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Abstract

The H-mode pedestal height plays an important role in determining the global
confinement of the tokamak plasma. In type I ELMy H-mode the ultimate limit for the
pedestal pressure at constant width is set by the ideal MHD peeling-ballooning modes
that are thought to be the trigger for the ELMs. However, the peeling-ballooning
mode criterion does not uniquely determine the pedestal. Increasing the width of the
pedestal, the marginally peeling-ballooning stable pedestal height increases as well.
The second criterion for the pedestal is set by the transport processes in the pedestal
that limit the gradient between the ELMs.

One candidate for driving this transport is the kinetic ballooning mode (KBM)
that is driven by the pressure gradient [1]. The KBM growth rate increases very
rapidly after the critical pressure gradient is exceeded leading to very stiff profiles

† See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference
2014, St Petersburg, Russia
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with the pressure gradient clamped near to the stability limit. In the local linear
gyrokinetic analysis of experimental MAST and JET plasmas we have found that, like
the n=∞ ideal MHD ballooning modes, the KBMs can access locally so called second
stability if the magnetic shear becomes low enough [2, 3]. However, in the pedestal
region the local assumption that the equilibrium can be considered radially constant
for the investigated modes is no longer justified. In this paper we revisit the KBM
analysis using a global code ORB5 to investigate whether second stability access exists
for KBMs.

We find that counter to the local analysis, the global KBM stability is not sensitive
to the magnetic shear in the pedestal region. At sufficiently high β (but still below the
ideal peeling-ballooning limit) the pedestal region becomes KBM unstable regardless of
the amount of bootstrap current assumed in the equilibrium reconstruction. However,
just as in local analysis, the mode is stabilised by reducing the pressure gradient. This
suggests that KBMs can regulate the pedestal pressure gradient during the ELM cycle
even when local analysis finds them stable due to high bootstrap current.

PACS numbers: 52.55.Fa

Submitted to: Plasma Physics and Controlled Fusion
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1. Introduction

The energy transport in tokamak core plasmas is dominated by turbulence which
restricts the normalised temperature gradient ∇T/T near the marginal stability limit
as the turbulent transport increases rapidly when the gradient exceeds the critical
value [4]. This stiff transport dictates that increasing core heating will not be very
effective at increasing the core temperature, but will just increase the turbulent heat
flux. Instead to increase the core temperature the edge temperature should be as high
as possible. In the high confinement mode or H-mode good global plasma confinement
is achieved by creating a so-called pedestal in temperature and density profiles near
the edge of the plasma.

The pedestal region is characterised by a steep pressure gradient that is a source
of intermittent instabilities called Edge Localised Modes or ELMs that lead to a
relaxation of the pedestal gradient and expulsion of heat and particles from the edge
plasma. It has been observed in several devices that the edge plasma is close to the
peeling-ballooning mode (PBM) stability limit just prior to an ELM crash [1]. Thus,
the peeling-ballooning modes that are driven by the edge pressure gradient and the
strong bootstrap current peak in the gradient region, limit the maximum achievable
pedestal height for a given width of the pedestal. However, changing the width of
the pedestal changes also the peeling-ballooning mode limited height of the pedestal
as the peeling-ballooning modes mainly limit the gradient with a weak dependence
on the width. Consequently, the peeling-ballooning mode stability limit alone is not
sufficient to predict the pedestal height.

In order to fully predict the pedestal of a given plasma configuration, another
constraint for the width (or gradient) is needed. Experimentally, several devices (JT-
60U [5], MAST [6], DIII-D [7]) have observed that the dependency of ∆ ∼

√

βp,ped,
where ∆ is the width of the pedestal and βp,ped is poloidal β evaluated at the pedestal
top. However, this dependency does not seem to be universal, as a linear dependency
between the width and the height (∆ ∼ βp,ped) was observed in NSTX [8]. Also
pedestal widening without a change in height has been observed with increased gas
fuelling in JET with the Beryllium-Tungsten wall [9]. Therefore, relying on the
empirical ∆ ∼

√

βp,ped scaling without understanding the physical basis of the scaling
can lead to wrong answers especially if it is used for future devices operating outside
the parameters used in current experiments.

