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Physicochemical and biological 
characterization of chitosan-
microRNA nanocomplexes for 
gene delivery to MCF-7 breast 
cancer cells
B. Santos-Carballal1, L. J. Aaldering1, M. Ritzefeld2,†, S. Pereira1, N. Sewald2, 
B. M. Moerschbacher1, M. Götte3 & F. M. Goycoolea1

Cancer gene therapy requires the design of non-viral vectors that carry genetic material and 
selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can 
form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). 
Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 
(CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured 
in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge 
ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. 
The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with 
increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a 
concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes 
formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. 
We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–
miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing 
successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that 
CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy.

Cancer is the consequence of uncontrolled cell proliferation and the dysregulation of cellular processes 
such as differentiation and programmed cell death1. Most cancers are caused by mutations or chromo-
some rearrangements that directly affect the expression of oncogenes or tumour-suppressor genes, but 
there is increasing evidence that cancer can be triggered by changes in gene regulation, including the 
expression of small non-coding RNA molecules known as microRNAs (miRNAs)2,3.

MicroRNAs are small endogenous RNAs, approximately 22 nucleotides in length, which regulate 
eukaryotic gene expression on the post-transcriptional level. Only a small number of human miRNAs 
have been functionally characterized and many of these regulate cancer-related processes such as cell 
growth and differentiation, and therefore, potentially function as oncogenes. Expression profiling using 
miRNAs rather than protein-coding genes provides a more accurate method for the classification of 
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cancer subtypes2,4. The differential expression of certain miRNAs in tumours is, therefore, a powerful 
tool for the diagnosis and treatment of cancer.

The introduction of miRNAs into human cells could provide an efficacious therapeutic approach 
to inhibit tumour progression5. However, successful gene therapy requires the development of suitable 
vehicles for the efficient delivery of nucleic acids to specific target cells, with minimal toxicity. Both viral 
and non-viral vectors have been developed for gene therapy. Viral vectors have been designed based on 
a wide range of viruses and typically include strong promoters that achieve a high level of heterologous 
gene expression. However, the use of viral vectors in human clinical trials raises significant safety issues, 
such as potential immunogenicity and reversion to pathogenicity6,7. This has encouraged the develop-
ment of non-viral vectors with better biosafety profiles, including nanocomplexes based on dendrimers8, 
lipids,9 or polysaccharides10.

Non-viral transfection reagents composed of dendrimers (e.g. polyethylenimine) and lipid formula-
tions (e.g. Lipofectamine) are already commercially available, but research has focused more recently on 
biocompatible vectors suitable for in vivo therapeutic use, including cationic polymers such as polysac-
charides that form complexes with negatively charged polynucleotides (DNA and various forms of RNA). 
These polycations are conceived as building blocks that stabilize the genetic material, protect it from deg-
radation, promote its uptake into target cells, and then efficiently unpack and deliver the nucleic acids6.

Chitosans (CS) are a family of linear, cationic heteropolysaccharides produced by the partial deacetyl-
ation of chitin, which is isolated from crustacean shells. They are biodegradable polymers composed of 
randomly distributed β(1 →  4)-linked N-acetyl-d-glucosamine and d-glucosamine units. The cationic 
properties of chitosan are useful in pharmaceutical formulations and biomaterials because the mole-
cule can form polyelectrolyte complexes (also known as polyplexes) with plasmid DNA and, as recently 
reported, also with short interfering RNA (siRNA), making it an attractive delivery system10–12. Thus 
far, few studies have systematically investigated how the structure of chitosans, specifically the degree 
of acetylation (DA), pattern of acetylation (PA), and degree of polymerization (DP), affects the bio-
physical characteristics and biological functionality of chitosan-based polyplexes. Indeed, attempts have 
been made to establish a relationship between the DP and DA of chitosan, its salt form and pH on the 
efficiency of transfection with plasmid DNA in vitro13–17 and to determine the intracellular traffick-
ing routes underlying their mode of action18. An ideal balance between the strength of the interaction 
between chitosan and plasmid DNA and the dissolution of the complex within the cell (thus conferring 
optimal transfection efficiency) can be achieved using chitosan molecules with specific DPs and DAs19. 
The biophysical properties of chitosan–siRNA complexes and their capacity for transfection have been 
investigated in detail20 and beneficial properties include a low molecular weight, a high DA, a small 
particle size (100 nm), and a moderate positive surface zeta potential along with a high (+ /− ) charge 
ratio21. However, it is unclear how these factors contribute to the observed transfection efficiency and 
further investigation is required. The delivery of microRNAs has been tested with functionalized gold 
nanoparticles, combined with either the stem-loop or hairpin structure of a miRNA22,23. The properties 
of chitosan–miRNA (CS–miRNA) complexes have not been documented.

Here we report a comprehensive investigation of the structure–function relationship in CS–miRNA 
systems, to determine whether the physicochemical and biophysical properties of different chitosans and 
miRNAs are related (e.g. size, zeta potential, chemical affinity of interaction and conformation). We also 
studied the ease with which miRNAs are released from the CS–miRNA complexes and subsequently 
processed within the cell to achieve the intended biological activity.

Results
Characterization of chitosans. The parent chitosan was depolymerized using two different amounts 
of nitrous acid (calculated according to the stoichiometry of the reaction) to obtain high and low molec-
ular weight chitosans, here denoted as HDP and LDP, respectively. This is a selective reaction in which 
the nitrosating species attack the amine groups and cleave β-glycosidic but not N-acetyl linkages24,25. 
Chitosans with four different DAs were obtained by the acetylation of unprotonated primary amino 
groups with acetic anhydride. The DA of the chitosans was evaluated by 1H-NMR as previously 
described26–28. The viscosity average molecular weight (M v) was determined from the intrinsic viscosity 
values using the corresponding Mark-Houwink constants29 (Table 1).

