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Abstract 
In this paper, we explore the particle-scale origin of the additional shear strength of unsaturated 

granular materials in pendular states induced by the capillary effect by applying the Stress-Force-

Fabric (SFF) relationship theory into unsaturated granular material stress analysis. The work is based 

on Discrete Element simulations with the particle interaction model modified to incorporate the 

capillary effect. By decomposing the total stress tensor into a contact stress tensor originating from 

contact forces and a capillary stress tensor due to capillary effect, the directional statistics of particle-

scale information have been examined. The observations have been used to support the choice of the 

appropriate analytical approximations for the directional distributions associated with the solid 

skeleton and water bridges respectively. The SFF relationship for unsaturated granular materials is 

hence formulated, which has been shown matching with the material stress state in good accuracy and 

used to interpret the material strength in terms of the relevant micro-parameters. Macro and micro 

observations are carried out on both relatively dense and loose samples in triaxial shearing path to the 

critical state. The capillary force remains nearly isotropic during triaxial shearing. Anisotropy in the 

water bridge probability density, however, develops alongside the anisotropy in contact normal 

density, which gets smaller when the suction level gets lower and the water content becomes higher. 

The anisotropy effect in the water phase is much smaller than the solid skeleton and it coupling effect 

with the solid phase makes the fabric anisotropy in wet materials smaller than that of the dry ones. 

Combining with the SFF function, it can be clarified that the increased solid coordination numbers 

and mean contact forces by water bridge effect are more important factors for the suction induced 

shear strength.  

Keywords: Stress–force–fabric relationship; unsaturated granular materials; strength; directional 

statistics; discrete element method 

Introduction 
The strength of unsaturated soil is important to such as the stability of slopes and embankments and 

ground excavations. Unsaturated granular materials exhibit higher strength than those in dry or fully 

saturated states, and this strengthening effect is dependent upon soil moisture. Increasing in water 

content, the state of unsaturated granular materials has been categorized into the pendular state, the 

funicular state, and the capillary state (or insular state) as the liquid phase changing from isolated 

water bridges to liquid clusters (Bear 1972; Iveson et al. 2001; Mitarai and Nori 2006; Newitt and 

Conway-Jones 1958). Experimental tests have been carried out extensively to investigate the capillary 

strengthening effect (Fall et al. 2014; Kim and Sture 2008; Lu et al. 2007; Öberg and Sällfors 1997; 

Pierrat and Caram 1997; Wang et al. 2002), water retention characteristics of unsaturated granular 

materials (Fredlund and Xing 1994; van Genuchten 1980; Yang et al. 2004), and thus to develop 
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models characterising mechanical behaviours of unsaturated granular materials (Alonso et al. 1990; 

Bishop and Blight 1963; Fredlund et al. 1978).  

Experimental investigations show that starting from the dry state, the strength of unsaturated granular 

material sees a sharp rise by adding a small amount of water (Hornbaker et al. 1997; Scheel et al. 

2008). At this stage, materials are expected to be in the pendular state with water distributed in the 

pore space as water bridges between neighbouring particle pairs. The material behaviour can be 

reasonably reproduced using the Discrete Element Method (DEM) (Cundall and Strack 1979) by 

incorporating the capillary force, i.e., the resultant force arising from water-air pressure difference and 

surface tension, into the particle interaction model (Donzé et al. 2009; Gili and Alonso 2002; Gröger 

et al. 2003; Jiang et al. 2004; Jiang and Yu 2006; Liu et al. 2003; Richefeu et al. 2006b; Scholtès et al. 

2009a; El Shamy and Gröger 2008; Soulié et al. 2006). 

DEM simulations have the advantages of providing not only continuum-scale observations but also 

detailed information on particle interaction and material fabric. It has served as a useful tool to study 

the micro-mechanism of granular materials (Li and Dafalias 2012; Radjai and Richefeu 2009; 

Richefeu et al. 2006a; Zhao and Guo 2013). The stress state of a granular material assembly can be 

expressed as the summation of the tensor product of contact forces and contact vectors over all inter-

particle contacts (Christoffersen et al. 1981; Rothenburg and Selvadurai 1981). For unsaturated 

granular materials, Li (2003) proposed an effective stress definition with the suction effect described 

by a tensor associated with the liquid phase fabric, which could be anisotropic. The total stress tensor 

of such material has been expressed as the summation of the contact stress tensor and the capillary 

stress tensor by Scholtès et al. (2009b), which showed that the capillary effect is not isotropic due to 

the solid contact rearrangement. Similarly, a tensorial form of Bishop’s coefficient has been employed 

to describe the anisotropic effect in some recent works in aid of DEM simulation (Wan et al. 2015; 

Wang and Sun 2015). 

A further investigation into the strength of the granular material can be achieved by extracting the 

particle-scale statistics using the direction statistical theory (Kanatani 1984; Li and Yu 2011). It has 

been used in Li & Yu (2013) to provide the mathematical background for the Stress-Force-Fabric 

relationship, which was originally proposed by Rothenburg & Bathurst (1989) explicitly expressing 

the stress tensor in terms of parameters characterising coordination number, force and fabric 

anisotropies (Rothenburg & Bathurst 1989; Rothenburg & Bathurst 1993; Ouadfel & Rothenburg 

2001). This work investigates the behaviour of unsaturated granular materials in pendular states by 

conducting Discrete Element simulations. Relatively dense and loose specimens have been prepared 

and sheared to large strain levels at various suctions. The direction statistical theory will be employed 

to examine the particle-scale interactions and fabric relevant to soil skeleton and water bridges 

respectively, so as to formulate the Stress-Force-Fabric (SFF) relationship function for unsaturated 



4 
 

granular materials. The multi-scale data will be used to verify the accuracy of the proposed SFF 

relationship and to provide insights into material strength. For instance, it could be clarified that if the 

loading induced anisotropy in capillary stress is an additional contribution to the shear resistance or 

not and what are the key micro factors for the suction induced shear strength based on the SFF 

relationship. 

Numerical Simulation of Unsaturated Granular Materials 
This section covers necessary details of the particle-interaction model and the numerical 

implementation. It also presents typical numerical experimental results. As argued by Gladkyy and 

Schwarze (2014), different water bridge models do not affect the material behaviour obviously. In this 

study, water bridges are approximated by toroidal shapes with the meridian profiles being simplified 

as circular arcs (Fisher 1926; Gili and Alonso 2002; Gröger et al. 2003; Haines 1925; El Shamy and 

Gröger 2008). Water bridges are assumed to form between any particle pairs within the rupture 

distance.  