A candidate for the physical explanation of the scaling used in the most developed
pedestal prediction model today, EPED [10, 11], is that the pedestal gradient is
constrained by the kinetic ballooning modes (KBM) between ELMs leading to the
widening of the pedestal with fixed gradient until the peeling-ballooning mode limit
is reached. The KBM is a long wavelength (k⊥ρi < 1) mode propagating in the ion
diamagnetic direction and is closely related to the ideal MHD ballooning mode and
in local approximation it is assumed to have a so-called second stability region at
low magnetic shear [12]. A mode showing characteristics of KBMs has been observed
in NSTX between ELMs with the pedestal being close to the n = ∞ ideal MHD
ballooning mode limit [13]. Also DIII-D [14] and MAST [15] have observed modes
that agree with some of the characteristics of KBMs.

Local gyrokinetic calculations have identified KBMs in the pedestal region of
MAST [2, 16], DIII-D [17] and JET [3]. In all of these analyses the linear KBM onset
was found to be close to the ideal MHD n = ∞ ballooning mode limit. However all of
the analyses found only weak or no KBM drive in the steepest gradient region, where
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the current density is the highest and the magnetic shear the lowest. Especially in JET
with the lowest collisionality and the highest edge current density the magnetic shear
becomes so low that the ideal MHD n = ∞ modes access the second stable region. In
local gyrokinetic analysis this is seen as complete stabilisation of the KBMs. These
local results cast doubt on the possibility that KBMs may indeed limit the pedestal
pressure gradient.

However, the local gyrokinetic analysis assumes that the gradient length scales are
much larger than the studied mode structure. Whilst this assumption is usually valid
in the core and even at the pedestal top, in the pedestal region the gradients can be so
steep that the assumption is no longer valid. The mode can cover a large fraction of
the pedestal leading to a large variation of equilibrium profiles in the simulated region.
For instance, in MAST pedestal with ∆ ≈ 5ρi the KBM has the peak growth rate
at k⊥ρi ≈ 0.2, where k⊥ is the perpendicular wave number and ρi is the ion Larmor
radius [2]. This necessitates taking into account non-local effects on the instabilities.
For KBMs two in particular are important. On one hand, since the pressure gradient
varies strongly within the pedestal, the drive of the KBM with a finite width is smaller
than the drive of the infinitesimal n = ∞ ballooning mode assumed in the ideal MHD
analysis. On the other hand, while the parts of the pedestal where shear is very
low allow access the second stable region for local n = ∞ ballooning modes, a mode
extending across the pedestal may not be able to access the second stability [18].

In this paper we investigate the non-local effects in pedestal conditions using a
global gyrokinetic code. As a basis of the analysis we use equilibria and profiles based
on the earlier JET and MAST local analyses [2, 3]. The main emphasis in the analysis
is in the behaviour of the second stability access, which we study by comparing the
equilibria created with and without the bootstrap current peak in the pedestal. The
equilibria created with the bootstrap current have access to the second stable region
for n = ∞ ballooning modes and KBMs, while the equilibria without the bootstrap
current are in the unstable region.

2. Local Gyrokinetic Analysis

To connect with previous work, we use in this analysis equilibria that are based on
previous analyses of MAST[2] and JET[3] pedestals. In both cases, KBMs were
identified in the pedestal with the unstable region matching very well to the ideal
MHD n = ∞ ballooning unstable region. In JET, it was found that the local KBM
unstable region depended very strongly on the magnetic shear giving the centre of the
pedestal region access to so called second stability if the bootstrap current was high
enough to flatten or even reverse the q-profile in the pedestal. In the original MAST
analysis, no second stability access was observed either in gyrokinetic KBM analysis or
in the ideal MHD n = ∞ ballooning stability, but this was due to high collisionality
of the studied plasma [2, 16]. Later analyses[19, 20] of lower collisionality MAST
pedestals found that KBMs and n = ∞ ideal MHD ballooning modes had local access
to second stability as was found in JET. The conclusion in both cases was that in a
local gyrokinetic analysis a pedestal with sufficiently low bootstrap current was KBM
unstable, but the increase of bootstrap current stabilised the KBMs in the pedestal
centre leaving only the bottom of the pedestal close to the KBM stability limit.