Hybridization reaction. Analysis of the annealing reaction by gel electrophoresis (Fig.  1) revealed 
unique bands for both single-stranded miRNAs, comparable with the 20-mer to 25-mer size marker. The 
formation of the double stranded (duplex) was confirmed by the reduced mobility of the corresponding 
band reflecting its higher molecular mass (14.2 kDa) compared to the single strands.

Physicochemical characterization of CS–miRNA complexes. The different chitosan solutions 
described above (made in water containing stoichiometric amounts of HCl, hence bearing a net posi-
tive charge) were mixed with a constant amount (0.05 nmol) of miRNA (hence bearing a net negative 
charge) to generate CS–miRNA complexes with charge ratios (+ /− ) in the range of 0.6–8. The resulting 
complexes were characterized in terms of their average diameter and zeta potential (Fig. 2). The average 
diameter of the complexes was ~80–190 nm although the complexes containing low-DP chitosans were 
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marginally smaller than those containing the high-DP chitosans due to the shorter chains. The size of 
the complexes containing high-DP chitosans increased with increasing DA at the same charge ratio, but 
this phenomenon was not observed for the complexes containing low-DP chitosans. Both types of com-
plexes increased in size as they approached the neutrality point (+ /−  =  1.5) where charge compensation 
occurs, but became smaller at higher concentrations of chitosans (Fig. 2A,B). The zeta potential varied 
from −20 to +20 mV for complexes containing the high-DP chitosans and from −15 to +15 mV for 
those containing the low-DP chitosans (Fig. 2C,D). As expected, the zeta potential always became more 
positive as the concentration of chitosans increased.

Transmission electron microscopy (TEM). Images of nanocomplexes containing HDP-29 or LDP-
25 and miRNA were recorded by TEM and analysed in terms of particle morphology, size, and surface 
topology. Figure  3 shows representative images of these CS-miRNA nanocomplexes formulated at two 
different ratios.

The complexes were spherical in shape with a heterogeneous structure, as previously reported for 
44 kDa chitosans30. The mean diameters of the CS-miRNA complexes determined from an average of 
eight TEM images using ImageJ v1.49n are reported in the table embedded in Fig. 3. These sizes correlate 
well with those determined by dynamic light scattering.

Chitosan Sample DA (%) [η] (mL/g) Mv  (Da)

HDP-1.9 1.9 259 26100

HDP-12 12 248 25500

HDP-29 29 215 20200

HDP-49 49 215 18000

LDP-1.6 1.6 24 1300

LDP-11 11 21 1200

LDP-25 25 21 1140

LDP-67 67 29 1950

Table 1.  Physicochemical characteristics of prepared chitosans: degree of acetylation (DA) calculated by 
1H-NMR, intrinsic viscosity ([η]) determined by viscosimetry (0.3 M acetic acid/0.2 M sodium acetate at  
25°C) and viscosity average molecular weight (Mv).29

Figure 1. Polyacrylamide gel electrophoresis (15%) using 1x TAE buffer (constant voltage of 120 V, 
90 min) and stained with SYBR gold (1x). Lane codes: M. Generuler ultra low range DNA ladder; 1. hsa-
miR-145-3p; 2. hsa-miR-145-5p; 3. miRNA-145.

iPanchGo
Resaltado



www.nature.com/scientificreports/

4Scientific RepoRts | 5:13567 | DOi: 10.1038/srep13567

Figure 2. Physicochemical characteristics of self-assembled CS–miRNA complexes after incubation for 
30 min at 37 °C. Z-average diameter and polydispersity index (PDI) of complexes formulated with (A) high 
degree of polymerization CS and (B) low degree of polymerization CS; corresponding zeta-potential values 
for complexes formed with (C) high degree of polymerization CS and (D) low degree of polymerization CS 
(n =  3; mean average ±  SD).

Figure 3. Representative TEM images of complexes containing (A) CS HDP-29 r = 8 and (B) CS LDP-25 
r = 0.6 stained with uranyl acetate. The embedded table shows the measured diameter of the complexes 
using ImageJ v1.49n (n =  8; mean average ±  SD).
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Binding analysis by surface plasmon resonance (SPR). Biotinylated hsa-miR-145-5p was immo-
bilized onto streptavidin sensor chips and chitosan solutions of different concentrations were passed 
over the flow channel allowing sensorgrams to be recorded during the interaction between chitosans 
and hsa-miR-145-5p (Supporting Information, S1). The response units increased significantly during the 
first seconds of interaction due to the formation of CS–miRNA complexes, but when a certain amount of 
chitosan had been added, a steady state was achieved in which the number of associating and dissociating 
CS–miRNA complexes is equal. The RU values in the equilibrium state were plotted against the loga-
rithm of the corresponding chitosan concentrations. The equilibrium dissociation constants (KD) were 
extracted from these saturation curves by nonlinear regression (Fig. 4) using a sigmoidal dose response 
(variable slope) model. The KD values are listed in Table 2.

