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Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

T. B�ans�agi, Jr. and A. F. Taylora)

Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD,
United Kingdom

(Received 27 March 2015; accepted 11 May 2015; published online 3 June 2015)

The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein

model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer

W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were

determined in simulations with initial random noise perturbations to the uniform state for W< l/2
and D� l or lower. We show that the geometric constraints of the reaction domain may result in the

formation of helical Turing patterns with parameters that give stripes (b¼ 0.2) or spots (b¼ 0.37) in

two dimensions. For b¼ 0.2, the helices were composed of lamellae and defects were likely as the

diameter of the cylinder increased. With b¼ 0.37, the helices consisted of semi-cylinders and

the orientation of stripes on the outer surface (and hence winding number) increased with increasing

diameter until a new stripe appeared. VC 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4921767]

In 1952, Turing proposed a general mechanism for bio-

logical pattern formation involving the reaction and dif-

fusion of chemical species. Whilst evidence of Turing’s

mechanism was difficult to obtain in living systems,

chemists found hexagonal and striped Turing patterns in

the chlorite–iodide–malonic acid (and related CDIMA)

reaction in gels in open reactors. Much of the experimen-

tal work has focused on quasi-2D chemical patterns.

Three-dimensional Turing patterns can be challenging to

characterize and thus remain underexplored. Here, we

investigate patterns in thin cylindrical layers using

the Lengyel-Epstein model of the chlorine dioxide-iodine-

malonic acid (CDIMA) reaction. We find that, even in

these thin layers, pattern selection can be influenced by

the third dimension: helices were obtained from random

initial conditions in cylinders when spots were observed

in two dimensions. Nevertheless, robust sequences of pat-

terns occurred with increasing domain size.

I. INTRODUCTION

In his 1952 paper on the Chemical Basis of

Morphogenesis,1 Turing proposed that reaction and diffusion

of chemical species may account for the appearance of pat-

terns in biological systems. He considered the case of two

chemical species, morphogens X and Y, in a ring of cells; Y

catalyzed its own production and X had a larger diffusion

constant than Y. Perturbation of the homogeneous state

resulted in the formation of stationary waves on the ring with

a “chemical wavelength” related to the reaction rate and dif-

fusion constants. Turing suggested that the waves might pro-

vide a chemical prepattern for the formation of whorls of

leaves around the stem of a plant or the growth of tentacles

on hydra, a sea-creature with a hollow tube-like body.

Diffusion-driven instabilities were later explored by

Meinhardt,2 Murray,3 and others. The patterns of spots and

stripes obtained in theory and simulations often bore striking

resemblance to those observed on animals.

Despite the interest that followed in the application of

Turing’s ideas to pattern formation in nature, almost forty

years passed without clear experimental verification of the

patterns. Since it was difficult to identify suitable morpho-

gens in living systems,4 the most convincing evidence of

Turing patterns was first obtained by chemists with the

chlorite-iodide-malonic acid (CIMA) reaction in an open

reactor containing a rectangular strip of gel.5 In this reactor,

the chlorite was separated from the malonic acid with these

species diffusing into either side of the long edge of the gel

along with the rest of the reactants. A starch-like indicator

was used to visualize regions of high concentration of iodide:

the resultant starch-tri-iodide complex is blue-black. Viewed

from above, rows of hexagonally organized spots appeared

perpendicular to the feed gradient. Shortly thereafter patterns

were obtained in the same reaction in a gel disk reactor

viewed from the side (parallel to the feed gradient).6

Hexagons, stripes and a mixed state were obtained with

changes in the concentrations of reactants.

Lengyel and Epstein7 analyzed the mechanism of the

reaction and the related CDMIA reaction and were able to

reduce it to two key variables, iodide and chlorite, by assum-

ing that chlorine dioxide, iodine and malonic acid concentra-

tions could be taken as effectively constant compared to

the large changes in the concentrations of the other two

species. The model was amenable to theoretical analysis and

explained the appearance of Turing patterns in the experi-

ments in the open gel reactor. Typically the diffusion constants

of small ions in solution are similar in magnitude; the reduced

diffusion of the activator iodide relative to chlorite arose as a

result of the binding of this species to starch, a natural polymer
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which was unable to diffuse in the gel, thus ensuring the con-