It was necessary to modify the equilibria of previous analyses, in order to analyse
these phenomena with a global gyrokinetic code. The main reason is that in the global
analysis, the treatment of the computational domain edge can affect the results if the
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growing modes that are too close it. Therefore, we modify the equilibria by shifting
the profiles inwards thus creating a region with flat density and temperature profiles
near the plasma edge. This modification produces a buffer region with flat profiles for
the global analysis. Before going to the global case, we test that the previous local
result is qualitatively reproduced with the new equilibria.

2.1. Modified JET Discharge #79503

The JET equilibrium is based on the JET discharge #79503, which has plasma current
of 2.5MA, toroidal field of 2.65T and upper triangularity of 0.41. The experiment
is described more in detail in [21]. In this paper, we shift the temperature and
density profiles inwards 10% in normalised poloidal flux in order to create a buffer
zone between the pedestal and the plasma edge. As in the earlier analysis [3] we make
the plasma shape up-down symmetric by cloning the shape above the midplane to be
the plasma shape also below the midplane. To maximise the effect that we are trying
to study, namely the effect of flattened shear on the KBM stability, we increase the
bootstrap current driven by the input density and temperature profiles by 100%. We
also create an equilibrium where the bootstrap current is set to zero. The q profile
and the shifted and pressure profile of the resulting equilibria as well as the original
measured JET pressure profile are shown in Fig 1. The q-profile is locally flattened in
the pedestal region with the bootstrap current.

While the resulting equilibria are somewhat different from the experimental
equilibria and thus, the results presented here are not considered to quantitatively
apply to an experimental JET plasma, the qualitative properties should not have been
changed significantly. We test this by repeating the local analysis as was performed
for the original experimental case, comparing the local ideal n = ∞ ballooning mode
stability to the KBM stability calculated using the local electromagnetic GS2 code
[22]. GS2 is run in the linear mode without collisions. While GS2 can find other
unstable modes in the pedestal, in this analysis we only consider modes that can be
identified as KBMs, i.e. they have long wavelength (k⊥ρi < 0.3), propagate in the
ion diamagnetic direction and their growth rate is sensitive to the variation of β. The
local ideal MHD n = ∞ ballooning stability is calculated together with the equilibrium
reconstruction using the equilibrium code HELENA [23].

As can be seen in Fig.2 the unstable region for n = ∞ ballooning modes agrees
very well with the KBM unstable region. The KBM growth rates are normalised to
vTi/a, where vTi is the ion thermal velocity and a is the minor radius. Only the
equilibrium without the bootstrap current finds KBMs locally unstable in the steep
pedestal region. This is qualitatively exactly the same stability picture as was found
for the original experimental equilibrium without the radial shift. As mentioned above,
the collisions were ignored to be better compatible with the global analysis. In any
case their effect on the KBM stability was confirmed to be small when we repeated
the local analysis with collisions.

We perform a local β scan for the case without bootstrap current at the flux
surface with the steepest pressure gradient (ψ = 0.88) to determine how deep in the
KBM unstable region the pedestal is. In the scan the parameter β only influences
the strength of the magnetic perturbation, and the scan is inconsistent in the sense
that the local equilibrium and density and temperature profiles are unchanged. As
can be seen in Fig. 3, β has to be lowered to about half of the value in the original
equilibrium to stabilise the KBMs. Figure 3 also shows the growth rate spectrum that
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we can compare with global analysis.
We perform similar β-scan to the equilibrium with bootstrap current. In this case,

the KBMs were stable even when β was increased by a factor of 4. This is clearly a
sign of an access to second stability.