A rapid increase in RU during the association phase was observed for both the high and low molec-
ular weight chitosans as long as the DA was low. However, complexes containing chitosans with a higher 
DA were characterized by a shallower slope representing kinetically slower association. A similar trend 
was observed for the KD values: complexes containing high-DA chitosan showed higher KD values 
and were, therefore, significantly less stable. Taking the 95% confidence intervals into consideration,  
a significant difference between the KD values at varying DAs was only observed for the high DP chi-
tosans (HDP 12–49). In the case of the low-DP chitosans the corresponding complexes of LDP-11 and 
LDP-25 exhibited comparable KD values. However, the CS–miRNA complex of LDP-67 is character-
ized by a significantly higher dissociation constant in comparison to the latter two (Table  2). The Hill 

Figure 4. Set of saturation curves for the interaction of hsa-miR-145-5p with chitosans: (A) HDP-12, 
(B) HDP-29, (C) HDP-49, (D) LDP-11, (E) LDP-25 and (F) LDP-67. Binding was analysed in acetate 
buffer (35 mM, pH 5.1, containing 10 mM NaCl) on a streptavidin sensor chip. Increasing concentrations of 
chitosan were injected for 20 s at 20 μ L/min until the surface was saturated. Bars represent maximum and 
minimum values (n =  2).

Chitosan Sample KD (μM) 95% CI [KD] (μM) Hill coefficient ± SD R2

HDP-12 6.276 5.932–6.640 8 ±  1 0.9892

HDP-29 11.84 11.40–12.30 6.5 ±  0.4 0.9986

HDP-49 28.89 26.28–31.76 4.6 ±  0.7 0.9762

LDP-11 9.982 8.774–11.36 3.4 ±  0.6 0.9784

LDP-25 8.704 7.824–9.684 3.7 ±  0.6 0.9834

LDP-67 21.52 18.51–25.01 2.0 ±  0.3 0.9867

Table 2.  Binding parameters of different chitosans in complexes with hsa-miR-145-5p calculated from 
the fit sigmoidal dose response (variable slope) model using GraphPad Prism v6.
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coefficients for all complexes were greater than 1 indicating positive cooperative binding events. For 
high-DP chitosans the Hill coefficient significantly declined as the DA increased.

Conformational analysis by circular dichroism spectroscopy (CD). CD spectroscopy is sensitive 
to conformational changes in chiral asymmetric structures. Thereby changes in the CD spectra of poly-
nucleotides are mostly dependent on the sequence of bases and the stacking geometry31,32. This method 
is ideal for the analysis of structural changes in RNA duplexes caused by electrostatic interactions with 
polysaccharides. We acquired CD spectra for single-stranded RNA (hsa-miR-145-5p), duplex miRNA-
145 and complexes formed with chitosans over a range of (+ /− ) charge ratios (Fig. 5).

There was no absorption band in the CD spectrum for single-stranded RNA. In contrast, CD spectra 
for double-stranded miRNA revealed the presence of a positive band (maximum at λ  =  280 nm), a neg-
ative band (minimum at λ  =  210 nm), and zero CD at λ  =  300 nm and beyond. These features are char-
acteristic of the right handed A-form of double-stranded RNA33. The CD spectra of the double-stranded 
miRNA was shifted in the positive exciton band of the long-wavelength component (λ  =  270 nm) follow-
ing the addition of chitosans even for complexes that were deficient in chitosans (+ /−  =  0.6). For com-
plexes containing excess chitosans, the leftward shift was more pronounced in all CD spectra, reflecting 
an increase in the positive exciton band of the long-wavelength component (λ  =  270 nm). The addition 
of chitosans had no clear effect on the negative exciton band (λ  =  210 nm). The conformational changes 
observed by CD spectroscopy did not appear to be influenced by the DA and DP of the chitosans, only 
by the (+ /− ) charge ratio.

Cytotoxicity of CS–miRNA-145 towards MCF-7 breast cancer cells. The influence of nanoma-
terials on cell viability depends on the physical and chemical parameters of particles (i.e. size, charge, 
morphology and chemical composition) and the exposure conditions (i.e. cell type and density, par-
ticle concentration, medium composition, temperature, and exposure time). Chitosans with different 
characteristics generally show excellent biocompatibility34,35. However, chitosan–siRNA complexes with 
50–70 excess positive charges caused 20–40% cytotoxicity when presented to H1299 cells36 and 30–40% 
cytotoxicity when presented to NIH 3T3 cells37. It was therefore necessary to monitor the potential cyto-
toxicity of chitosan–miRNA-145 complexes towards MCF-7 breast cancer cells.

Figure 5. Representative CD spectra of single-stranded oligonucleotide hsa-miR-145-5p, double-
stranded miRNA and different CS–miRNA complexes with (+/−) charge ratios of 0.6, 1.5 and 8. The 
concentration of miRNA was maintained at a constant 5 μ M in all experiments. Spectra were obtained by 
subtracting the effect of the buffer and chitosan.
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We evaluated the influence of CS–miRNA complexes by incubating MCF-7 breast cancer cells  
with high-molecular-weight complexes for 6 and 24 h at different concentrations. Three biological indep- 
endent experiments were performed, followed by MTT assays to determine mitochondrial dehydroge-
nase activity as a marker of cell viability. There was no evidence of cytotoxicity regardless of the chitosan/
miRNA ratio or DA when cells were exposed for 6 or 24 h to complexes at concentrations appropriate for 
transfection (Fig.  6). The commercial transfection reagent DharmaFECT showed the highest statistical 
significant cytotoxicity both at 6 and 24 h (~65% cell viability; p ≤  0.0001).

Cellular uptake of CS–miRNA complexes probed by confocal laser scanning microscopy.  
CLSM was used to investigate the uptake of CS HDP-12-miRNA complexes with a (+ /− ) charge ratio of 
1.5 into MCF-7 breast cancer cells. The cell membranes were stained with CellMask Deep Red and the 
CS–miRNA complexes were formed with fluorescence-labelled miRNA-145 (Fig. 7).