ditions necessary for the Turing instability. This revelation led

to the proposal of a new approach to the design of Turing pat-

terns in chemical systems involving the reversible binding of

the activator to form an immobile complex.8,9

The investigation of three-dimensional Turing patterns

was pursued in theory.10 Logical extension of the 2D pat-

terns into 3D was obtained, such as a lamellar (lam) type pat-

tern from stripes, a rod-like extension of spots resulting in

hexagonally packed cylinders (hpc), and a body centred

cubic (bcc) lattice of spots. In fact, many types of pattern are

possible in three dimensions and they coexist for some pa-

rameters. In simulations of the Lengyel-Epstein model, com-

plex 3D labyrinth structures were observed as well as simple

patterns.11,12 Predicting which 3D pattern will be selected

can be a challenging task.

In experiments with the gel disk reactor, the wavelength

of the pattern was 0.2 mm and the gels were greater than

1 mm in thickness, nevertheless patterns appeared essentially

two-dimensional. Later it was demonstrated that the chemi-

cal gradients in the reactor ensured that only a narrow part of

the medium was able to support patterns thus resulting in

quasi-2D structures.13 In systems in which the depth of the

gel was gradually increased the images suggested some

degree of three-dimensional character and hexagon patterns

obtained in thin capillaries fed from either end with the

CIMA reactants appeared to fit the bcc structure.14,15

However, the 2D projections of 3D structures can be difficult

to interpret. Three-dimensional Turing patterns have only

recently been reconstructed in experiments exploiting the

Belousov-Zhabotinsky (BZ) reaction in microemulsions in

capillary tubes.16 In this reaction, the activator is trapped in

aqueous droplets and the inhibitor, bromine, is able to diffuse

at a much faster rate through the oil phase. Optical tomogra-

phy was used to elucidate the structures such as hexagonally

packed cylinders and lamellar patterns. Curved surfaces such

as tubes were also obtained in the narrow capillaries. It is

well known that the geometry and size of the domain, as

well as the boundary and initial conditions, can influence

Turing pattern selection.17

In this paper, we return to the circular symmetry of

Turing’s original work and investigate the formation of

Turing patterns in the Lengyel-Epstein model of the CDIMA

reaction in thin cylindrical layers. The width of the layer and

diameter of the cylinder were similar to or below the intrin-

sic wavelength of the pattern and conditions were sought for

which robust three-dimensional patterns were obtained from

random initial conditions. Helical Turing patterns were com-

mon in this confined reaction domain.

II. MODEL

The Lengyel–Epstein (LE) model7,8 has the following

form:

@u

@t
¼ a� u� 4

uv

1þ u2
þr2u;

@v

@t
¼ r b u� uv

1þ u2

� �
þ cr2v

� �
;

(1)

where u and v are the dimensionless concentrations of iodide

and chlorite ions, and a, b, c, and r are dimensionless param-

eters: a and b are related to the rate constants of the reactions

involved, c¼Dv/Du, where D is the diffusion constant of u or

v and r¼ 1þK[S], where K is the binding constant of iodide

to the indicator, e.g., starch and [S] is the concentration of

starch. We took a¼ 12, r¼ 50, and c¼ 1 throughout and

b¼ 0.2 or b¼ 0.37. Space is scaled by a characteristic rate

and diffusion constant such that space (s.u.)¼ (k2[ClO2]/D)1/

2r, where the units of r depend on D.18 With typical values of

the parameters in experiments, the scaling factor is of the

order 10 mm�1.

This model has been thoroughly analyzed and we only

summarize the results here.18,19 The steady state of the sys-

tem depends only on a: uss¼ a/5¼ 2.40 and vss¼ 1þ (a/5)2

¼ 6.76 for the parameters used in this work. In the CDIMA

reaction, positive feedback and hence rate acceleration is

obtained as a result of the kinetic term which ensures that as

u decreases, its rate of removal increases (i.e., u/(1þ u2)

decreases with u for u> 1; this term decreases for u< 1 thus

limiting the rate of removal at low u). The variable u is

referred to as activator as the first diagonal element of the

Jacobian matrix of (1) evaluated at the steady state is posi-

tive and given by ((8u2v)/(u2þ 1)2� (4v)/(u2þ 1)� 1)ss

¼ 1.8. The other diagonal element is negative and v is

referred to as inhibitor. The parameter r multiplies the ratio

of diffusion coefficients c. With high binding coefficients r
may have values up to 1000, thus ensuring fast diffusion of v
relative to the activator. The model shows both Turing and