 

The water bridges and the particle interaction model 
The particle interaction, being the sum of the contact force between the two solid particles and the 

capillary force arising from water bridges, is equal to the sum of the contact force ( contf ) and the 

capillary force ( capf ) when the two particles are in physical contact (inter-particle distance 0D  ), or 

the capillary force solely when the two particles are not in physical contact but within the rupture 

distance ( 0 ruptureD D  ), or 0 when the inter-particle distance is beyond the rupture distance 

( ruptureD D ), as shown in Fig. 1. It can be written as: 

  
( 0)
(0 )

0 ( )

cont cap

cap rupture

rupture

f f D
f f D D

D D

  
  
 

 (1) 
 

Contact force ( contf ) arises when two particles are in physical contact, and can be determined by the 

non-linear Hertz-Mindlin contact model (Hertz 1882; Mindlin 1949). The capillary force capf  is 

related to the surface tension T  and the suction S , defined as the difference between the air pressure 

and the water pressure a wS u u  . The contact force contf  is a repulsive force and the capillary force 

is cohesive capf  so that contf  and capf  have opposite signs. 
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A non-contacting particle pair with a water bridge is plotted in Fig. 2. The particles of radii 1R  and 

2R  are separated by a distance D . The coordinate system is chosen such that the x  axis passes 

through the particle centroids and the y  axis crosses the midpoint of the inter-particle gap. The water 

bridge is characterised by the external radius of the toroidal shape meridian profile extr  and the 

internal radius of the water bridge at the neck intr  as indicated in Fig. 2. They intersect with the two 

particle surfaces with contact angle  , and related to the matric suction S  and the water-air surface 

tension T  via the Young-Laplace equation as: 

  1 1
ext int

S T
r r

 
  

 
 (2) 

 

An iterative algorithm has been proposed to determine the internal and external radii of the water 

bridge intr  and extr  for the given particle pairs separated by distance D  based on the suction S , and 

the water-air surface tension T  and the contact angle  . Details are given in Appendix 1.  

Knowing intr  and extr , the capillary force can be calculated by the ‘gorge method’ (Hotta et al. 1974) 

counting the force components originating from the pressure difference acting on the cross section of 

the bridge neck and the surface tension acting on the water-air menisci as: 

  2 (2 )cap int intf S r T r    

 

(3) 
 

It should be noted that for a constant suction condition, by using this ‘gorge method’ the capillary 

force solution from a toroidal approximation is the same as an analytical solution and only has a slight 

difference in liquid bridge volume (Gras et al. 2011). It should also be noted that the inter-particle 

overlap in this study is very small (less than 10-5 times of mean particle radius) that when particles are 

in contact the capillary force is calculated as 0D  . 

Setting the water surface tension as 0.073 N/m and assuming the particles to be ideally hydrophilic 

(contact angle = 0o), Fig. 3(a) plots the capillary force against the separation distance D for two equal-

sized particles ( 1 2 0.01R R mm  ) at different suction levels. The capillary force decreases when 

the two particles get further separated and when suction increases. When D  is larger than a certain 

value that there are no solutions existing for intr  and extr , water bridges cannot form. Such a distance 

is referred to as the rupture distance, where the curves in Fig. 3(a) end. Fig. 3(b) is the semi-

logarithmic plot showing the rupture distances versus suction. The rupture distances reduce with 

suction increase and the change is more significant in relatively low suction range.  
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Numerical simulation of unsaturated granular materials 
The open source software LIGGGHTS, which was developed from LAMMPS (Kloss et al. 2012), has 

been employed in this study. For all the simulations presented in this paper, the matric suction S  is 

considered constant. Water bridges are assumed to exist between all the particle pairs within the 

rupture distance. The suction is considered uniform over all the water bridges. The Force-

Displacement model introduced in the previous section has been input into the source code and used 

to determine the capillary force at different particle separations. For unequal sized particle pairs, the 

capillary force and the water volume can be estimated using the arithmetic mean radius as 

1 2

1 2

2R RR
R R




. For the narrow particle size distributions, the error induced in such a simplification has 

been checked and found negligible.  

The tested samples are made of spherical particles. They have a cubic shape upon generation 

inbounded by smooth rigid wall boundaries. Particle diameters are uniformly distributed between 

0.018mm and 0.022mm. The properties of the particles are chosen in reference to quartz particles. The 

density of the particles is 2500 kg/m3. Young’s modulus and Poisson’s ratio of the particles are 70GPa 

and 0.25. The coefficient of restitution, which is defined as the ratio between speeds after and before 

an impact between two particles, is 0.2. The parameters are summarised in Table 1. The length of the 

cubic sample is roughly 20 times the mean particle diameter. The total number of particles is around 

10,000, varying due to the difference in sample void ratio.  

The samples are generated isotropically by using the radius expansion method. The particles radii 

during generation have been scaled down to ensure there are no contacts between particles, and then 

the particles are expanded gradually to the target particle size. The inter-particle friction coefficient 

has been set as 0 to generate the dense sample (void ratios 0.629e   at confining stress 10kPa) and 

0.9 to generate the loose one (void ratios 0.732e   at confining stress 10kPa). The inter-particle 

friction coefficient has been restored to be 0.5 prior to consolidation and shearing. A collapse 

phenomenon has been observed after resetting the friction angle from 0.9 to 0.5, but the void ratio is 

still slightly higher than a sample directly prepared by using 0.5 as friction coefficient.  

The samples are sheared along the conventional triaxial compression mode with the stress in the 

horizontal plane being isotropy. During shearing, the lateral stress and the matric suction are kept 

constant. In this study, the lateral confinement is set to be 10 kPa and the specimens are loaded axially. 

Numerical simulations with different matric suctions (20, 50, 100, 200, 300 and 700 kPa) have been 

carried out in addition to that of the dry sample. Fig. 4 presents the typical material responses in terms 

of the deviatoric stress a rq    , where a  is the axial stress and r  is the lateral stress, against 

the axial strain a . The strengths of dense samples rise up to a peak and gradually reduce to the 
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critical state, while for the loose sample, it mainly exhibits the strain hardening behaviour, although a 

peak is noticeable at suction S =20kPa.  