The CLSM images revealed that most complexes were located in the medium surrounding the 
cells immediately after application (time zero-Fig.  7A) and no complexes were found at greater depth 
(Δ z =  10 μ m) (time zero-Fig. 7B). After 5 h of incubation the complexes persisted on the upper surface of 
the membrane, diagnostic of the interaction with the negatively charged surface (Fig. 7C). The complexes 
were still not visible at greater depth (Fig. 7D). However, after 24 h few complexes remained on the upper 
surface of the cell membrane (Fig. 7E) and were instead mostly localized at Δ z =  10 μ m, suggesting they 
were present in the cytoplasm; this result was more evident after 48 h of incubation, where a greater 
amount of internalized complexes was observed (Fig. 7H). The uptake mechanism appeared to be endo-
cytosis, and intracellular vesicles containing CS–miRNA complexes can be seen in the enlarged image 
in Figure 7. However, these images offer only a qualitative evidence of the internalization process over 
time. Quantitative transfection efficiency was further evaluated by quantitative RT-PCR assay. Future 
mechanistic studies on cellular uptake and trafficking are needed.

Transfection of MCF-7 cells with CS–miRNA-145 nanocomplexes. The principal aim of this 
investigation was the development of a non-viral vector system based on chitosan nanoparticles that 
was suitable for the delivery of functional miRNAs to cancer cells using miRNA-145 as a case study. 

Figure 6. Viability of MCF-7 cells determined by MTT assays following incubation for 6 (A) and 24 h 
(B) with chitosan–miRNA complexes comprising CS of high degree of polymerization in RPMI minimal 
medium. Cell viability was expressed relative to untreated cells. Positive controls were cells treated with 
DharmaFECT (0.2 µL/well), Novafect O 25 and Triton X-100. The concentration of miRNA was constant 
(1x = 0.002 nmol/well). Data represent mean values (± SD) of three independent biological experiments and 
eight technical replicates. Statistical comparisons were between each treatment and the control of untreated 
cells using non-parametric Kruskal-Wallis test (***p ≤  0.001; **** p ≤  0.0001).
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Therefore, we determined the in vitro efficiency of transfection with CS–miRNA-145 complexes by meas-
uring the biological function of miRNA-145 after delivery. One of the biological functions of miRNA-
145 is to downregulate junction adhesion molecule A (JAM-A) mRNA, which can, therefore, be used 
as a marker for miRNA-145 transfection efficiency38,39. We measured the level of JAM-A mRNA rel-
ative to a rRNA standard using the TaqMan-based quantitative RT-PCR assay, which can also detect 
dose-dependent silencing effects. We evaluated several scenarios using the nanocomplexes at different 
concentrations, (+ /− ) charge ratios and with different transfection reagents. Figure 8A shows the down-
regulation of JAM-A mRNA following transfection with miRNA-145 in a complex with HDP chitosan 
(1.5 charge ratio) at different concentrations, revealing a dose-dependent effect. There was a slight sig-
nificant reduction in the abundance of JAM-A mRNA at the standard concentration (1x) of 0.05 nmol 
per well (p ≤  0.01) but a greater significant effect at the 5x and 10x doses of 0.25 and 0.5 nmol per well, 
respectively (p ≤  0.0001), when compared to the control of non-transfected cells. Both treatments caused 
~55% reduction in the amount of JAM-A mRNA. Pure duplex miRNA-145 was used as a negative control 

Figure 7. Uptake of CS HDP-12–miRNA complexes into MCF-7 cells observed by confocal laser 
scanning microscopy. Horizontal axis: optical sections at increasing height (z-values) Vertical axis: 
incubation times: 0, 5, 24 and 48 h. Red fluorescent staining =  CellMask Deep Red membrane staining, 
Green fluorescent staining =  CS HDP-12–miRNA complexes labelled with 6-FAM-hsa-miR-5p.
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and there was no impact on JAM-A mRNA detectable, suggesting that the miRNA was degraded in the 
medium and/or unable to cross the plasma membrane, perhaps reflecting the mutual negative charges. 
The transfection reagent DharmaFECT was used as a positive control, and likewise achieved a signif-
icant ~50% reduction (p ≤  0.0001) in the level of JAM-A mRNA. Although this reagent shows similar 
transfection efficiency as chitosan complexes in vitro it is not recommended for in vivo gene delivery 
due to its cytotoxicity. In turn, Novafect O 25, a commercially available reagent based on chitosan, was 
also used as a positive control. We tested two different (+ /− ) charge ratios (10 and 50), while main-
taining a constant quantity of miRNA. There was no significant reduction in JAM-A mRNA levels when 
cells were transfected at a (+ /− ) charge ratio of 10. Transfection at a (+ /− ) charge ratio of 50 led to a 
significant reduction of less than 50% (p ≤  0.0001), thus confirming that excess of chitosan increases the 
transfection efficiency.

We also tested CS complexes with higher (+ /− ) charge ratios because better transfection efficiencies 
have been reported, reflecting the larger number of sites available for interaction with negative charges 
on the cell membrane. Additionally, a higher CS content may also help in the mechanism of gene release 
due to the proton sponge effect10. However, we found no significant improvement over the complexes 
with a charge ratio of 1.5 (Fig. 8). In addition it was possible to observe a significant effect (p ≤  0.001) of 
the DA on the transfection efficiency, showing better results for CS with DA =  29% (Fig. 8B).