Hopf bifurcations; the bifurcation curves obtained from

linear stability analysis are given by

bT ¼
c

5a
13a2 � 4

ffiffiffiffiffi
10
p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ a2

p
þ 125

� �
;

bH ¼
3a

5r
� 25

ar
:

(2)

Below bT the steady state is unstable to spatially inhomoge-

neous perturbations and below bH temporal oscillations

occur. With the values of the parameters used here,

bH¼ 0.102 and bT¼ 0.395.

In order to provide some insight into the influence of

the cylindrical geometry of the reaction domain on Turing

patterns, simulations were first performed on 2D rings; 2D

squares and 3D slabs (Fig. 1). The width of the domain was

always less than the intrinsic wavelength of the pattern. The

equations were solved using FlexPDE on a 2D or 3D

Cartesian adaptive grid with no-flux boundary conditions.

Simulations were initiated by perturbing the spatially

uniform steady state in u and were terminated typically at

2000 t.u. or after stable patterns had formed. White noise

was applied to the initial values of u by the addition of a uni-

form distribution of pseudo-random numbers in (0, 0.01uss)

to uss. The effect of the amplitude of the noise on pattern

selection was not investigated, however, a different initial

distribution of u was generated in each run and multiple

runs were performed in cases where highly symmetric

structures emerged to test for their sensitivity to initial

conditions.
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III. RESULTS

The dispersion relations were obtained from linear sta-

bility analysis20 and are shown in Figure 2 for the two cases

of b explored in this work. The largest growth rate occurred

at wave number km¼ 0.78 for b¼ 0.2 which corresponds to

a wavelength of 8.1 s.u. and km¼ 0.90 for b¼ 0.37 giving a

wavelength of 7.0 s.u. On rings of width 0.5 s.u. (essentially)

1D patterns of stripes were obtained (Fig. 2 inset). For

b¼ 0.2, the band of growing modes was broader and located

at lower wave numbers (Fig. 2(a)) compared to the unstable

regime for b¼ 0.37 (Fig. 2(b)). Consequently, the stable

wave configurations on the ring markedly differed: in the

former parameter regime the number of waves around the

circumference of the ring grew stepwise continuously with

ring diameter D, whereas in the latter case a discontinuous

trend was observed with increasing ring diameter (Figs. 2(c)

and 2(d)). The wavelength on the ring varied from 3.9–9.6

s.u. for b¼ 0.2 and 4.8–7.4 s.u. for b¼ 0.37 and increased in

a sawtooth manner, approaching the wavelength associated

with the fastest growing mode for large D.

On rings of larger width with b¼ 0.37 semicircles

arranged along the perimeter of the ring resulting in the step-

wise growth in the number of waves without discontinuity

(Figs. 3(a)–3(d)). A circular stripe, brightest at the inner

boundary darkest at the outer domain wall, was also

observed in approximately half of the runs for all diameters

with D> 0.7 (Figs. 3(e)–3(g)). A bright stripe at the outer

boundary was not favored for these parameters. If an initial

condition was imposed such that there was a bright stripe at

the outer boundary, it evolved into semicircles with the same

configuration as Figs. 3(a)–3(d). With b¼ 0.2, the patterns

were composed of stripes organized perpendicular to the

boundary (not shown).

Two–dimensional simulations on square domains for the

chosen parameters yielded familiar labyrinthine and hexago-

nal Turing patterns (Fig. 4). Allowing the former patterns to

expand into the third dimension (W¼ 3.5 s.u.) preserved

symmetry resulting in thin lamellar structures (Fig. 4(b))

indistinguishable from their 2D counterparts. The planar

hexagonal Turing patterns responded similarly to the

increases in width by forming hexagonally packed cylinders

(hpc) in large domains (Fig. 4(d)). Elsewhere, however, long

interconnected strands developed. Projection of the overall

pattern on the top or bottom of the slab was reminiscent of

Turing patterns composed of a mixture of spots and stripes.