It is evident that the capillary bridges lead to a significant increase in material strength even at a very 

high suction level, i.e., a low water content state. A further reduction in matric suction, however, 

causes only limited changes. This observation is in agreement with the experimental results for the 

effect of liquid on the repose angle (Hornbaker et al. 1997) and the effect of the water content on the 

tensile strength of sand (Lu et al. 2007, 2009) and glass beads (Scheel et al. 2008): which showed that 

a very small amount of liquid would change the material property significantly. For the range of 

suction in this study, the material strength has been observed to increase with a decrease in the suction 

level. However, as depicted by Terzaghi’s effective stress theory, the strength of fully saturated 

granular materials is the same as the dry material assuming the water presence doesn’t change the 

contact behaviour. Reduction in the material strength is expected should the suction level decrease 

further. This, however, may suggest the material state falls out of the pendular state and beyond the 

scope of this investigation. 

Stress–Force–Fabric Relationship for Unsaturated Granular Materials 

Formulation of the Stress-Force-Fabric relationship 
The direction statistical theory (Kanatani 1984; Li and Yu 2011; Rothenburg and Bathurst 1989) is 

used to analyse the particle-scale data and to establish the Stress-Force-Fabric relationship for 

unsaturated granular materials. The SFF relationship in this section formulates the stress tensor by the 

micro scale statistics relevant to both the physical contacts and water bridges effect, and serve as a 

tool to understand the micromechanical origin of material shear strength. It is, however, worth 

pointing out that SFF is a mathematical approximation in nature. The accuracy of SFF prediction 

highly depends on how closely the chosen distributions can approximate the particle-scale data. 

Based on the force equilibrium condition, the average stress tensor over volume V  is equal to the 

summation of the tensor product of local particle interaction and geometrical vectors over all contact 

points (Christoffersen et al. 1981; Rothenburg and Selvadurai 1981). This expression is valid for 

unsaturated materials, although the particle interactions include the contact forces between solid 

particles and the capillary forces arising from water bridges. Contact forces contf  take place whenever 

two particles are in physical contact. Contact vectors contv  are the vector from the contact point to the 

respective particle centre. Capillary vectors capv  are the vector from the point of action for the 

capillary force to the respective particle centre. Note the capillary forces capf  may exist between a 

pair of particles in physical contact or those not in direct contact but within the rupture distance. For 
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particle pairs in direct contact, the contact point is taken as the point of action for the capillary force. 

For particle pairs not in direct contact, the mid-point of the inter-particle gap as shown in Fig. 5 is 

taken as the point of action for capillary forces. 

By decomposing the particle interaction into the contact force from solid contact and the capillary 

forces and following Scholtès et al. (2009b), the total stress tensor can be expressed as the sum of the 

contact stress tensor cont
ij  and the capillary stress tensor cap

ij : 

  
1 1cont cap s w w

ij ij ij cont i cont
s
j capi cap j

s V w V
v f v f

V V
  

 

      (4) 

where s  and w  denote the s -th inter-particle solid contact and the w -th water–particle interaction 

respectively and V represents the volume of the assembly. Note the contact force contf  is a repulsive 

force, and always keeps an acute angle with contv  and the capillary force capf  is a cohesive force, and 

in the opposite direction of the capillary vectors. The component of the contact stress tensor cont
ij  is 

always positive, while the capillary stress tensor cap
ij  is negative in sign. The contact stress tensor 

cont
ij  is generally larger than the total stress tensor when the granular material is unsaturated. The 

contact stress tensor is considered to be equivalent to the ‘effective stress’ for wet granular material in 

describing the failure strength (Scholtès et al. 2009b; Wan et al. 2015; Wang and Sun 2015). It should 

be noted that limitations of using this ‘effective stress’ definition have been observed mainly on the 

deformation and volume change (Chalak et al. 2016; Chareyre et al. 2009). For the convenience to 

link it to the solid fabric and contact forces, the contact stress tensor is still an important term to be 

analysed in discussing material strength. 

The directional statistical theory developed by Li and Yu (2013) can be used to examine the statistical 

characteristics of particle-scale information. Here, we look into the interaction arising from physical 

contacts and from the water bridges separately. Two probability density functions, ( )sE n  for contact 

normal density and ( )wE n  describing water bridges density, have been introduced. Grouping the 

terms in Eq. (4) according to the contact normal directions, it can be rewritten as: 

 ( ) d ( ) dcont cap s w
ij ij ij cont i cont j capi cap j

N NE v f E v f
V V
        s wn n

n n฀ ฀ 
 (5) 

where d  denotes the elementary angle in the unit sphere, *
n

 is the average value of *  in 

direction n , s  is the solid coordination number defined as the average contact number per particle, 

w  is the water bridge coordination number defined as the average water bridge number per particle. 

N  denotes the total number of particles. Note water bridges always exist between particle pairs in 
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physical contact, while particle pairs with a water bridge may not be in direct contact. w  is expected 

to be higher than s . 

Following Li and Yu (2011, 2013), the stress state is related to a) the statistical dependence between 

the forces and the relevant vectors, b) the directional distributions of the probability density functions 

of contacts and water bridges, ( )sE n  and ( )wE n , and c) the directional functions describing the 

average forces and vectors. They are approximated by spherical harmonic series, which if substituted 

into Eq. (5), lead to a general expression of the Stress-Force-Fabric relationship which expresses the 

stress tensor in terms of the direction tensors of different ranks. Often, a limited number of terms are 

sufficient to approximate the particle-scale data with good accuracy. Based on statistical observations 

made in this study, for a granular assembly made of spherical particles with a narrow particle size 

distribution, the following assumptions can be taken: 

1) The contact vectors and the contact forces are statistically independent 

( conti cont j cont i cont jv f v f
nn n

), so are the capillary forces and the capillary vectors 

( capi cap j capi cap jv f v f
n n n

); 

2) The solid contact probability density can be sufficiently approximated by spherical harmonic 

series up to 2nd rank, i.e.:  

 
1 2 1 2

0

1( ) (1 )s
s i i i iE D n n

E
 n  (6) 

where 
1 2

s
i iD  is the 2nd rank direction tensor for solid contact normal density, 0 4E   in 

three-dimensional space, and n  is a unit direction vector.  