Discussion
Efficient gene delivery is an important challenge in gene therapy because nucleic acids are negatively 
charged and hydrophilic. These characteristics prevent them from entering cells by passive diffusion. To 
find a safe and efficient non-viral vector for miRNA delivery, we investigated the interaction between 
chitosans and miRNA and the influence of the resulting CS–miRNA complexes on the uptake of miRNA 
into MCF-7 cells using JAM-A mRNA as a marker to monitor transfection efficiency38,39. As down-
regulation of JAM-A by miRNA-145 inhibits breast cancer and endometriotic cell invasiveness38,39, the 
successful application of the CS–miRNA-145 complexes marks this reagent as a potential candidate for 
novel antimetastatic therapeutic applications.

The characteristics of chitosan must be selected carefully to achieve the optimal particle size of CS–
miRNA complexes because transfection efficiency is highly dependent on chitosan properties10. We 
found that all prepared complexes had a mean diameter of less than 190 nm, as previously reported for 
chitosan complexes with plasmid DNA and siRNA14,30,40, making them suitable for uptake by endocyto-
sis. Chitosans with molecular weights of 25–50 kDa have been shown to bind and protect siRNAs com-
pletely from enzyme degradation, suggesting that CS-HDP used in our studies may behave in a similar 
fashion in complexes with miRNA41.

Larger complexes were also found to be produced by chitosans with higher DAs, reflecting the pres-
ence of additional hydrophobic domains that were unable to form electrostatic bonds with miRNA. 
However, complexes with CS of higher DAs are expected to be more flexible42,43, and can, therefore, adopt 
molecular configurations that are complementary to the miRNA, thereby protecting the nucleic acid 

Figure 8. Transfection efficiency expressed as downregulation of JAM-A mRNA. (A) Complexes 
containing CS HDP-12 at (+ /− ) charge ratio =  1.5; (B) Complexes containing CS HDP-1.9, HDP-12, HDP-
29 and HDP-49 at (+ /− ) charge ratio =  8. Duplex miRNA (dose 1x = 0.05 nmol/well), DharmaFECT (5 µL/
well) and Novafect O 25 were used as controls. Data represent mean values (± SD) of three independent 
biological experiments and three technical replicates. Statistical comparisons were between each treatment 
and the control of untreated cells using non-parametric Kruskal-Wallis test (***p <  0.001; ****p <  0.0001).
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from degradation. This combination of properties suggests that miRNA remains stable within high-DA 
chitosan complexes due to the conformational flexibility of the carrier, but is released following uptake 
into the cell due to the weak interactions between the two components of the complex. The latter is 
essential for effective gene therapy, so we investigated the binding affinity between miRNA and differ-
ent chitosans to determine the mechanism of interaction and select a promising candidate for further 
experiments.

To the best of our knowledge, this is the first time that the interaction between miRNA and chitosans 
has been quantified by SPR spectroscopy. Complexes with higher DAs exhibited increased KD values 
(Table  2). This finding reflects the effect of the charge ratio in the complexes, i.e. greater amount of 
polymer is required to provide the same number of protonated glucosamine units in order to saturate 
the system. This behaviour is congruent with previous reports using isothermal titration calorimetry to 
study chitosan–pDNA interactions, where it was exhibited that the DA and the molecular weight have an 
influence on the structure and stability of CS–pDNA complexes44. In this case it was reported for 80 kDa 
chitosans that increasing DA leads to lower binding affinities and greater stoichiometry of binding. This 
was explained as a result of electrostatic interactions between oppositely charged groups that determine 
the binding characteristics. Hence, decreasing DA of chitosans (i.e., increasing charge density) implies 
that fewer chitosan chains are required to reach saturation of DNA binding sites44. The fact that the 
values of the Hill coefficient varied from 2.0 to 8.0 for all CS–miRNA systems is consistent with positive 
cooperative binding. It is well known that polyelectrolyte complexes have in general a cooperative nature. 
This has been confirmed in chitosan based polyelectrolyte complexes with carrageenans forming heli-
ces45. Taken together, these SPR findings anticipate that higher-DA chitosans could release the miRNA 
into the cytoplasm more efficiently than low-DA chitosans due to the lower stability of the complexes.

The pristine miRNA was shown by CD spectroscopy to adopt the A-form conformation33, which 
confirmed the success of hybridization and the formation of a duplex between the two oligonucleo-
tide strands. The change in the CD spectrum during the formation of CS–miRNA complexes indicated 
a concentration-dependent increase in base stacking. The electronic distribution of bases in dsRNA 
makes them hydrophobic, so they tend to stack in the presence of hydrogen-bonding solvents in order 
to minimize the π -electron surface area exposed to the solvent. However, hydrophilic groups such as 
NH, NH2 and CO tend to become orientated to the edges of the bases and favour interactions with 
hydrogen-bonding solvents. The helical structure forms due to the base stacking interactions, reflecting 
the hydrophobic planes, hydrophilic edges and charge-charge interactions32. The interaction with chi-
tosans appears to enhance base stacking in all the complexes. The electronic transitions of the chromo-
phore bases are in close proximity, yielding CD spectra with more intense bands. This suggests that all 
the chitosans were able to interact with miRNA, leading to changes in the backbone conformation and 
base stacking. Because the interactions were driven by electrostatic forces, the effect on the miRNA 
conformation was dependent on the (+ /− ) charge ratio as confirmed by the CD spectra. The molecular 
weight and DA had no substantial effect on the conformation and the most important property was the 
number of amino groups on the chitosan polymer.

Chitosans are generally biocompatible and several studies have confirmed that chitosan–oligonuc- 
leotide complexes show low cytotoxicity15,46. Previous reports have demonstrated the cytotoxicity of high 
molecular weight chitosans47. However, our MTT assay showed no evidence of cytotoxicity following 
exposure for 6 and 24 h even with complexes containing the highest concentrations of chitosan. The 
internalization of the complexes was investigated by CLSM using a fluorescent marker, suggesting that 
the complexes interact with the membrane and induces the formation of endosomes, as we previously 
reported6. Further cytoplasmic release is thought to be driven according to the proton sponge hypothe-
sis, which offers a convincing explanation to the dissociation of polyplexes at the intracellular vesicles41.

