less time 

in the aversive compartment than in the neutral compartment (compartment effect, (F(1,44) = 

8.87, p < 0.01) (Fig. 5C). In contrast, the 6-OHDA-lesioned rats spent similar time in the 

aversive compartment as in the neutral compartment (group effect, F(1,44) < 0.01, p > 0.99; 

group X compartment interaction (F(2,34) = 5.85, p < 0.05). 

 

Correlations between CPP, CPA and the extent of dopamine neurons loss and dopamine 

depletion  

In the 6-OHDA lesioned rats there was a significant positive correlation between the 

number of neurons remaining in the caudal SNc and CPP scores (r = 0.93, p < 0.05), while in 

SHAM lesioned rats there was a significant negative correlation between the number of neurons 

present in the caudal SNc and CPA scores (r = -0.99, p < 0.05). Except for these results, no 

other significant correlations were found between number of neurons in any part of the SNc and 
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the CPP or CPA scores. In the 6-OHDA lesioned rats there was a significant correlation 

between striatal dopamine levels and CPA scores (r = 0.70, p < 0.05).  No significant 

correlations were found between dopamine levels and either the CPP or CPA scores in the 

SHAM lesioned rats  

 

Discussion 

 

The most important aspect of the present study is to show for the first time that a partial 

lesion of dopamine neurons in the SNc affected aversion-driven, but not reward-driven, 

associative learning. This effect was independent of the toxin used to lesion the SNc (6-OHDA 

or MPTP). In addition, impairment of aversive conditioning was observed regardless of the rat 

history (naive or previously trained in CPP) and of the mode of quinine delivery (self-directed 

interactions with pellets or experimenter-delivered solution). Moreover, when 6-OHDA, but not 

MPTP,  rats were first trained to prefer a place paired with sucrose pellets, then underwent 

extinction, and next were trained with quinine paired to the same place previously paired with 

sucrose, instead of avoiding the quinine-paired place, they preferred this place over the neutral 

place. The difference in this CPA score between MPTP and 6-OHDA groups suggest that 

although, we found no significant difference in the number of DA neurons lost in the substantia 

nigra of 6-OHDA and MPTP rats, the lesion caused by 6-OHDA was a bit higher. The fact that 

6-OHDA is a less selective neurotoxin compared to MPTP  (Harik et al., 1987) might also have 

contributed to this difference. 

Previous studies demonstrated that SNc dopamine neurons play a role in both appetitive 

and aversive conditioning. Rossi et al. (2013) reported that optogenetic self-stimulation of the 

dopamine neurons of the mouse SNc is sufficient to reinforce instrumental learning. Another 

study (Kravitz et al., 2012) showed that optogenetic activation of medium spiny neurons of the 

dorsomedial striatum that express D1 dopamine receptors supports CPP while activation of 

medium spiny neurons expressing D2 dopamine receptors induces CPA. Moreover, Ilango et al. 

(2014b) found that mice spent more time in a compartment where they received optogenetic 

stimulation of dopamine neurons in the SNc (or VTA) and avoided the compartment where they 

received optogenetic inhibition of dopamine neurons in these areas. Many other studies have 

demonstrated that the dopamine neurons of the SNc also play a key role in several kinds of 

aversion-driven learning. They include evidence of impaired conditioned avoidance learning in 

rats with SNc dopamine lesions induced by 6-OHDA (Cooper et al., 1973) or MPTP (Da Cunha 

et al., 2001, Gevaerd et al., 2001a, Gevaerd et al., 2001b, Perry et al., 2004, Bortolanza et al., 
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2010, Dombrowski et al., 2013). The striatal tissue content of dopamine in the MPTP- and 6-

OHDA-partially lesioned rats was about 20 to 30% of that in the control rats. A previous 

microdialysis study from our laboratory found that rats submitted to the same treatment with 

MPTP had basal tonic levels of dopamine release within the normal range, but released much 

less dopamine when challenged with amphetamine (Dombrowski et al., 2010). Similar results 

were reported for rats treated with partial lesion of the SNc induced by intranigral infusion of 6-

OHDA (Robinson et al., 1994). In another study, we reported that tonic dopamine release 

peaked in the striatum while rats were trained in a conditioned avoidance task. However, the 

tonic levels of dopamine in the striatum of MPTP-lesioned rats did not alter when they were 

submitted to the same training sessions, and they did not learn the this task (Dombrowski et al., 