3) Further to the work by Guo (2014), in which the directional statistics of capillary bridges are 

assumed to be the same of the solid contacts, with the water bridge model imposed in DEM 

simulation, directional distribution of capillary bridges, which is not necessarily the same, can 

be also analysed. We may still use a second rank approximation to describe the water bridge 

probability density as: 

 
1 2 1 2

0

1( ) (1 )w
w i i i iE D n n

E
 n  (7) 

with the direction tensor for water bridges noted as 
1 2

w
i iD ; 

4) The contact vectors and the capillary vectors averaged in each direction can be assumed to be 

isotropic, i.e.,  
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 0cont contv
n

v n   and 0ccap apv
n

v n  (8) 

where 0contv   and 0capv  represent the average of the mean contact vectors and the mean 

capillary vectors in different directions;   

5) The mean contact force in different directions can be approximated by the spherical harmonic 

series up to 3rd  rank terms as: 

 
1 1 1 2 3 1 2 30( ) ( )sf sf

cont j cont j ji i ji i i i i iF f n G n G n n n  n  (9) 

where 
1

sf
jiG  and 

1 2 3

sf
ji i iG  are the 1st and 3rd rank deviatoric direction tensors for the contact 

forces , and 0contf  represents the average of the mean contact forces in different directions. It 

is further assumed that the 3rd rank term only contributes to the stress tensor as the product of 

higher order terms, and ignorable; 

6) The mean capillary force in each direction is isotropic, i.e.,  

 0ccap apf
n

f n  (10) 

These data supported assumptions could greatly simplify the expression of the Stress-Force-Fabric 

relationship while maintaining sufficient accuracy. Substituting Eqs. (6)-(10) into Eq. (5) and 

conducting the directional integration via tensor multiplication following the procedures in Li and Yu 

(2011; 2013; 2014), the Stress-Force-Fabric relationship can be simplified into: 

 
1 10 0 0 0

2 2 2( ) ( )
3 5 5 5

sf s s sf w
ij s cont cont ij ij ij im jm w cap cap ij ij

N v f G D D G v f D
V

            
 

 

(11) 

 

Note that s
ijD , w

ijD  and 
1

sf
jiG  are deviatoric tensors and ij  is the Kronecker delta. Details of 

calculating these direction tensors from the particle-scale data can be found in Appendix 2 and 

Appendix 3.  

Verification of the SFF relationship with the DEM data 
The statistical independence of forces and vectors can be evaluated by two coefficients calculated as 

d

 dcont
  


   



n

n n

ȍ

ȍ
฀
฀

cont cont

cont cont

v f

v f




 and 
d

 dcap
  


   



n

n n

ȍ

ȍ
฀
฀

cap cap

cap cap

v f

v f




. The verification of the 

statistical independence is carried out on the dense sample with 20 kPa suction. The values of cont   

and cap  during the triaxial test are plotted in Fig. 6. It can be seen that cap  is almost equal to 1 and 
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cont  is also very close to 1, confirming the statistical independence is a reasonable simplification 

taken in this study. 

The deviatoric tensor characterises the directional dependence of the discrete data set. In the case of 

triaxial compression on initially isotropic specimens, they are expected to be symmetric with respect 

to the loading direction. Their degree of anisotropies of a second rank tensor A  can be expressed as 

the value in the major principle direction minus the value in the horizontal direction ( 11 33A A ). The 

results of the dense sample at 20 kPa suction are plotted in Fig. 7. It shows clearly that fabric 

anisotropy in contact normal density is the most significant one, with 11 33
s sD D  increasing to its peak 

as high as 0.9. The contact force anisotropy is also significant with a rapid increase in 11 33
sf sfG G  

while shearing, and peaked at 0.58 at a lower strain level. The probability of water bridges is also 

important with its anisotropy index 11 33
w wD D  increasing at a slower rate and to a lower magnitude 

(around 0.2). The joint tensor of 
1 1

s sf
im jmD G  has the smallest anisotropic effect. The degree of 

anisotropy for the contact vectors ( sv
ijG ), the capillary vectors ( wv

ijG ), the capillary forces ( wf
ijG ) and 

the corresponding joint tensor (
1 1

w wf
im jmD G ) are observed to be very small, supporting the 

simplifications in the previous section. 

The accuracy of the whole simplified SFF relationship for unsaturated granular materials can be 

directly checked by comparing the total stress tensor evaluated from the specimen boundaries and that 

calculated from the SFF relationship in Eq. (11). Fig. 8 compares the mean normal stress 

 2 3a rp     and the deviatoric stress  a rq     of the simulation conducted at suction 

level S=20 kPa. It can be seen that the stresses calculated from the SFF relationship agree well with 

the boundary measured values for both the dense and loose specimens. The small difference observed 

in between (error evolution and the average error are plotted in Fig. 8(c)) is due to the set of 

assumptions listed above and the error induced by omitting high rank terms for the sake of simplicity. 

Observations on the micro-characteristics 
The SFF relationship for unsaturated granular materials, Eq. (11), formulates the macro stress state in 

terms of the coordination numbers ( s  and w ), the directional averages of forces and vectors 

( 0contf , 0contv  and 0capf , 0capv ), and the direction tensors ( s
ijD , sf

ijG  and w
ijD ). In this section, we 

present observations of these micro-variables at various suction levels.  
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The hydrostatic stresses and their corresponding micro-parameters 
The contact mean normal stress and the mean capillary stress represent the magnitude of the 

hydrostatic stress. In Eq. (11), s
ijD , w

ijD  and 
1

sf
jiG  are deviatoric tensors associated with the deviatoric 

components of the contact and capillary stresses. Neglecting the contribution of higher rank tensors, 

the contact mean normal stress can be estimated as:  

 
1 10 0 0 0

1 2 2( )
3 3 5 5 3

sf s s sf
cont s cont cont ii ii ii im im s cont cont

N Np v f G D D G v f
V V
        

 
(12) 

 
and the capillary mean normal stress as:  

 0 03cap w cap cap
Np v f
V
  

 

(13) 
 

For a given material, the number of particles per unit volume N V  is uniquely determined by the 

sample void ratio.  

The evolution of the coordination numbers, s  and w , are plotted in Fig. 9. The solid coordination 

number s in unsaturated assembly is observed to be significantly larger than that in the dry state, but 

insensitive to the suction level for the range of suctions investigated in this study. The solid 

coordination numbers in dense specimens are slightly higher than those in the loose specimen. The 

water bridge coordination number w , however, shows stronger dependence in sample void ratio and 

suction level. They are all higher than the solid coordination number s  as expected. In general, the 

lower the suction level, the higher the water content and the longer the rupture distance, and hence the 

larger water bridge coordination number w . Decrease in suction from 700kPa to 20kPa could 

potentially bring the water bridge coordination number w  at a level close to the solid coordination 

number s  up to a value larger by 2. By shearing the dense material, s and w  are seen to decrease, 

which is accompanied by the volume dilation.  In the loose sample, the variations in s and w  are 

moderate. 