Closer inspection revealed that the cross section of the

strands was in fact a semicircle with the diameter segment

attached to the wall and the arc residing inside the layer.

Thus, 2D spots formed cylinders or semi-cylinders in 3D.

In cylindrical layers of width W< 3.5 s.u. only horizon-

tal stripes were observed for both values of b (Figs. 5(a) and

5(g)) when the diameter was below 0.5 s.u. This common

behavior at high curvatures can be interpreted as a result of

the Turing instability effectively taking place in one dimen-

sion. With W¼ 0.5 s.u., an increase in D resulted in the reap-

pearance spots for b¼ 0.37 (Figs. 5(b)–5(f)) and labyrinth

patterns for b¼ 0.2 (Figs. 5(h)–5(l)) that extended through

FIG. 1. Reaction domains in simulations: ring, slab and cylindrical layer of

inner diameter D, width W, and height H.

FIG. 2. Dispersion relations as a function of wavenumber k and number of

waves (circles) and wavelength (squares) on a ring of width W¼ 0.5 s.u. in

the Lengyel-Epstein model with b¼ 0.2 (a, c), b¼ 0.37 (b, d), and a¼ 12,

r¼ 50 and c¼ 1.

FIG. 3. Turing patterns with b¼ 0.37 on a ring of W¼ 3.5, D¼ 0.7 (a) and

coexistence of spotted and striped patterns with D¼ 1.75 (b,e), 4 (c,f), 6

(d,g). White¼ low u.

FIG. 4. Turing patterns on a square planar domain (90� 90 s.u.) and in slabs

of width W¼ 3.5 s.u. with b¼ 0.2 (a,b) and b¼ 0.37 (c,d).
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the full width of the domain in both cases. The configuration

of spots was found to be dependent on the diameter of the

thin cylindrical layer (Appendix). In the striped regime, for

small diameters first a single stripe developed (Fig. 5(h)) that

started to wind as the curvature decreased (Figs. 5(i) and

5(j)) until a second stripe appeared. Further domain increase

resulted in not only helical winding of the pair of stripes but

also a growing number of irregularities, and eventually only

labyrinthine patterns developed (Fig. 5(l)). Winding occurred

in both directions; examples of left-handed helices are shown

here.

Helical patterns were also obtained in the cylindrical

layers with b¼ 0.37 as the size of the domain was increased.

For W¼ 1.1 s.u., the spots on the cylinder (Fig. 6(b))

extended from the outer to the inner boundary. As the width

of the layer was increased, conical frusta were observed

(Fig. 6(d)) that eventually detached from the inner surface

giving semicircles in the cross-section of the cylinder. With

a further increase to W¼ 3.4 s.u., a double helix appeared

(Fig. 6(f)). Helices did not form if the value of b was

increased to 0.39; in this case spots were the only stable

pattern.

A robust sequence of patterns occurred as the diameter

of cylinder was increased with b¼ 0.37 and W¼ 3.5.

Short strands perpendicular to the long axis formed at low

D (Fig. 7(a)). With increasing diameter the segments rear-

ranged into the structure seen in Fig. 5(b) and subsequently

into a double helix (Fig. 7(c)). Further increasing the diame-

ter brought about an additional strand arranging the pattern

into a triple helix (Figs. 7(d) and 7(e)) before a highly sym-

metric assembly of inwardly tapered conical frusta formed

(Fig. 7(f)). At this point the increasing diameter favored

again strand formation (Figs. 7(g) and 7(h)) and conical

frusta gave way until they once more gained stability over

strands (Fig. 7(i)). This sequence of competition between

the two markedly different arrangements continued, this

time involving five strands before eventually conical frusta

established dominance.

Tiles of the patterns obtained from unfolding the outer

face of the cylinder as D was increased between 2 s.u. (three

vertical stripes) and 4.4 s.u. (four vertical stripes) are shown

in Figures 8(a)–8(l). The rotated striped pattern associated

with the helices occurred for most values of D except for

D¼ 3.6–3.9 where the spotted pattern emerged. The cross-

section of the cylindrical layer revealed a striped pattern

when spots were obtained on the tile (Fig. 8(m)) whereas a

pattern of semicircles (Figs. 8(n) and 8(o)) occurred when

the tile was striped. In this confined domain, only one of the

two structures observed in the 3D slab, either semi-cylinders

or cylinders, was selected. The orientation of the stripes rela-

tive to the vertical was governed by the diameter of the cyl-

inder and increased from 0 to p/4 before returning to 0 again

when four vertical stripes developed.