We found that certain concentrations of chitosans with a particular (+ /− ) charge ratio were as effi-
cient as commercial transfection reagents. Our combined data suggest that complexes containing low 
molecular weight chitosans are unsuitable for gene delivery because they are unstable in the transfec-
tion medium, and that complexes containing intermediate-DA chitosans are efficient. This may suggest 
that a compromise is reached between the formation of stable complexes able to interact with the cell 
membrane and sufficiently unstable to favour the endosomal release for reliable delivery of miRNA to 
the cytoplasm. In contrast, complexes containing low-DA chitosans are too stable and would not release 
the miRNA cargo, as indicated by the high relative JAM-A expression and the high affinity constants 
determined by fluorescence titration in an ongoing parallel study in our group48. Negatively charged 
complexes (i.e., (+ /− ) charge ratios lower than 1.0) were found unsuitable for transfection. This may 
be because the plasma membrane carries a similar charge and hence the interaction with the complexes 
is not favourable, while positively charged complexes are only efficient when they exceed a certain con-
centration. This led us to conclude that optimal transfection occurs when the molecular weight, DA and 
(+ /− ) charge ratios are perfectly balanced. This interpretation is in agreement with previous findings 
for chitosan-DNA complexes40.

In general, cationic non-viral vectors have been used successfully to deliver siRNA and plasmid DNA 
but not miRNA. We found that chitosans can be used as vectors for miRNA if the formulation parame-
ters are carefully balanced. CD spectroscopy confirmed that the miRNA remained in the A-conformation 
when bound to chitosan, and we also used SPR spectroscopy for the first time to quantify the binding 
affinity between miRNA and chitosans with different properties. We found that ideal complexes were 
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formed using chitosans with a molecular weight of ~40 kDa, DA of 12%, and a (+ /− ) charge ratio of 
1.5, resulting in transfection efficiencies similar to the commercial reagents used as positive controls 
(DharmaFECT and Novafect O 25). We showed that the DA has an influence on the transfection effi-
ciency for complexes with equivalent (+ /− ) charge ratio (8.0): more efficient downregulation of the 
target gene in the presence of intermediate DA (~30%). CLSM suggested that the complexes may have 
been taken up by the cells. However, the precise mechanisms of the intracellular release pathways remain 
to be fully elucidated.

Nontoxic functional nanocarriers based on miRNA delivery are revolutionizing the development of 
targeted cancer therapies. A robust delivery system functionalized with ligands that recognize specific 
receptors in tumour cell membranes will bring significant advances in the field, and chitosans appear 
to be versatile delivery vehicles to achieve these aims. Future studies in animal models aiming to obtain 
proof of principle of the in vivo efficacy of these systems will also be key in this regard.

Materials and Methods
Preparation of chitosans. The parent chitosan used to prepare the working samples was pro-
vided by Sascha Mahtani Chitosan PVT Ltd (Veraval, India; Code 113 Batch No. 17/12/04; DA =  1.5%, 
Mw =  543 kDa). Eight high purity biomedical-grade chitosans were produced with different molecular 
weights and DAs. The parent chitosan was stoichiometrically dissolved in acetic acid solution overnight 
at room temperature and depolymerized using sodium nitrite (forming nitrous acid in situ as previously 
reported24,25), to generate chitosans with a high degree of polymerization (HDP) and a low degree of 
polymerization (LDP), respectively. The pH was increased to > 8 by adding ammonia and the precipi-
tated chitosans were washed to achieve neutrality before freeze-drying. HDP and LDP chitosans were 
re-acetylated by dissolving them stoichiometrically in acetic acid solution to a concentration of 12.5 mg/mL,  
and passing them sequentially through 5, 1.2, 0.8 and 0.45 μ m filters to eliminate agglomerates and 
reduce polydispersity. We then added acetic anhydride and 1,2-propanediol and the reaction mixtures 
were incubated for 2 h at room temperature. The reactions were stopped by precipitation as described 
above49. The freeze-dried samples were used for the production of nanoparticles.

Characterization of chitosans. The relative viscosity of a series of diluted chitosan solutions of var-
ying concentrations in 0.3 M acetic acid and 0.2 M sodium acetate was measured at 25 °C (inclination 
angle, 50°) using an AMVn automated rolling ball microviscosimeter (Anton Paar, Ostfildern, Germany) 
with a programmable tube angle based on the principle of the rolling ball time (the time required for the 
steel ball to roll inside a calibrated 1.6-mm diameter capillary). The average results obtained from four 
runs were expressed as the intrinsic viscosity [η ] and as the viscosity average molecular weight (M v) 
using the Mark-Houwink parameters28,29,50. The DA was determined by 1H-NMR at 300 MHz and room 
temperature using a Bruker AV300 NMR spectrometer (Bruker, Bremen, Germany)26,27. NMR samples 
(~5 mg) were dissolved in 0.5 mL of a mixture of deuterium chloride (DCl) and deuterated water (D2O) 
with a ~5% stoichiometric excess of DCl over the molar glucosamine content of the corresponding chi-
tosan. Subsequently the sample was freeze-dried and redissolved in D2O for three times to remove 
exchangeable protons.