The dependence of the solid and water bridge coordination numbers ( s  and w )  on suction  is 

shown in Fig. 10. The information on the dry sample has been included as the reference. The data at 

the initial state and peak strength have been marked by the hollow symbols and those at the high 

strain level, i.e., the critical state, have been listed as solid symbols. Despite the differences due to 

their initial densities, both the solid coordination number and the water bridge coordination number 
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approaches equal values at large strain levels. The increase in suction leads to a slight increase in the 

solid contact coordination number, but a much more significant reduction in the water bridge 

coordination number, following a similar exponential declining trend observed in the rupture distance 

shown in Fig. 3(b).  

Fig. 11 plots the evolutions of the directional averages of mean solid contact forces 0contf  and that of 

mean capillary forces 0capf . Shearing boosted further increases in the mean contact force 

corresponding to the increase in the mean normal stresses. Contact forces in wet granular materials 

are stronger than that in the dry material as the result of the much larger contact stresses. It reduces 

slightly as the suction level increases from 20kPa to 700kPa. The mean capillary force is less sensitive 

to density, however it is observed that the magnitude of 0capf  is larger at a higher suction level.  

Fig. 12 plots 0contf  and 0capf  at different suction levels. The information of the dry sample is 

included in Fig. 12(a) as a reference. For an unsaturated assembly, the presence of the capillary stress 

leads to a much higher contact stress at the same boundary stress levels, and hence a higher solid 

contact forces. For the range of suction investigated in this study, a minor decrease in 0contf  is 

observed as suction increases. The directional averages of mean capillary forces, 0capf , are negative, 

indicating a cohesive effect. 0capf  is not changed much from initial state to peak strength and critical 

state. Its magnitude increases almost linearly with the logarithm of suction as shown in Fig. 12(b).  

For all the simulations in this paper with the narrow particle size distribution, it has been observed 

that the directional averages of mean contact vectors 0contv  and mean capillary vectors 0capv  are close 

to the mean particle radius. They vary only slightly with different void ratios and suction levels. The 

error in approximating 0 0cont capv v R   where R  represents the mean particle radius is found less 

than 1%. It is observed that in a wet granular material, the capillary stress exerts an additional 

compaction drive to pull particles together, and causes a small reduction in 0contv .  The details are not 

included for space limitation. 

With the above knowledge of the coordination numbers ( s  and w ), the directional averages of 

forces and vectors ( 0contf , 0contv  and 0capf , 0capv ), together with information on the void ratio plotted 

in Fig. 4, the contact and capillary mean normal stresses can be calculated from Eqs. (12) & (13). The 

estimated results are plotted in Fig. 13 together with those calculated based on the definitions of the 

contact stress and the capillary stress given in Eq. (4). The suction level is at 20kPa for the 

comparison. The difference in between reflects the error induced by the set of assumptions listed in 
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the earlier section and the error induced by omitting higher rank terms for the sake of simplicity. A 

slight underestimation of the SFF relationship in the contact mean normal stress is due to the 

neglected contribution of higher rank tensors in direction distribution of contact forces (
1 2 3

sf
ji i iG ). The 

capillary mean normal stresses are found almost identical. As seen from the figure, the error is very 

negligible, confirming Eqs. (12) & (13) are good mathematical approximations and the assumptions 

made in the previous section are reasonable for this study.  

Fig. 14 plots the two mean normal stresses against the suction levels. The capillary effect is cohesive 

and increases the contact stress, which is found higher than the boundary stresses (10kPa) by a 

magnitude above 10kPa. The dense specimen has a higher contact mean normal stress and a lower 

capillary mean normal stress than that of the loose sample. With the increase in suction, the 

magnitude of the capillary mean normal stress decreases slightly, leading to a slight decline in the 

contact mean normal stress, which could also be explained based on Eq. (12) as the combined 

influence of a small increase in the solid coordination number (Fig. 10(a)) and a slightly more 

significant decrease in the contact force seen in Fig. 12(a). The small decrease in the capillary stress is 

the joint result of the decrease in the water bridge coordination number (Fig. 10(b)) and increase in 

the magnitude of mean capillary force (Fig. 12(b)). It is worth noting that although a wide range of 

suction has been investigated in this study (from 20kPa to 700kPa), its significance on the internal 

force transmission is, however, similar judging from the magnitude of the capillary mean normal 

stress.  

The material anisotropies and shear strengths 
From Eq. (11), it is seen that the deviatoric stress of unsaturated granular materials also has two 

components, one from the contact forces and the other from the water bridges. Ignoring the 

contribution from the higher rank tensors, the deviatoric contact stress tensor can be written as: 

 
2( )
5cont i

cont cont sf s
ij ij cont j jj i is p G Dp     

(14) 
 

And the deviatoric capillary stress tensor can be written as: 

 
2
5cap

cap w
ij ijs p D  

(15) 
 

Since the specimens have been prepared and tested axis-symmetrically, the deviatoric stresses can be 

represented by the contact shear stress 11 33 11 33
cont cont cont cont

contq s s      and the capillary shear stress 

11 33 11 33
cap cap cap cap

capq s s      respectively. Those values calculated from Eqs. (14) & (15) for the 

tests at the suction level of 20kPa have been plotted in Fig. 15 together with those calculated as per 

their definitions in Eq. (4) for comparison. It shows that the error caused by the mathematical 
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approximation is acceptable. With the information on  contp  and capp  presented in the previous 

section, this section focus on the deviatoric direction tensors s
ijD , w

ijD  and sf
ijG , which characterise 

the anisotropies in the probability density of contact normals, water bridges and the mean contact 

forces, respectively. In the triaxial axis-symmetric loading, they can be effectively represented by the 

magnitude of anisotropy in these tensors expressed as 11 33( )s sD D , 11 33( )w wD D   and 11 33( )sf sfG G .  

The anisotropy in contact normal density is plotted in Fig. 16 in terms of  11 33
s sD D . By shearing an 

isotropic specimen in triaxial loading path, the solid skeleton becomes anisotropic as soon as the 

loading is applied. The dense specimen develops a stronger anisotropy than that in the loose specimen. 

It is observed that the fabric anisotropies in the unsaturated specimens are less anisotropic than that of 

the dry material. Again, for the range of suction levels simulated in this study, the observations over a 

wide range of suction level (from 20kPa to 700kPa) are found close to each other. 