2013). Together these results suggest that the rats with partial lesion of the SNc probably failed 

to release the amount of dopamine needed to support aversively-motivated learning. Consistent 

with this hypothesis, deficits to learn conditioned avoidance tasks were also reported in rats with 

dorsal striatal lesions (Wendler et al., 2014), dorsal striatal dopamine depletion (Rane and King, 

2011), and intra-dorsolateral striatal infusion of D1 (Wietzikoski et al., 2012) or D2 (Boschen et 

al., 2011) dopamine receptor antagonists. Moreover, SNc lesion impaired learning that depends 

on negative reinforcement, such as some versions of the Morris water maze task (Miyoshi et al., 

2002, Ferro et al., 2005, Da Cunha et al., 2006, Da Cunha et al., 2007), or on punishment, such 

as inhibitory avoidance (Kumar et al., 2009, Castro et al., 2012, Das et al., 2014). Therefore, it is 

well established that the dopamine neurons of the SNc are needed for both reward- and 

aversion-driven learning. However, to the best of our knowledge, this is the first study showing 

that it is possible to partially lesion dopamine neurons in the SNc in a manner that impairs 

aversion-driven learning but spares reward-driven learning.  

It is unlikely that the CPA impairment observed in the SNc lesioned rats was caused by 

motor deficits because exploratory behavior of the MPTP and 6-OHDA rats in the open field test 

was not altered. This agrees with previous studies showing that 2-3 weeks after surgery no 

motor impairment was observed in rats with partial loss of nigral dopamine neurons induced by 

similar doses of MPTP (Da Cunha et al., 2001, Da Cunha et al., 2002, Miyoshi et al., 2002, Ho 

et al., 2011) or 6-OHDA, (Ferro et al., 2005, Tadaiesky et al., 2008, Santiago et al., 2014). Nor 

is it likely that the CPA impairment was due to differences in motivation for food or water, as 

intake was similar among groups by the time testing began, in agreement with previous studies 

(Ferro et al., 2005, Tadaiesky et al., 2008).  

It is also unlikely that the CPA impairment was caused by reduced perception of the 

quinine pellets as aversive. A control experiment showed equal taste “disgust” responses to 
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quinine in both the control and SNc lesioned (MPTP or 6-OHDA) rats. In addition, like the SHAM 

rats, 6-OHDA- and MPTP-lesioned rats ate all offered sucrose pellets. The 6-OHDA rats, but not 

the MPTP rats, presented a longer delay to start eating the sucrose pellets. A similar finding 

was reported previously by Schwarting and Huston (1996) and is likely due to impairment in 

approach behavior (Ikemoto et al., 2015) rather than to reduction in hedonic “liking” (Berridge 

and Kringelbach, 2015). Therefore, we interpret the finding that rats partial SNc lesions did not 

show conditioned avoidance as a learning, but not a motor or hedonic, impairment.  

Therefore, this and previous studies support the hypothesis that nigrostriatal dopamine 

lesion affects the learning of avoiding aversive stimuli, but does not affect the hedonic response 

to rewarding and aversive stimuli. In addition, the present study shows that the roles played by 

dopamine neurons of the SNc on reward- and aversion-driven learning can be separated. The 

important question is: why can 6-OHDA and MPTP rats learn one but not the other kind of task? 

A possible explanation is the hypothesis that there are different clusters of dopamine 

neurons in the SNc, one supporting CPA learning and the other supporting CPP learning. As 

early as 1980, Chiodo et al. (1980) reported two populations of dopamine neurons in the rat 

SNc, one that is activated and another that is inhibited by potentially aversive stimuli. More 

recently, anatomical differences in the responses of midbrain dopamine neurons to rewarding 

and aversive stimuli have been reported. For example, Nomoto et al. (2010) found dopamine 

neurons in the monkey ventromedial SNc with higher sensitivity to reward. Brischoux et al., 

(2009) reported that the dopamine neurons in the rat dorsal VTA were inhibited by foot shocks 

while the dopamine neurons in the ventral VTA were phasically excited by foot shocks. 