Hybridization. Single-stranded microRNAs hsa-miR-145-5p (5′ -GUC CAG UUU UCC CAG GAA 
UCC CU-3′ ) and hsa-miR-145-3p (5′ -GGA UUC CUG GAA AUA CUG UUC-3′ ) were purchased from 
Biomers (Ulm, Germany). They were dissolved in RNase-free water to produce solutions of equal con-
centration (50 μ M), mixed and heated to 90 °C for 4 min to remove secondary structures. The solutions 
were then cooled to 40 °C and incubated for 3 h to promote hybridization. The formation of double 
stranded miRNA-145 was analysed by 15% polyacrylamide gel electrophoresis with 1 ×  TAE buffer. Each 
lane was loaded with 5 μ L of the sample (5 μ M) mixed with 2 ×  RNA loading dye (Thermo Fischer 
Scientific Inc., Waltham, USA). We used as a marker a Generuler ultra low range DNA ladder (Thermo 
Fischer Scientific Inc., Waltham, USA) that contains 11 individual chromatography-purified DNA frag-
ments. Electrophoresis was carried out at a constant voltage of 120 V for 90 min. The gel was stained with 
SYBRGold (Life Technologies, Carlsbad, CA, USA). RNA bands were visualized using a UV transillumi-
nator (AAB Advanced American Biotechnology, CA, USA) and the gel image was captured by a video 
camera (Model CCD-440, AAB Advanced American Biotechnology, CA, USA).

Formation of CS–miRNA complexes. Fully characterized chitosans were used to produce CS–
miRNA polyplexes. The chitosans were dissolved in stoichiometric amounts of HCl to a stock con-
centration of 1 mg/mL, and then diluted with milliQ water to reach the desired amine concentration 
(deacetylated groups). A series of complexes was then prepared at different charge ratios (+ /− , defined 
as the molar ratio of amine to phosphate groups) by mixing the chitosan working solutions with a con-
stant amount of miRNA (5 μ M). The mixtures were incubated for 30 min at 37 °C11,40.
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Size distribution and zeta potential of CS–miRNA complexes. To determine the hydrodynamic 
size and zeta potential of the above described CS–miRNA complexes, the samples were analyzed at 37 °C 
in a Zetasizer Nano ZS (Malvern Instruments, UK). The hydrodynamic size was determined by dynamic 
light scattering in 100 μ L aliquots. The samples were then diluted to 1 mL and the zeta potential was 
measured by determining the electrophoretic mobility. All measurements were carried out in triplicate 
and were presented as the average of three measurements ±  standard deviation.

Transmission electron microscopy. Polyplexes were visualized by transmission electron micros-
copy (TEM) using 10 μ L samples (5 μ M in RNase-free water) diluted 1:10 RNase-free water and mixed 
with 10 μ L 1% (w/v) uranyl acetate for negative staining. Afterwards 10 μ L of the samples were deposited 
onto a copper grid covered with a Formvar®  film. Excess liquid was blotted using filter paper. Images 
were captured using a Philips CM100 TEM (Eindhoven, Netherlands). Images were processed using 
ImageJ v1.49n to calculate the average particle diameter (n =  8).

Surface plasmon resonance spectroscopy. Biotinylated hsa-miR-145-5p was purchased from 
Biomers (Ulm, Germany). All surface plasmon resonance (SPR) spectroscopy experiments were carried 
out using a Biacore 3000 instrument (Biacore, Uppsala, Sweden) at 20 °C. HBS-EP buffer (GE Healthcare, 
Uppsala, Sweden) was used as a running buffer for the immobilization procedure (immobilization buffer) 
and acetate buffer (35 mM sodium acetate, pH 5.1, containing 10 mM NaCl) was used as the running 
buffer during the measurements. All buffers were prepared in RNase-free water, sterile filtered and 
degassed before use. Before immobilization, the surface of the streptavidin sensor chip (GE Healthcare, 
Uppsala, Sweden) was primed three times with immobilization buffer and prepared by injecting 20 µL 
of 50 mM NaOH/1 M NaCl three times at a flow rate of 20 μ L/min. The surface was washed with immo-
bilization buffer until a stable baseline was achieved, then 70% (w/w) glycerol (BIAnormalizing solution 
from GE Healthcare) was injected to prevent inaccuracies caused by divergent reflection properties. After 
priming the system three times, 400 response units (RUs) of the single-stranded RNA (40 nM) were 
immobilized at a flow rate of 5 μ L/min. Flow cell one was left blank as a reference. Before the first meas-
urement, the chip was regenerated using two injections of 10 μ L regeneration buffer (1 M NaCl/6 mM 
HCl). The immobilization buffer was then exchanged with the measurement buffer in priming steps. The 
sensorgrams were recorded at a flow rate of 20 μ L/min. At the beginning of each cycle, the chip surface 
was equilibrated with measurement buffer for 3 min. Subsequently, 20 μ L of each chitosan in running 
buffer were injected for 4 min. The dissociation phase was monitored for 5 min followed by a regenera-
tion step with two 10 μ L injections of regeneration buffer and the surface was washed with running buffer 
for another 5 min. The average of two measurements was used for data analysis and the RUs at equi-
librium phase were evaluated by nonlinear regression analysis (GraphPad Software, San Diego, USA).

Circular dichroism spectroscopy. Conformational changes in duplex miRNAs caused by interac-
tions with chitosans were analysed using an AVIV 400 circular dichroism spectrophotometer (Maryland, 
United States). Each 100-μ L microRNA sample (10 μ M) was mixed with 100 μ L chitosan solution in 
6 mM HCl to form complexes with (+ /− ) charge ratios ranging from 0.6 to 8. The samples were incu-
bated for 30 min and placed in 1 mm quartz cuvettes, and the spectra were recorded at 25 °C and a scan-
ning speed of 200 nm/min from 320 to 200 nm, with a response time of 1 s and a bandwidth and data 
pitch of 1 nm. Each spectrum was accumulated from three scans.