Fig. 17 shows the anisotropies in the solid contact forces in terms of as ( 11 33
sf sfG G ). In the dense 

specimen, a peak in force anisotropy is observed in the contact force anisotropy and soon reduces to 

the critical state values. In the loose specimen, the anisotropy in contact force is observed to gradually 

increase. It is broadly observed that the anisotropy in solid contact force is not sensitive to the suction 

levels and hence water content, although there is evidence in the loose specimen that the force 

anisotropies in unsaturated specimens are slightly larger than that in the dry specimen. The 

anisotropies in solid contact forces at large strain level are observed to be independent to the void 

ratio and the suction levels, with the value close to 0.4.  

The contact shear stresses ( contq ) at the peak and critical state are plotted in Fig. 18 against the suction 

levels. The trend of variation can be well explained based on the information of contact mean normal 

stress and the contact fabric and force anisotropies presented as per Eq. (14). Since the fabric and 

force anisotropies of the unsaturated specimens are of similar magnitudes, the difference in the 

contact shear stress is mainly resulted from the difference in the directional mean of solid contact 

forces as plotted in Fig. 14(a). The contact shear stress component decreases slightly with an 

exponential increase in suction level due to the reduction in the contact mean normal stresses. They 

are higher than dry granular materials mainly because the contact mean normal stresses have been 

elevated due to the capillary effect.  

Anisotropy in water bridge probability of the dense and loose specimens is plotted in Fig. 19. The 

water bridge fabric anisotropy in the dense specimen is higher than that in the loose specimen. The 

water bridge anisotropy development is associated with the development in the contact fabric 

anisotropy, although its rate is smaller and the peaks are observed at a higher strain level. The 
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magnitude of water bridge anisotropy is found to be smaller than that of the contact normal anisotropy. 

The evolution of water bridge anisotropy shows a clear suction-dependence. As the suction increases, 

i.e., the water content decrease, the water bridges become fewer (Fig. 9) but more anisotropic (Fig. 

19).  

The water bridge distributions at the initial states are almost isotropic. Fig. 20(a) plots the water 

bridge anisotropy at the peak strength and critical state against suction. The peak and critical water 

bridge anisotropy is observed to increase by a factor of 3-4 when the suction increases from 20kPa to 

700kPa. This could also be explained by the rupture distance. At a higher suction level, the rupture 

distance is smaller and the water bridge anisotropy is closer to the solid contact normal anisotropy. 

Although the maximum water bridge anisotropy is larger in the dense sample, the water phase 

anisotropy at the peak strength is, however, larger in the loose one as it needs larger strain to reach the 

peak state. As the peak strength for the dense specimen is at 2% strain and it needs about 5% strain to 

reach peak strength for the loose one. The capillary shear stress at the peak and critical states are 

plotted in Fig. 20(b) versus suction. Since the magnitude of capillary force remains isotropic during 

shearing, the capillary shear stress is only dependent on the capillary mean normal stress and the 

water bridge fabric. Although the difference in capillary anisotropy at different suction levels is 

significant, the level of capillary mean normal stress observed in this study is limited, only slightly 

higher than 10kPa. This has limited the capillary shear stress to a very low stress level (below 2kPa).  

Discussion on the capillary strengthening effect 
The SFF relationship formulates the analytical correlation between the macro material stress and the 

micro fabric and force related parameters. The observations on how these micro parameters vary with 

suction provide insight into the particle scale origin of the capillary strengthening effect of 

unsaturated granular materials.  

First of all, the mechanical forces transmitted in unsaturated granular materials are characterised in 

terms of the contact stress, rather than the total stress. Because the capillary stress is cohesive, the 

contact mean normal stress is higher than that in the total stress. As the water content increases and 

the suction level reduces, the solid coordination number decreases slightly, the increase in the mean 

solid contact force is however dominant and results in a continuous increase in the contact mean 

normal stress. The coupling effect between fabric and capillary effect is reflected that the more 

isotropic capillary effect leads to smaller solid fabric anisotropy in wet material in triaxial loading. 

Combining with the SFF equation, this also means the higher shear resistance is mainly contributed 

by the coordination number and contact force increase.  

For the loading induced water bridge anisotropy, by multiplying with the capillary mean normal stress 

(see Eq. 15), it leads to a deviatoric stress component. When the water content increases, the water 
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bridge coordination number increases continuously from a value close to the solid coordination 

number. The higher the water content, the larger the water bridge coordination number. The 

magnitude of mean capillary force decreases. As a result, the capillary mean normal stress varies only 

slightly with the suction level, and is maintained slightly below -10kPa. The water bridge anisotropy 

reduces from a very high value to become more and more isotropic as the water content increases. As 

a result, this deviatoric stress component gets smaller when the suction level is lower and the water 

content is higher. This is in consistency with that, as one can imagine, when the material is nearly 

saturated, the water phase is only acting as an isotropic stress. 

Conclusions 
The work is based on the multi-scale data obtained from the Discrete Element simulations with the 

particle interaction model modified to incorporate the water bridge effect. Numerical simulations have 

been carried out at different suction levels (thus different water contents) on dense and loose 

specimens. Based on the discrete data, the Stress-Force-Fabric (SFF) relationship for unsaturated 

granular materials in pendular states is formulated, and used to explore the particle-scale origin of 

material shear strength. The total stress tensor has been expressed as the sum of the contact stress 

tensor originating from contact forces and the capillary stress tensor due to capillary effect. The 

directional statistics of particle-scale information, including those relevant to mechanical contacts and 

water bridges, have been examined. Appropriate analytical approximations based on up to 2nd rank 

tensors have been chosen for the directional distributions associated with the solid skeleton and water 

bridges respectively. The formulated SFF relationship for unsaturated granular materials matches with 

the material stress state in good accuracy, and can be employed to interpret the material strength in 

terms of the relevant micro parameters.  

The observations on the micro parameters provide insights into the particle scale origin of the 

capillary strengthening effect of unsaturated granular materials. The capillary force remains nearly 

isotropic during triaxial shearing. Anisotropy in the water bridge probability density, however, 

develops alongside the anisotropy in contact normal density, which gets smaller when the suction 

level gets lower and the water content becomes higher. Despite the different initial relative densities, 

by shearing to the critical state, unique micro parameters are also obtained. The shear resistance in 

unsaturated granular materials, which is usually characterised by the contact stress, is much higher 

than the total stress when it is in coupling with the capillary effect. The water presence, which itself 

becomes anisotropic upon loading, does not increase the solid fabric anisotropy in unsaturated 

granular materials (it is a kind of offset effect as the solid fabric anisotropy is smaller in wet samples). 