For parameters producing labyrinthine patterns in 2D,

the increase in layer width to W¼ 3.5 s.u. induced no sym-

metry change at small diameters, stripes only grew laterally

(Fig. 9(a)). As the domain became larger a single helix

emerged initially which in fact was the only robust symmet-

ric 3D structure (Fig. 9(b)). With increasing diameter, all

subsequent patterns were combinations of short symmetric

single—and double helical as well as stacked band segments

FIG. 5. Turing patterns with b¼ 0.37 (a–f) and b¼ 0.2 (g–l) in thin cylindri-

cal layers with W¼ 0.5 s.u., H¼ 40 s.u and D increasing from D¼ 1 (a,g), 2

(b,h), 2.5 (c,i), 4 (d,j), 5 (e,k), 10 (f,l) s.u.

FIG. 6. Turing patterns with b¼ 0.37, D¼ 1.5 s.u., H¼ 60 s.u., and W¼ 0.5

(a), 1.1 (b), 1.75 (c), 2.6 (d), 3.2 (e), 3.4 (f), 3.5 (g) s.u.

FIG. 7. Turing patterns with b¼ 0.37, W¼ 3.5 s.u., H¼ 60 s.u., and D¼ 0.4

(a), 0.7 (b), 1.5 (c), 2 (d), 2.8 (e), 3.6 (f), 4.5 (g), 5 (h), 6.4 (i), 6.8 (j), 7.6 (k),

10 (l) s.u.
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(Figs. 9(c)–9(f)) until eventually labyrinthine Turing patterns

prevailed.

IV. DISCUSSION AND CONCLUSIONS

The LE model7 was introduced to explain Turing pat-

terns in the CIMA or related CDMIA reaction in open gel

reactors in the early 1990s.5,6 In Turing’s analysis1 stationary

patterns arose through a combination of autocatalysis and

differential diffusion. Lengyel and Epstein demonstrated that

Turing patterns can be obtained in a model where positive

feedback arises through the rate of removal of a reactant and

differential transport occurs through binding of the activator

to a large, immobile, species. Here, we investigated Turing

patterns in the LE model returning to the circular symmetry

of Turing’s original paper in order to elucidate the possible

three dimensional structures arising with this geometric

constraint.

Pattern selection is a complex problem studied theoreti-

cally in amplitude equations.20 The Brusselator model was

more frequently employed in investigations than the LE; the

two have been compared in some cases and display common

features.21,22 Many pattern types are possible in two and

three dimensions and multistability between patterns is

exhibited. Prediction of the type of pattern selected is there-

fore a formidable task. In the LE, stripes and two types of

hexagonal spot patterns are produced in two dimensions.18,23

The simplest three-dimensional patterns are extensions of

the 2D structures: lamellae (lam) from stripes, the body cen-

ter cubic lattice of spheres from spots (bcc) and hexagonal

packed cylinders which are spots in one plane and stripes

in the other (hpc), however, other structures have been

obtained in simulations.24,25 Typically regular patterns

appear over small regions of space with dislocations and

defects occurring in larger domains. Simulations in large 3D

domains yielded complex structures that were difficult to

characterize.12

Here, patterns were compared in simulations of the LE

for two different values of the parameter b. The dispersion

relation with b¼ 0.2 resulted in a broad band of unstable

modes, whereas b¼ 0.37 had a narrow band. Hence, the

number of waves on a thin 2D ring (W¼ 0.5) grew as a step-

wise continuous function of the ring diameter for b¼ 0.2

whilst discontinuities were obtained for b¼ 0.37: a narrower

band of unstable modes reduced the flexibility in wavelength

selection required to overcome domain length constraints.

As the diameter of the ring was increased, the intrinsic wave-

length l associated with the maximum growth rate of the pat-

tern was approached.