Cell studies. Metabolic capability (MTT assay). MCF-7 cells (10,000 cells/well) were seeded in 96-well 
plates and incubated for 24 h at 37 °C and 5% CO2. The medium was removed and the cells were washed 
twice with RPMI serum-free medium. The complexes were prepared in RPMI serum-free medium and 
incubated for 30 min at 37 °C. We then added 100 μ L of each sample to the cells and incubated them for 
6 and 24 h at 37 °C and 5% CO2. Cell viability was determined by measuring dehydrogenase activity. We 
changed the medium and applied 100 μ L of RPMI serum-free medium with 25 μ L of MTT (3-(4,5-dim
ethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (5 mg/mL) to each well and incubated the cells for 
4 h at 37 °C and 5% CO2 to allow the formation of a purple formazan salt. The medium was replaced 
with 100 μ L of dimethylsulfoxide to dissolve the formazan crystals and the plates were incubated for a 
further 15 min at 37 °C and 5% CO2 before the absorbance was measured at λ = 570 nm using a Micro 
Plate Reader (SAFIRE II, Tecan Group Ltd., Männedorf, Switzerland).

Confocal laser scanning microscopy (CLSM). We investigated the intracellular trafficking of nanocom-
plexes containing 6-FAM-hsa-miR-5p (Biomers, Ulm, Germany). MCF-7 cells were cultured in 35-mm 
dishes with glass coverslip bottoms. The cells were transfected with 5 μ mol 6-FAM-hsa-miR-5p as a com-
plex with HDP-12 at a (+ /− ) charge ratio of 1.5 for 24 h. The uptake of miRNA was evaluated at 0.5, 4, 
24 and 48 h after transfection using a Leica TCS SP2 mounted on a Leica DM IRES inverted microscope. 
At each time point, the transfection medium was removed and the cell membranes were stained with 
CellMask Deep Red for 10 min at 37 °C, following the manufacturer’s protocol (Thermo Fisher Scientific 
Inc., Waltham, USA). The cells were washed twice at 37 °C with phosphate buffered saline (PBS) con-
taining calcium and magnesium, as provided by the manufacturer. CellMask Deep Red was visualized at 
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excitation and emission wavelengths of 649 and 666 nm, respectively, whereas 6-FAM-hsa-miR-5p was 
visualized at excitation and emission wavelengths of 488 and 518 nm, respectively.

Transfection efficiency of CS–miRNA complexes. Transfection assays were conducted in conditions 
according with the standard protocol recommended for DharmaFECT. Briefly, we used a constant vol-
ume of 10 μ L miRNA-145 (5 μ M) per transfection, mixed with different chitosans to achieve the desired 
molar charge ratio. The complexes were diluted to 400 μ L with RPMI minimal medium and incubated 
for 30 min at 37 °C. MCF-7 cells were seeded into six-well plates (250,000 cells per well) and incubated 
for 24 h prior to transfection. The medium was then removed and replaced with 1600 μ L RPMI com-
plete medium supplemented with 10% fetal calf serum (FCS) and added with 400 μ L of each complex 
solution (in RPMI minimal medium). The cells were incubated with the transfection medium for 24 h 
at 37 °C and 5% CO2, replaced with RPMI complete medium containing 10% FCS and incubated for 
further 24 h. Control cells were incubated with medium only (1600 μ L RPMI complete medium con-
taining 10% FCS and 400 μ L RPMI minimal medium). We also prepared controls comprising pristine 
miRNA, DharmaFECT (Thermo Fischer Scientific Inc., Waltham, USA) loaded miRNA, and Novafect 
O 25 (Novamatrix, Sanvika, Norway) containing miRNA at two different ratios. In these latter cases, we 
followed the manufacturers’ transfection protocols.

RNA isolation and cDNA synthesis. Total RNA was isolated using the innuPREP DNA/RNA Mini Kit 
(Analytik Jena AG, Jena, Germany) and the amount of purified total RNA was determined by measur-
ing the absorbance at λ  =  260 nm using an Eppendorf spectrophotometer (Hamburg, Germany). First 
strand cDNA synthesis was carried out using 2 μ g of isolated RNA and the High Capacity cDNA Reverse 
Transcription Kit according to the manufacturer’s recommendations (Applied Biosystems, California, 
USA).

Quantitative TaqMan real-time PCR analysis. Transfection efficiency was evaluated by measuring the 
abundance of junction adhesion molecule A (JAM-A) mRNA, a direct target of miRNA-145, which is 
encoded by F11R gene39. We used cDNA corresponding to 0.05 μ g total RNA as a template for PCR 
amplification with the ABI Master Mix and TaqMan gene expression systems. We used the Hs00170991_
m1 (F11R) probe to quantify JAM-A mRNA levels and the Hs99999901_s1 (18S) probe to normalize 
target mRNA levels to the abundance of 18S rRNA. Quantitative real-time PCR was carried out using 
the ABI PRISM 7300 sequence detection system (Applied Biosystems, Foster City, CA, USA) with default 
thermal cycling conditions. The relative JAM-A expression level was calculated using the corresponding 
Ct values normalized against the values recorded in the control cells.

Data analysis. Statistical analysis was carried out using GraphPad Software Prism v6 (San Diego, 
USA). All experiments were statistically analysed using non-parametric tests using the Kruskal-Wallis 
test to compare non-parametric data. All biological experiments were conducted at least in triplicate and 
technical replicates varied from 3 to 8. All the treatments were independently compared to the control 
of cells incubated only with medium. Statistical significant differences were evaluated by the p-values.
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