Water bridges can bond the particles together which increased contact coordination number and mean 

contact force level. This is the main reason for the capillary strengthening effect in unsaturated 

granular materials. 
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Appendix 1: Algorithm to determine the water bridge geometry 
Based on the toroidal approximation, the profile of the water bridge is a circular arc. The iteration is 

carried out by attempting different half filling angles (noted as  in Fig. 2 and Fig. 21) on the smaller 

particle in the second quadrant until the input conditions are satisfied (Fig. 21). 

Firstly, the iteration starts by attempting the half filling angle 1  as 
2


, and then the intersection 

point between the water bridge profile arc and the particle is confirmed. As we know the input value 

contact angle  , by satisfying the given suction in Eq. (2), the geometry of the water bridge profile 

can be confirmed by solving intr  and extr  from a combination with the geometrical relationship of the 

circles as:  

 
 1 1 1 1( )

2ext int extR sin r cos r r        

 

(16) 
 

The geometrical relationship between the obtained water profile circle and the other particle is then 

checked to verify whether they intersect with each other as well as their contact angle value. If they do 

not intersect or the water-air-solid contact angle on particle 2 (denoted as 2 ) is less than the required 

 , the half-filling angle will be updated to 1
1 2( 1)n

 


 to implement the next iteration where n  is 

the current number of iteration. If 2  is larger than the required water-air-solid contact angle value 

then the half-filling angle will be set to 1
1 2( 1)n

 


 for the next iteration. The iteration process is 

summarised in a flow chart in Fig. 22, in which the error of the water-air-solid contact angle on the 

bigger particle is less than 0.1 . 

It is noted that there is no water bridge existing when the inter-particle distance exceeds a critical 

value, which is known as the rupture distance. In this algorithm, the water bridge ruptures when the 

internal radius at the neck reaches zero or there is no available water bridge shape solution under the 

constant suction condition. The solution with parameters of 1 2 0.01R R mm  , 50S kPa , 0    

and 0.073 /T N m  is plotted in Fig. 23 as an example. At the specified suction level, with the 

increase in the inter-particle distance, the half-filling angle reduces gradually and both of the internal 

and external radii of the water bridge decrease correspondingly. The internal radius has a greater 

reduction than the external radius. It is also noticed that beyond a certain inter-particle distance, 

solutions for the internal and external radii no longer exist. This means that the water bridge ruptures 

suddenly at the rupture distance without the internal radius reaching zero. 
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Appendix 2: The probability density of solid contacts and water bridges 
The solid contact normal probability density sE  and the water bridge probability density wE  are 

approximated by up to 2nd rank polynomial terms as in Eqs. (6) & (7). The two direction tensors s
ijD  

and w
ijD  are to be calculated based on DEM data. Detailed formulation and methodology can be found 

in Li and Yu (2011). A brief summary is provided here for completeness. For the solid contacts, the 

moment tensor has been defined (Kanatani 1984; Oda et al. 1985) as the average tensor products of 

unit normal vectors of all the solid contacts as:  

  
1s

ij
s Vs

N
N 

 n n  (17) 

where sN  is the total number of solid contact normals (two times of the solid contact point). We 

consider that there are two contact normals at each contact point pointing towards each particle. The 

direction tensor can be calculated as (Li and Yu 2011): 

 
15 1( )
2 3

s s
ij ij ijD N    (18) 

Similarly, the second rank moment tensor based on the water bridge directions: 

  
1w

ij
w Vw

N
N 

 n n  (19) 

where wN  is the total number of water-particle interactions (two times of the water bridges). It can be 

used to calculate the direction tensor for water bridge density as: 

 
15 1( )
2 3

w w
ij ij ijD N    (20) 

 

Appendix 3: The directional distribution of solid contact forces/vectors, 
capillary forces/vectors 
To calculate the direction tensors for vector-type data, it is necessary to calculate the moment tensor 

defined as the weighted tensor product summed over all the data points as detailed in Li and Yu 

(2013). Use contact force as an example, the moment tensor for the solid contact forces can be 

calculated as the average of the tensor product of the contact force and the normal directional vector 

weighted by the probability density as: 
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0

1 1
( )

cont j isf
ji

s Vs s

f n
K

E N E

  n
 (21) 

where ( )sE n  is the probability density function approximated with Eq. (6) and s
contif  and s

in  are the 

contact force and the unit vector representing contact normal direction respectively on the 嫌-th contact. 

The directional average of mean contact forces 0contf  is hence determined as: 

  0
sf

cont iif K  (22) 

The 2nd rank deviatoric direction tensor is dimensionless and in a three-dimensional space it can be 

calculated by: 

  
3 sf

jisf
ji ijsf

kk

K
G

K
   (23) 

The 3rd rank moment tensor can be calculated as: 

  1 2 3

1 2 3
0

1 1
( )

cont j i i isf
ji i i

s Vs s

f n n n
K

E N E

  n
 

 
(24) 

 
and the corresponding deviatoric tensor as: 

    1 2

1 2 3

1 2 3 3( )
0

35
52
1

jk ki i i
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sf
ji i isf sf

ji i i
n

j
t

k

K
G

f
G   

 
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
 


 

(25) 
 

where ( )  over the subscripts designates the symmetrisation of the indices, more details of this term 

can be seen in Li & Yu (2011). The same approach has been used to analyse the directional 

distribution of mean capillary force 0capf , mean contact vector 0contv  and mean capillary vector 0capv , 

and omitted for space limitation. 