2.2. Modified MAST Discharge #24763

For the same reasons as with the JET equilibrium, we modify the equilibrium from
MAST discharge #24763 using the profiles in the last 20% of the ELM cycle by shifting
the profiles inwards by 4% in normalised poloidal flux. This discharge has Ip = 850kA,
Bt = 0.585T at the magnetic axis, PNBI = 3.4 MW and triangularity of 0.47. Again
we create two equilibria, one without bootstrap current and one with 100% enhanced
bootstrap current. As in the JET case the bootstrap current is enhanced to increase
the access to second stability in the local analysis and decreased to close the access
completely. The gradients of the density and temperature profiles in the core have
also been reduced to limit the instability drive in the core region, which is necessary
in the global analysis to avoid core modes dominating the pedestal modes. This has a
small effect on the local pedestal stability as the reduced Shafranov-shift destabilises
the pedestal ballooning modes. The equilibrium q and pressure profiles are shown in
Fig 4.

The local gyrokinetic growth rates of KBMs in the pedestal region using GS2
and the local ideal MHD n = ∞ ballooning mode stability are shown in Fig. 5. As
in the JET case, the unstable regions agree very well in the MHD and gyrokinetic
analyses. However, in this case, even the case without bootstrap current has a large
stable region in the steepest part of the pedestal pressure gradient. Only the region
close to the bottom of the pedestal (ψN = 0.95 − 0.96), becomes unstable to both
n = ∞ and KBM in the no bootstrap current case. The width of the unstable region
in the no bootstrap case is about three ρi at the midplane. Figure 6 shows the growth
rate spectrum of the KBMs at the most unstable location, ψN = 0.955 for the no
bootstrap case. For the most unstable modesn = 7 corresponding kθρi ≈ 0.1, which
means that the mode wavelength is much larger than the radial width of the unstable
region. Poloidally the unstable KBMs peak at the low field side midplane. Even small
variation of θ or the poloidal localisation of the mode from the midplane leads to the
stabilisation of the mode.

Similar to JET, we perform a β scan for the MAST equilibrium without the
bootstrap current for the flux surface that was found KBM unstable (ψN = 0.955).
As can be seen in Fig. 7 we find the β limit for KBMs to be slightly lower than the
ideal MHD n = ∞ ballooning mode limit for the case without bootstrap current. On
the other hand, the equilibrium with bootstrap current is much more stable for KBMs
as no stability limit was found within the investigated β range suggesting that the
plasma is accessing the 2nd stability at this location.

3. Global Gyrokinetic Analysis

The local ρi/a at the top of the pedestal is 1/600 for the JET and 1/180 for the MAST
equilibrium. This would suggest that the local treatment is sufficient. However, a more
relevant measure for pedestal equilibrium variation, ρi/∆, where ∆ is the pedestal
width is 1/15 for the JET and 1/4 for the MAST equilibrium. Therefore, we expect
the non-local equilibrium effects to modify the local gyrokinetic result.
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The linear global gyrokinetic analysis of the pedestals is conducted using the
ORB5 code [24]. ORB5 is a global electromagnetic particle-in-cell (PIC) code. The
formulation of the electromagnetic equations solved by ORB5 is derived in [25]. ORB5
can include particle collisions, but since we found in the local analysis that collisions
had little effect on the KBMs, all the global runs are done assuming collisionless
plasma. We simulate the region of 0.64 < ψN < 1.