Matsumoto and Hikosaka (2009) observed that neurons in the dorsolateral part of the monkey 

SNc were excited by both aversive and reward stimuli, while neurons in the ventromedial SNc 

and VTA were excited by a reward stimulus and inhibited by an aversive stimulus. However, 

other authors claim that instead of different clusters, the distribution of the dopamine neurons in 

the midbrain is graded in terms of sensitivity to rewarding and salient stimuli. They also claim 

that the activation observed in some dopamine neurons was not associated with the 

aversiveness, but the salience of the stimulus (Fiorillo et al., 2013, Schultz, 2016). Fiorillo and 

coworkers (2013) found that neurons in the “ventral tier” of the monkey SNc present greater 

suppression in response to aversive stimuli and a subset of these neurons present a rebound 

activation after suppression. In addition, they observed that neurons in the further rostral part of 

the SNc were more strongly suppressed by aversive stimuli.  

Could the results of the present study reflect clustering of dopamine neurons which are 

relevant for reward- and aversion-driven learning in different areas of the midbrain? The 
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dopamine neurons of the VTA were spared in the MPTP and 6-OHDA groups, suggesting that 

VTA neurons are not sufficient to support CPA. However, as discussed above, other studies 

have shown that the VTA plays a key role in both kinds of learning (Wadenberg et al., 1990, 

Salamone, 1994, Setlow and Mcgaugh, 1998, 2000, Phillips et al., 2003b, Lalumiere et al., 

2005, Bassareo et al., 2007, Chaudhri et al., 2010, Kim et al., 2012, Chaudhri et al., 2013, 

Ilango et al., 2014a, Ilango et al., 2014b, Sciascia et al., 2014). In the present study, the most 

caudal and the most lateral parts of the SNc were partially preserved in the animals treated with 

MPTP. However, the 6-OHDA rats presented no significant difference among these areas and, 

like the MPTP rats, they were impaired to learn the CPA but not the CPP task. Nevertheless, in 

the 6-OHDA rats a positive correlation was found between CPP scores (time spent in the 

appetitive compartment) and the number of dopamine neurons in the caudal, but not rostral, 

part of the SNc. One interpretation is that, although 6-OHDA rats were not impaired to learn 

CPP, this kind of learning is positively modulated by the dopamine neurons of the caudal SNc. 

In addition, a negative correlation was found between CPA scores (time spent in the aversive 

compartment) and the number of dopamine neurons in the caudal SNc of SHAM rats, but this 

correlation was not found in SNc-lesioned rats. This finding is consistent with the hypothesis 

that CPA depends on reduction of dopamine release by the neurons of the caudal part of the 

SNc and therefore aversive learning is more sensitive to loss of dopamine neurons. However, 

the present results suggest that if there are different clusters of dopamine neurons supporting 

reward- and aversion-driven learning, they are not segregated in different regions of the rat 

SNc. 

Another possible explanation for the finding that the MPTP and 6-OHDA rats could learn 

the CPP task but not the CPA task is that, compared to reward-driven learning, aversion-driven 

learning may depend on larger changes in dopamine concentration. Evidence exists that 

reward-driven learning is reinforced by increased release of dopamine in the striatum in 

response to “better-than-expected” rewards (Schultz, 2016). Although this evidence refers to 

studies in which there was a clear phasic onset/offset of the CS, it is possible that in the present 

study the remaining dopamine neurons in the 6-OHDA and MPTP rats were sufficient to 

increase extracellular dopamine levels above a threshold critical to support reward-driven 

learning. In a previous study, we showed that the MPTP lesion did not alter basal tonic levels of 

extracellular dopamine in the striatum. Moreover, as mentioned above, when these MPTP rats 

were challenged with amphetamine they exhibited increased dopamine release, though at a 

lower level compared to SHAM rats (Dombrowski et al., 2010). This might explain why a positive 

correlation between dopamine neurons spared in the caudal SNc and CPP learning was found 
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in rats treated with 6-OHDA, but not in SHAM and MPTP rats: although the 6-ODHA rats could 

learn this task, those rats with more dopamine to release learned the task better. On the other 

hand, the MPTP lesions were possibly below a limit that could affect CPP scores. Aversion-

driven learning may depend on phasic reduction in the extracellular concentration of dopamine 

in response to aversive stimuli (Roitman et al., 2008, Schultz, 2010, Badrinarayan et al., 2012, 

Budygin et al., 2012, Hart et al., 2015, Schultz, 2016). This may also be true for tonic levels of 

dopamine. However, compensatory mechanisms in the dopamine terminals which made 

possible for lesioned rats to maintain the tonic levels of dopamine (Perry et al., 2005, Da Cunha 

et al., 2008, Dombrowski et al., 2010) may make it more difficult to decrease extracellular 

dopamine concentration below baseline. Consistent with this hypothesis, we found a positive 

correlation between CPA scores and striatal content of dopamine in 6-OHDA rats, but not in 

SHAM rats. In a future study this hypothesis can be further tested by measuring dopamine 

release during CPA.  