 

Notations 
n    Unit direction vector 

s   Solid particle coordination number 

w   Water bridge coordination number (Average water bridge number per particle) 

cap
ij  Capillary stress tensor 
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cont
ij   Contact stress tensor 

ij    Stress tensor 

cap   Direction independent scalar for capillary effects 

cont  Direction independent scalar for contact effects 

s
ijD   Deviatoric direction tensor of solid contact orientations 

w
ijD   Deviatoric direction tensor of water bridge orientations 

ruptureD  Rupture distance 

( )E n  Probability density along the direction of n  

sE      Solid contact normal probability density function 

wE    Water bridge probability density function 

capf    Capillary force 

contf   Contact force 

sf
ijG    Deviatoric direction tensor of solid contact forces 

sv
ijG    Deviatoric direction tensor of solid contact vectors 

wf
ijG   Deviatoric direction tensor of water capillary forces 

wv
ijG   Deviatoric direction tensor of water bridge interaction vectors 

sf
ijK   Moment tensor of solid contact forces 

N      Particle number 

sN    Total number of solid contact normals 

s
ijN    Moment tensor of solid contact normals 
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wN    Total number of water-particle interactions 

w
ijN    Moment tensor of water bridge directions 

p      Mean normal stress 

capp  Capillary mean normal stress 

contp  Contact mean normal stress 

q      Shear stress 

capq   Capillary shear stress 

contq   Contact shear stress 

extr     External radius of capillary bridge 

intr     Internal radius of capillary bridge at neck 

S      Matric suction 

cap
ijs  Deviatoric capillary stress tensor 

cont
ijs  Deviatoric contact stress tensor 

rS     Degree of saturation 

T     Water surface tension 

capV    Capillary bridge volume 

capv    Capillary vector 

contv   Solid contact vector 

0capf   Directional average of mean capillary forces 

0contf  Directional average of mean contact forces 
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0capv   Directional average of mean capillary vectors 

0contv   Directional average of mean contact vectors 
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Table 
Table 1. Parameters used in the DEM simulations 

Parameters Values 

Particle size distribution 0.018mm-0.022mm 

Inter-particle friction coefficient 0.5 

Water surface tension 0.073 N/m 

Particle density 2500 kg/m3 

Particle Young’s modulus 70 GPa 

Particle Poisson’s ratio 0.25 

Coefficient of restitution 0.2 

List of Figure Captions 
Fig. 1. Contact model with water bridge effect. 

Fig. 2. The toroidal shaped capillary bridge model. 

Fig. 3. Water bridge effect between two particles: (a) capillary force; (b) rupture distance. 

Fig. 4. Shear stress and void ratio evolutions: (a) dense specimen strength; (b) loose specimen strength; 

(c) dense specimen void ratio; (d) loose specimen void ratio. 

Fig. 5. The action point of the capillary force for a non-contacting particle pair. 

Fig. 6. Statistical independence of forces and vectors. 

Fig. 7. Degree of anisotropy of different components. 

Fig. 8. Comparison of the measured and SFF predicted stress: (a) mean normal stress; (b) deviatoric 

stress; (c) errors. 

Fig. 9. Solid and water bridge coordination numbers: (a) s  (dense); (b) s  (loose); (c) w  (dense); 

(d) w  (loose). 

Fig. 10. Suction effect on coordination numbers (a) Solid coordination number; (b) Water bridge 

coordination number. 
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Fig. 11. Evolution of directional average of mean forces: (a) 0contf (dense); (b) 0contf (loose); (c) 

0capf (dense); (d) 0capf (loose). 

Fig. 12. Suction effect on directional averages of  mean forces: (a) mean contact force 0contf ; (b) 

mean capillary force 0capf . 

Fig. 13. Comparison of mean normal stress components: (a) contact stress; (b) capillary stress; (c) 

error. 

Fig. 14. Suction effect on mean normal stresses: (a) contact stress; (b) capillary stress. 

Fig. 15. Comparison of shear stress components: (a) contact stress; (b) capillary stress; (c) error. 

Fig. 16. Solid contact fabric anisotropy: (a) dense sample; (b) loose sample. 

Fig. 17. Anisotropy in contact forces: (a) dense sample; (b) loose sample. 

Fig. 18. Suction effect on contact shear stress. 

Fig. 19. Water bridge anisotropy: (a) dense sample; (b) loose sample. 

Fig. 20. Suction effect on (a) water bridge anisotropies; (b) capillary shear stress. 

Fig. 21. Iteration on half filling angle. 

Fig. 22. Iteration process flow chart. 

Fig. 23. Example iterative solution of the water bridge shape: (a) Half-filling angle, (b) Internal and 

external radius. 
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Figures 

 

Figure 1. Contact model with water bridge effect 

 

Figure 2. The toroidal shaped capillary bridge model 
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(a) (b) 

Figure 3: Water bridge effect between two particles: (a) capillary force; (b) rupture distance 

(a) (b) 

(c) (d) 

Figure 4. Shear stress and void ratio evolutions: (a) dense specimen strength; (b) loose specimen 

strength; (c) dense specimen void ratio; (d) loose specimen void ratio 
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Figure 5. The action point of the capillary force for a non-contacting particle pair 

 

Figure 6. Statistical independence of forces and vectors 

 

Figure 7. Degree of anisotropy of different components. 
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(a) (b) 

(c) 

Figure 8. Comparison of the measured and SFF predicted stress: (a) mean normal stress; (b) deviatoric 

stress; (c) errors. 

(a) (b) 
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(c) (d) 

Figure 9. Solid and water bridge coordination numbers: (a) s  (dense); (b) s  (loose); (c) w  

(dense); (d) w  (loose) 

(a) (b) 

Figure 10. Suction effect on coordination numbers (a) Solid coordination number; (b) Water bridge 

coordination number 

(a) (b) 
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(c) (d) 

Figure 11. Evolution of directional average of mean forces: (a) 0contf (dense); (b) 0contf (loose); (c) 

0capf (dense); (d) 0capf (loose). 

(a) (b) 

Figure 12. Suction effect on directional averages of  mean forces: (a) mean contact force 0contf ; (b) 

mean capillary force 0capf  

(a) (b) 
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(c) 

Figure 13. Comparison of mean normal stress components: (a) contact stress; (b) capillary stress; (c) 

error 

(a) (b) 

Figure 14. Suction effect on mean normal stresses: (a) contact stress; (b) capillary stress 

(a) (b) 
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(c) 

Figure 15. Comparison of shear stress components: (a) contact stress; (b) capillary stress; (c) error 

(a) (b)  

Figure 16. Solid contact fabric anisotropy: (a) dense sample; (b) loose sample 

(a) (b) 

Figure 17. Anisotropy in contact forces: (a) dense sample; (b) loose sample 
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Figure 18. Suction effect on contact shear stress 

(a) (b) 

Figure 19. Water bridge anisotropy: (a) dense sample; (b) loose sample 

(a) (b)  

Figure 20. Suction effect on (a) water bridge anisotropies; (b) capillary shear stress 
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Fig. 21. Iteration on half filling angle 

 

Fig. 22. Iteration process flow chart 
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(a) (b) 

Fig. 23. Example iterative solution of the water bridge shape: (a) Half-filling angle, (b) Internal and 

external radius 

 

 