In square domains, hexagons were obtained for b¼ 0.37

from random initial conditions. In 2D rings (W¼ 3.5),

co-existence was observed between a semicircle attached to

the outer boundary and striped pattern. Cylinders or semi-

cylinders appeared in slabs, resulting in hpc in some parts of

the domain and semi-cylinders in other parts, i.e., a mixed

spot/stripe pattern in the 2D projection. With b¼ 0.2, stripes

were obtained on 2D rings and in slabs the patterns preserved

their 2D symmetry resulting in lamellar labyrinth patterns.

Confining the reaction in the cylindrical layer resulted in

robust three-dimensional helical patterns for some parame-

ters. Observed from the outer surface, the patterns took the

form of stripes that wound around the cylinder. Helices arose

as a result of the coupling between the constraint of the

wavelength selection on the cross-sectional ring and the

greater freedom on the surface of the cylinder. As the ring

increased in diameter, only certain unstable modes were able

to grow on the ring and satisfy the periodic boundary condi-

tions whereas the fastest growing mode could still be

obtained on the surface by rotation of the striped structure.

Hence, the orientation of stripes (and hence winding number

of the helices) depended on the diameter of the inner

cylinder.

The major difference between helices for the two values

of b arose from comparison of the three-dimensional nature

of the pattern. With b¼ 0.2, the patterns extended through

the width of the layer with axial symmetry. With b¼ 0.37,

cross-sections revealed that the helices were semi-cylinders

attached to the outer surface. In our investigations, reaction

domains of width W< l/2 and diameter� l or lower were

employed; even in these small domains, defects and
FIG. 9. Turing patterns with b¼ 0.2, W¼ 3.5 s.u., H¼ 60 s.u., and D¼ 0.4

(a), 1.5 (b), 3 (c), 4 (d), 7 (e), 10 (f) s.u.

FIG. 8. Tiles (�20� 20 s.u.) constructed from unfolding the outer face of

the cylindrical layers in Fig. 8 with increasing D (a–l). Cross-sections of the

cylindrical layers in (h), (j), and (l), are shown in (m), (n), and (o) for

D¼ 3.6, 4.0, and 4.4 s.u., respectively. (p) Angle b of stripes plotted as a

function of D (dotted line corresponds to spotted patterns).
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combinations of structures were observed. For both values of

b, as the size of the domain grew then the probability of

defects increased, however, the helices were obtained in ro-

bust sequences with b¼ 0.37 suggesting that the narrower

band of unstable modes observed in the dispersion curve re-

stricted pattern selection.

The LE model reproduces many experimental features

including the light sensitivity of the reaction; new structures

such as superlattice patterns have been obtained by forcing

and coupling of gel layers.26–29 Most of the experimental

patterns are essentially 2D in nature and in cases where pat-

terns are 3D, elucidation of structures from 2D projections

can be challenging. The reaction does not lend itself to the

techniques that have been exploited with the BZ reaction

such as optical tomography and MRI.30 Patterns are easier to

analyze in thin layers but can still be affected by three-

dimensional effects.

Helical structures are common on the nano- to micro-

scale in crystalline chemical systems and the combination of

reaction and diffusion sometimes plays a role in their forma-

tion.31 Examples of helical patterns arising from the inter-

play of autocatalytic chemical reaction and differential

transport have not been illustrated in experiments. The

boundary conditions used in this work do not apply to the

open gel reactors; however, helical patterns may still be

obtained in cylindrical layers with a boundary feed from a

CSTR.32 When 3D Turing patterns were reconstructed from

the BZ microemulsion in capillaries, semi-spheres, and

semi-cylinders were observed attached to the outer bound-

ary. Conditions might be exploited for which transient

Turing patterns were produced in the CDIMA reaction in

closed reactors and the reaction performed in the annulus

between two capillaries in order to obtain the results of the

simulations presented here.14,33

One of the remarkable features of Turing’s work is that

the underlying mechanism of positive feedback and differen-

tial transport has been applied to explain a wide range of nat-

ural patterns occurring on vastly different length and time

scales, from inorganic precipitates to flames, vegetation and

populations of animals.34–36 From a biological perspective,

simulations have provided much insight into the role a

Turing instability might play in, for example, animal mark-

ings.37,38 Problems such as the lack of robustness of Turing

patterns continue to be an issue but have been tackled

through various strategies such as a slowly growing do-

main.39 Turing patterns have been investigated on spherical

and hemispherical surfaces40 but not, to our knowledge, in

thin cylindrical layers before. It seems unlikely that the

results reported here are confined to the LE model of the

CDIMA reaction. Thus, helical structures might be obtained

in other systems where Turing patterns arise.
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APPENDIX: CONFIGURATION OF SPOTS ON
CYLINDERS