The inner boundary is far from the pedestal and requires no special treatment,
but in the outer boundary we use shielding to suppress the linear drive in a buffer zone
to avoid the boundary condition impacting on the pedestal region. The shielding is
done by modifying the density used to define the background ion polarisation response
by:

n(s) = n(s)1 + κshC sinh

(

(s− smin)/(smax − smin)

wsh

)

, (1)

C =
1

sinh
(

1

wsh

) , (2)

where smin and smax are the minimum and maximum values of s in the simulation
domain, κsh is the amplitude of the shielding and wsh is the width of the shielding.
The shielding parameters have little effect on the results as long as the width of the
shielding does not reach the steep gradient region.

The grid resolution that we use is Ns = 300, Nχ = 1024, Nφ = 256, where s is
the radial, χ the poloidal and φ the toroidal direction. To test the required marker
number, we perform a scan using 4, 8 and 16 million markers. The field energy plots for
the three cases are shown in Fig 8. It can be seen that 8 million markers is sufficient to
resolve the growth rate. The results presented here are done using 8 million markers.

To save computational resources the global analyses here are done using the mass
ratio mD/me of 200, which is smaller than the real mass ratio of 3672. However, we
found in the local analysis that the mass ratio makes little (< 20%) difference on the
growth rate.

3.1. Modified JET Discharge #79503

We first conduct a toroidal mode number scan to compare with the spectrum found
in the local analysis. Figure 9 a) shows the growth rates as a function of toroidal
mode number for both equilibria with and without bootstrap current. The peak of
the spectrum (n ≈ 40) is shifted to higher mode numbers than what was found in
the local analysis for the equilibrium without the bootstrap current, Fig. 3 (n ≈ 20).
Furthermore, the global analysis shows practically no difference between the cases with
and without bootstrap current, while the case with bootstrap current was completely
stable in the local analysis. The other point to note is that the growth rates of global
KBMs are significantly higher than found in the local analysis.

Similar to the local analysis we conduct a β scan using the global code. Unlike in
the local scan, here we recalculate the equilibrium for each value of β as the equilibrium
changes can affect the global result. In the equilibrium reconstruction the density
gradient is increased along with β. Also the bootstrap current is calculated self-
consistently for each equilibrium. We find that the global β limit for equilibria with
and without bootstrap current are higher than the local limit for the equilibrium
without the bootstrap current, but lower than the local limit for the equilibrium with
the bootstrap current Fig 3.
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3.2. Modified MAST Discharge #24763

The global analysis is repeated for the MAST discharge. The spectrum and the β
dependence of the KBMs in the pedestal are shown in Fig. 10. Again the peak of
the spectrum (n ≈ 20) is shifted to higher n compared to the local result (n ≈ 7)
without bootstrap current, and the growth rates are higher. The bootstrap current
case has the same spectrum as the no bootstrap current which is different from the
local result that is stable for pedestal KBMs. The global β-scan shows that as in the
JET pedestal there is no difference in the stability limit between the cases with and
without bootstrap current.

The global KBM stability limit with and without the bootstrap current is close
to the n = ∞ ideal ballooning and local KBM limit of the equilibrium without the
bootstrap current, shown in Fig. 7. So, while the global effects degrade the stability if
the pedestal locally has access to 2nd stability, they do not seem to affect the stability
of the case that does not have the 2nd stability access.

It should also be noted here that the radial extent of the KBMs covers the
entire pedestal. We purposefully shifted the pedestal inwards to avoid effects from
the simulation domain edge. It is, however, possible that the real plasma separatrix
has an impact on the KBMs, and a realistic treatment of the edge and the surrounding
scrape-off-layer is required to quantitatively calculate the stability limits of the KBMs.
However, that is beyond the scope of this paper as we are here investigating the non-
local effects on the 2nd stability access of the KBMs. The boundary effects are likely
to be similar for both equilibria with and without bootstrap current.