In conclusion, the present study shows that the role of SNc dopamine neurons in 

reward- and aversion-driven associative learning can be dissociated. The MPTP and 6-OHDA 

partially lesioned rats can be used to study treatments for learning deficits specific for aversive 

tasks or in electrophysiological and electrochemical experiments to identify differences in 

dopamine neuronal activity and dopamine release when they are trained in appetitive- and 

aversive-driven learning tasks. Histological studies can also take advantage of these animals to 

investigate putative heterogeneity of dopamine neurons.  
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Figure Legends 
 
 
Fig. 1. Histological and neurochemical evaluation of the lesions induced by infusion of 6-OHDA 
or MPTP into the SNc. (A) Examples of midbrain slices immunostained for TH. Neuron number 
was significantly reduced by both toxins in the SNc (B, C) but not VTA (D). Tissue content of 
dopamine (DA) and DOPAC were significantly reduced in the striatum (E). The mean numbers 
of  counted neurons in the SHAM group were: (B) 166 in the SNc rostral and 303 in the SNc 
caudal; (C) 198 in the SNc medial and 405 in the SNc lateral; (D) 439 in the VTA rostral and 338 
in the VTA caudal. The mean number of  counted neurons in the 6-OHDA groups were: (B) 19 
in the SNc rostral and 107 in the SNc caudal; (C) 64 in the SNc medial and 28 in the SNc 
lateral; (D) 386 in the VTA rostral and 355 in the VTA caudal. The mean number of  counted 
neurons in the MPTP groups were: (B) 43 in the SNc rostral and 194 in the SNc caudal; (C) 82 
in the SNc medial and 77 in the SNc lateral; (D) 254 in the VTA rostral and 372 in the VTA 
caudal.  (E) The mean contents of striatal DA in the were 9601 ng/g of wet tissue in the SHAM 
group, 2978 ng/g of wet tissue in the  6-OHDA group, and 1775 ng/g of wet tissue in the MPTP 
group;  the mean contents of striatal DOPAC in the were 957 ng/g of wet tissue in the SHAM 
group, 677 ng/g of wet tissue in the  6-OHDA group, and 659 ng/g of wet tissue in the MPTP 
group. The numbers for rats per group in (B), (C), and (D) were: SHAM (n=4), 6-OHDA (n=5), 
MPTP (n= 5). The numbers of rats per group in (E) were: SHAM (n=12), 6-OHDA (n=7), MPTP 
(n= 9). Data are expressed as mean ± SEM. * p < 0.05 compared to the SHAM group, Dunnett’s 
test after ANOVA. 
 
Fig. 2. Effects of SNc lesion on rat body weight (A), food intake (B), and water intake (C). SHAM 
(n=9), MPTP (n=7), 6-OHDA (n=9). Data are expressed as mean ± SEM. * p < 0.05 compared 
to SHAM (Bonferroni’s test after ANOVA).  
 
Fig. 3. Partial lesion of dopaminergic neurons of the SNc by 6-OHDA or MPTP did not affect 
orofacial expressions exhibited by rats after tasting quinine or sucrose. (A) Number of lateral 
tongue protrusions in response to sucrose SHAM (n=5), 6-OHDA (n=4) MPTP (n=4). (B) 
Number of gapes in response to quinine (right) were unaffected by lesions SHAM (n=5), 6-
OHDA (n=5) MPTP (n=4). Bars express mean ± SEM counts.  
 