The angle, /, between the center of spots (blue circles,

Fig. 10(b)) measured in a plane cutting through their center

(red rectangle, Figs. 10(a) and 10(b)) became smaller as

the domain grew until the spots switched to the next stable

configuration about D¼ 4.3. In the diameter regime

4.5<D< 5.5 spots were arranged in twos, one opposite the

other with each pair rotated by p/2 with respect to the pair

below. Further increase in diameter gave rise to similar con-

figurations where three, four, five, etc. spots resided at one

height rotated by p/n with respect to the next ring of spots up

or down the layer, n being the number spots on a ring. Less-

ordered arrangements containing grain boundaries started to

develop and become more frequent as the diameter grew.

1A. M. Turing, Philos. Trans. R. Soc. London, Ser. B 237, 37 (1952).
2H. Meinhardt, Models of Biological Pattern Formation (Academic Press,

New York, 1982).
3J. D. Murray, Mathematical Biology (Springer, Berlin, 1989).
4P. K. Maini, R. E. Baker, and C. M. Chuong, Science 314, 1397 (2006).
5V. Castets, E. Dulos, J. Boissonade, and P. Dekepper, Phys. Rev. Lett. 64,

2953 (1990).
6Q. Ouyang and H. L. Swinney, Nature 352, 610 (1991).
7I. Lengyel and I. R. Epstein, Science 251, 650 (1991).
8I. Lengyel and I. R. Epstein, Proc. Natl. Acad. Sci. U.S.A. 89, 3977

(1992).
9J. Horvath, I. Szalai, and P. De Kepper, Science 324, 772 (2009).

10A. DeWit, P. Borckmans, and G. Dewel, Proc. Natl. Acad. Sci. U.S.A. 94,

12765 (1997).
11P. K. Moore and W. Horsthemke, Chaos 19, 043116 (2009).
12T. Leppanen, M. Karttunen, K. Kaski, and R. A. Barrio, Int. J. Mod. Phys.

B 17, 5541 (2003).
13I. Lengyel, S. Kadar, and I. R. Epstein, Phys. Rev. Lett. 69, 2729 (1992).
14K. Agladze, E. Dulos, and P. Dekepper, J. Phys. Chem. 96, 2400 (1992).
15E. Dulos, P. Davies, B. Rudovics, and P. DeKepper, Physica D 98, 53

(1996).
16T. B�ans�agi, Jr., V. K. Vanag, and I. R. Epstein, Science 331, 1309 (2011).
17P. Arcuri and J. D. Murray, J. Math. Biol. 24, 141 (1986).
18B. Rudovics, E. Barillot, P. W. Davies, E. Dulos, J. Boissonade, and P. De

Kepper, J. Phys. Chem. A 103, 1790 (1999).
19J. A. Pojman and I. R. Epstein, An Introduction to Nonlinear Chemical

Dynamics (Oxford University Press, New York, 1998).

FIG. 10. Configuration of spotted Turing patterns with b¼ 0.37, W¼ 0.5

s.u., H¼ 40 s.u., and D¼ 4 s.u. (a,b). The angle between the center of spots

shown in (b) is plotted as a function of D in (c).

064308-6 T. B�ans�agi, Jr. and A. F. Taylor Chaos 25, 064308 (2015)

http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1103/PhysRevLett.64.2953
http://dx.doi.org/10.1038/352610a0
http://dx.doi.org/10.1126/science.251.4994.650
http://dx.doi.org/10.1073/pnas.89.9.3977
http://dx.doi.org/10.1126/science.1169973
http://dx.doi.org/10.1073/pnas.94.24.12765
http://dx.doi.org/10.1063/1.3267509
http://dx.doi.org/10.1142/S0217979203023240
http://dx.doi.org/10.1142/S0217979203023240
http://dx.doi.org/10.1103/PhysRevLett.69.2729
http://dx.doi.org/10.1021/j100185a002
http://dx.doi.org/10.1016/0167-2789(96)00072-3
http://dx.doi.org/10.1126/science.1200815
http://dx.doi.org/10.1007/BF00275996
http://dx.doi.org/10.1021/jp983210v


20M. Cross and H. Greenside, Pattern Formation and Dynamics in
Nonequilibrium Systems (Cambridge University Press, New York, 2009).