4. Conclusions

The access to 2nd stability for KBMs present in the local gyrokinetic and ideal n = ∞

MHD analysis in the pedestal region with high bootstrap current was not found in
the global electromagnetic gyrokinetic simulations presented in this paper for modified
JET and MAST equilibria. For the MAST pedestal the global β limit for the KBMs is
found to be close to the local β limit found for the equilibrium reconstructed without
the bootstrap current. The inclusion of bootstrap current into the equilibrium gives
access to the 2nd stability for KBMs in the local analysis but has no effect on the global
KBM stability limits. The global KBM β limit for the JET pedestal is insensitive to the
bootstrap current, but in this case it is higher than the local limit for the equilibrium
without the bootstrap current in the MAST and JET equilibria that we have studied.

The global spectrum of linear growth rates shifts to higher mode numbers
compared with the local result. This is due to the finite radial width of the KBMs. The
drive to the KBMs is maximised in the steep pressure gradient region of the pedestal.
The low-n modes with wider radial width extend more outside of this region, which
lowers the drive to the KBMs. The narrower high-n modes are less affected by this
reduction in linear drive but are still sufficiently extended that they can not access
second stability.

The insensitivity of the global KBM stability to the details of the q-profile agrees
with the global analysis by Wan et al. [26] for the intermediate-n KBMs that were
not affected by the change in q-profile. All the equilibria used in this paper were
stable for low-n peeling-ballooning modes that were found to be stabilised by the q-
profile flattening in [26]. Low-n MHD modes tend to be peeling-ballooning modes
(PBM) in the pedestal, and these are not captured in the lowest order gyrokinetic
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model used in codes like GS2 and ORB5. This is why we would not expect agreement
with the fluid limit at low n in conditions where PBMs dominate. The point is that
equilibrium parallel current density gradient drive that is necessary to describe PBMs
is missing from the local non-shifted Maxwellian background distribution function
f0 used here [24]. In [26], where the gyrokinetic model must have been extended
somehow to include the current gradient drive, the stabilising effect of flattening q-
profile was found for low-n modes (identified as kinetic peeling-ballooning mode, or
peeling-ballooning mode in [27]). However the KBMs with n=20-60 in [26] are affected
only slightly and actually destabilised by the q-profile flattening. We believe that the
global gyrokinetic modes that are presented in Figs. 9 a) and 10 a) are the same
KBMs that were found in [26] (KBM torodial mode numbers for conventional aspect
ratio tokamak DIII-D analysis in [26] are the same as those for JET in this paper.
They are slightly lower for the tight aspect ratio tokamak MAST).

Furthermore, the equilibria that were the basis of this paper [2, 3] were not ideal
MHD unstable to low-n PBM. The MHD stability analysis of the modified equilibria
used in this paper also found no unstable low-n (n < 10) ideal MHD modes. In the
global gyrokinetic analysis we did not find low-n modes either. So, in that sense the
global gyrokinetic analysis and MHD analysis of low-n modes agree with each other.
Further work with equilibria unstable to low-n peeling modes would be required to
study the stabilising effect found in [26].

Since the global result indicates that the 2nd stability access for KBMs may
not exist when the non-local effects are taken into account, the predictive pedestal
models constructed using local stability criteria of KBMs to constrain the pedestal
gradients should not use the equilibria with full self-consistent bootstrap current.
Instead the global stability limit for an equilibrium with the bootstrap current can be
more accurately approximated by the local result of an equilibrium that has artificially
suppressed bootstrap current in the pedestal.
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Figure captions

Figure 1. The profiles of q (left) and pressure (right) of the modified JET
equilibria. The crosses show the actual JET pressure data measured by the
Thomson scattering system and the solid line shows the modified profile used
in the analysis.

Figure 2. The ideal MHD n = ∞ ballooning stability for the modified JET
equilibria with and without bootstrap current (left). The black line shows the
equilibrium pressure gradient and the coloured lines show the stability boundaries.
The local growth rate of the KBMs in the pedestal region for the same equilibria
(right)

Figure 3. The local growth rate of the KBMs as a function of toroidal mode
number n for the modified JET equilibrium at ψN = 0.88 without bootstrap
current with varying β. The value β = 0.21% corresponds to the equilibrium
value. The n = ∞ ideal ballooning limit on this flux surface is at β = 0.16%.