Fig. 4. Pilot experiments were carried out to set up the best conditioned place aversion (CPA) 
protocol. Three protocols were tested: (i) exposing naive rats (n = 9) to a place paired with 
quinine pellets; (ii) exposing rats (n = 5) that were previously exposed to a place paired with 
sucrose pellets and later submitted to extinction sessions to the same place paired with quinine 
pellets; and  (iii) orally giving quinine solution to naive rats (n = 5) and exposing them to a place. 
In all cases rats were also exposed to a neutral place that was not paired with quinine. The 
places paired with sucrose or quinine and the unpaired place are referred to as “appetitive”, 
“aversive”, and “neutral”, respectively.  (A) Only protocols (ii) and (iii) were effective to cause 
CPA. (B) The rats submitted to protocol (ii) showed no place preference before training, 
preferred to stay in the appetitive compartment after CPA training and this preference was lost 
after extinction. Data are expressed as mean ± SEM. * p < 0.05 compared to the neutral 
compartment (Bonferroni’s test after ANOVA). 
 
Fig. 5. Effect of SNc lesion with 6-OHDA or MPTP on conditioned place learning (CPP) and 
conditioned place aversion (CPA) learning. (A) CPA task in which naive rats were paired with 
sucrose pellets in the appetitive compartment. SHAM (n=6), 6-OHDA (n=7), MPTP (n= 7). (B) 
CPA task in which the same rats which were first trained for CPP (in A) underwent extinction 
sessions, and then the same compartment  was paired with quinine pellets. (C) CPA task in 
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which quinine solution was delivered in the mouth of separate naive rats immediately before 
confinement in the compartment assigned as aversive. No solution or pellet was given to the 
rats when they were confined in the compartment assigned as neutral. Bars express mean ± 
SEM time spent in each compartments. SHAM (n=11), 6-OHDA (n=13). * p < 0.05 compared to 
the neutral compartment (two-way ANOVA followed by Bonferroni’s test).  
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Table 1. Partial SNc lesions do not significantly affect exploratory behavior in an open field. 

  SHAM 

n=12  

MPTP 

n=7 

6-OHDA 

n=9 

Crossings lateral area 79.4 ± 4.8 76.7 ± 6.0 74.0 ± 6.2 

Crossings central area 21.4 ± 2.2 20.4 ± 2.9 19.6 ± 1.9 

Rearing 16.7 ± 2.89 11.5 ± 2.85 15.2 ± 0.9 

Grooming 0.0 (0.0/2.25) 0.0 (0.0/1.0) 0.0 (0.0/0.5) 

 
Parametric data are expressed as mean ± SEM  and non-parametric data are expressed as 
median (25% percentile / 75% percentile) 
  



  

29 

 

Table 2. Effects of partial SNc lesions on behavior directed toward sucrose pellets. 
 

  

  

SHAM  

n = 5 

6-OHDA 

n = 4      

MPTP 

n = 4 

 

Time to start eating 

1st pellet (s) 

 

47 (30/71) 

 

275 (90/541)
a
 

 

121 (86/148) 

Time interacting with the pellets (s) 77 (70/88) 96.5 (79/236) 105 (62/189) 

Inter-pellet interval (s) 8.0 (7.3/9.5) 10.4 (8.4/25.2) 11.2 (6.5/20.6)
b
 

Total time spent eating (s) 52 (41/56) 67 (53/98) 35 (27/43) 

Number of pellets picked up   10 10 10 

 
Data are expressed as median (25% percentile / 75% percentile). a p < 0.05, compared to 
SHAM  
b p < 0.05, compared to MPTP  
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Table 3. Partial SNc lesions do not significantly alter behavior directed toward quinine pellets. 
 

  

  

SHAM  

n = 5 

6-OHDA 

n = 4      

MPTP 

n = 4 

 

Time to start eating 

1st pellet (s) 

29 (24/48) 71 (29/91) 23 (20/80) 

Time interacting with the pellets (s) 287 (186/948) 883 (342/1086) 761 (445/1077) 

Inter-pellet interval (s) 45 (12/69) 69 (51/79) 42 (20/48) 

Total time spent eating (s) 44 (31/144) 40 (12/76) 168 (48/201)  

Number of pellets picked up   17 (8/22) 14 (6/17) 23 (11/44) 

 
Data are expressed as median (25% percentile / 75% percentile). 
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Highlights 

 

Rats with partial lesion of nigrostriatal dopamine failed to learn to avoid a place in which they 

experienced a bitter taste 

 

Rats with this lesion learned as well as control rats to prefer a place in which they experienced a 

sweet taste  

 

In both control and lesioned rats unconditioned responses to sweet and bitter tastes were intact 

and comparable 

 

Therefore, a sub-set of nigrostriatal dopamine neurons play a role in aversion-, but not reward-

driven associative learning 

 

 

 