21P. Borckmans, A. Dewit, and G. Dewel, Physica A 188, 137 (1992).
22T. K. Callahan and E. Knobloch, Physica D 132, 339 (1999).
23A. Rovinsky and M. Menzinger, Phys. Rev. A 46, 6315 (1992).
24A. Dewit, G. Dewel, P. Borckmans, and D. Walgraef, Physica D 61, 289

(1992).
25H. Shoji, K. Yamada, D. Ueyama, and T. Ohta, Phys. Rev. E 75, 13

(2007).
26I. Berenstein, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein,

Phys. Rev. Lett. 91, 4 (2003).
27D. G. Miguez, M. Dolnik, I. Epstein, and A. P. Munuzuri, Phys. Rev. E

84, 6 (2011).
28D. Feldman, R. Nagao, T. B�ans�agi, Jr., I. R. Epstein, and M. Dolnik, Phys.

Chem. Chem. Phys. 14, 6577 (2012).
29J. Li, H. L. Wang, and Q. Ouyang, Chaos 24, 023115 (2014).

30M. M. Britton, A. J. Sederman, A. F. Taylor, S. K. Scott, and L. F.

Gladden, J. Phys. Chem. A 109, 8306 (2005).
31S. Thomas, I. Lagzi, F. Molnar, and Z. Racz, Phys. Rev. Lett. 110, 5

(2013).
32D. E. Strier, P. de Kepper, and J. Boissonade, J. Phys. Chem. A 109, 1357

(2005).
33I. Lengyel, S. Kadar, and I. R. Epstein, Science 259, 493 (1993).
34V. Petrov, S. K. Scott, and K. Showalter, Philos. Trans. R. Soc. London,

Ser. A 347, 631 (1994).
35S. C. Muller and J. Ross, J. Phys. Chem. A 107, 7997 (2003).
36M. Baurmann, T. Gross, and U. Feudel, J. Theor. Biol. 245, 220 (2007).
37S. Kondo and T. Miura, Science 329, 1616 (2010).
38J. D. Murray, J. Theor. Biol. 88, 161 (1981).
39P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney, and S. S. Lee,

Interface Focus 2, 487 (2012).
40C. Varea, J. L. Aragon, and R. A. Barrio, Phys. Rev. E 60, 4588 (1999).

064308-7 T. B�ans�agi, Jr. and A. F. Taylor Chaos 25, 064308 (2015)

http://dx.doi.org/10.1016/0378-4371(92)90261-N
http://dx.doi.org/10.1016/S0167-2789(99)00041-X
http://dx.doi.org/10.1103/PhysRevA.46.6315
http://dx.doi.org/10.1016/0167-2789(92)90173-K
http://dx.doi.org/10.1103/PhysRevE.75.046212
http://dx.doi.org/10.1103/PhysRevLett.91.058302
http://dx.doi.org/10.1103/PhysRevE.84.046210
http://dx.doi.org/10.1039/c2cp23779b
http://dx.doi.org/10.1039/c2cp23779b
http://dx.doi.org/10.1063/1.4875262
http://dx.doi.org/10.1021/jp053063i
http://dx.doi.org/10.1103/PhysRevLett.110.078303
http://dx.doi.org/10.1021/jp046138b
http://dx.doi.org/10.1126/science.259.5094.493
http://dx.doi.org/10.1098/rsta.1994.0071
http://dx.doi.org/10.1098/rsta.1994.0071
http://dx.doi.org/10.1021/jp030364o
http://dx.doi.org/10.1016/j.jtbi.2006.09.036
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1016/0022-5193(81)90334-9
http://dx.doi.org/10.1098/rsfs.2011.0113
http://dx.doi.org/10.1103/PhysRevE.60.4588

	s1
	l
	n1
	s2
	d1
	d2
	s3
	f1
	f2
	f3
	f4
	f5
	f6
	f7
	s4
	f9
	f8
	app1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	f10
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40