Figure 4. The profiles of q (left) and pressure (right) of the modified MAST
equilibria. Also the original pressure profile is shown.

Figure 5. The ideal MHD n = ∞ ballooning stability for the modified JET
equilibria with and without bootstrap current (left). The black line shows the
equilibrium pressure gradient and the coloured lines show the stability boundaries.
The local growth rate of the KBMs in the pedestal region for the same equilibria
(right).

Figure 6. The growth rate as a funtion of toroidal mode number of the modified
MAST equilibrium without bootstrap current at ψN = 0.955

Figure 7. The maximum local growth rate of the KBMs as a function of β
for both with and without bootstrap current at this location. Also the n = ∞

ballooning limit (blue dashed) is shown.

Figure 8. The energy in the n=10 linear simulation for the MAST equilibrium
as a function of time for 4, 8 and 16 million markers.
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Figure 9. The growth rate as a function of n (a) and the n=30 growth rate as
a function of β (b) in global analysis with ORB5 for JET equilibria with (red)
and without (blue) bootstrap current. The normalising vti and β are evaluated
at ψN = 0.865. The equilibrium β is 0.35%

Figure 10. The growth rate as a function of n for β = 0.12% (a) and the n=10
mode growth rate as a function of β (b) in global analysis with ORB5 for MAST
equilibria with (red) and without (blue) bootstrap current. The normalising vti

and β are evaluated at ψN = 0.955. The equilibrium β is 0.25%
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Figure 1. The profiles of q (left) and pressure (right) of the modified JET
equilibria. The crosses show the actual JET pressure data measured by the
Thomson scattering system and the solid line shows the modified profile used
in the analysis.
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Figure 2. The ideal MHD n = ∞ ballooning stability for the modified JET
equilibria with and without bootstrap current (left). The black line shows the
equilibrium pressure gradient and the coloured lines show the stability boundaries.
The local growth rate of the KBMs in the pedestal region for the same equilibria
(right)
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Figure 3. The local growth rate of the KBMs as a function of toroidal mode
number n for the modified JET equilibrium at ψN = 0.88 without bootstrap
current with varying β. The value β = 0.21% corresponds to the equilibrium
value. The n = ∞ ideal ballooning limit on this flux surface is at β = 0.16%.
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Figure 4. The profiles of q (left) and pressure (right) of the modified MAST
equilibria. Also the original pressure profile is shown.
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Figure 5. The ideal MHD n = ∞ ballooning stability for the modified JET
equilibria with and without bootstrap current (left). The black line shows the
equilibrium pressure gradient and the coloured lines show the stability boundaries.
The local growth rate of the KBMs in the pedestal region for the same equilibria
(right).



Non-Local Effects on Pedestal Kinetic Ballooning Mode Stability 15

0 10 20 30 40
0

1

2

3

4

n

γ 
[v

T
i
/a

]

Figure 6. The growth rate as a funtion of toroidal mode number of the modified
MAST equilibrium without bootstrap current at ψN = 0.955
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Figure 7. The maximum local growth rate of the KBMs as a function of β
for both with and without bootstrap current at this location. Also the n = ∞

ballooning limit (blue dashed) is shown.
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Figure 8. The energy in the n=10 linear simulation for the MAST equilibrium
as a function of time for 4, 8 and 16 million markers.
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Figure 9. The growth rate as a function of n (a) and the n=30 growth rate as
a function of β (b) in global analysis with ORB5 for JET equilibria with (red)
and without (blue) bootstrap current. The normalising vti and β are evaluated
at ψN = 0.865. The equilibrium β is 0.35%
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Figure 10. The growth rate as a function of n for β = 0.12% (a) and the n=10
mode growth rate as a function of β (b) in global analysis with ORB5 for MAST
equilibria with (red) and without (blue) bootstrap current. The normalising vti

and β are evaluated at ψN = 0.955. The equilibrium β is 0.25%


