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a b s t r a c t

The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treat-
ment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and
its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics
versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational
Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations
which show that the approach converges to the exact result in model systems with tens of degrees of
freedom. Secondly, we review previous ‘‘on the fly” ab initioMultiple Cloning (AIMC-MCE) MCE dynamics
results obtained for systems of a similar size, in which the calculations treat every electron and every
nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent
Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise
the details of the sampling techniques and interpolations used for calculation of the matrix elements,
which make our approach efficient. Future directions of work are outlined.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction. Why AIMC-MCE?

In 1929 Dirac stated that: ‘‘The fundamental laws necessary for
the mathematical treatment of a large part of physics and the
whole of chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to equa-
tions that are too complex to be solved.” Only recently however,
eighty years later, have atomistic simulation methods started to
emerge that allow the treatment of quantum systems with many
degrees of freedom, overcoming the difficulty noted by Dirac. Sev-
eral techniques now exist which can treat a large number of quan-
tum degrees of freedom, albeit on a short time scale. Among them
are methods of first principle Quantum Direct Dynamics (QDD).
While these methods resemble first principle classical molecular
dynamics, in which potential energies and forces are calculated
by means of quantum mechanical electronic structure theories
and codes, the quantum dynamics of nuclei in QDD is described
not by a single trajectory but by an ensemble of trajectories
weighted with their quantum amplitudes. This guided basis fol-
lows the most important parts of the wave packet and therefore
minimises the number of necessary basis functions. Thus, in a cer-
tain sense, first principle QDD represents a ‘‘chemical quantum
theory of everything” which relies solely on the most fundamental
equations of quantum mechanics without approximations. Our
existing ab initio Multiple Cloning Multiconfigurational Ehrenfest
(AIMC-MCE) technique is an example of a first principle QDD
approach based on the time dependent Schrödinger equation for
both electrons and nuclei. We demonstrate that such an approach
can work albeit on a short time scale.

Several methods exploiting the same general idea exist, which
differ only by the type of guiding trajectories. To simulate the wave
packet dynamics of nuclei, Ab initio Multiple Spawning (AIMS) [1]
utilises ensembles of simple classical trajectories running on differ-
ent electronic states. The method of Variational Multiconfigura-
tional Gaussians (vMCG) relies on complicated non-classical
variational trajectories [2–4]. The guiding trajectories of AIMC-
MCE are in between AIMS and vMCG and combine some of their
best features.

The Ehrenfest configuration is the central object of the AIMC-
MCE approach, and serves as a time-dependent basis function.
The Ehrenfest basis function wnðtÞj i is composed of nuclear and
electronic parts:

wnðtÞj i ¼ vnðtÞ
�� ���unðtÞ

�
; ð1:1Þ

where the electronic part junðtÞi is a superposition of several
electronic eigenfunctions j/Ii
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unðtÞj i ¼
X
I

aðnÞI ðtÞ /Ij i; ð1:2Þ

and the nuclear part vnðtÞ
�� � ¼ vn RnðtÞ;PnðtÞ

� ��� �
is a Gaussian Coher-

ent State moving along an Ehrenfest trajectory RnðtÞ;PnðtÞ. In coor-
dinate representation

vnðR;Rn;PnÞ¼ Rjvn Rn;Pn
� �� �

¼ 2a
p

� �Ndof =4

exp �aðR�RnÞ2þ i
�h
PnðR�RnÞþ i

�h
cnðtÞ

� �
:

ð1:3Þ
The parameter a here determines the width of the Gaussians,

RnðtÞ and PnðtÞ are the phase space coordinate and momentum vec-
tors of the n-th basis function centre, Ndof is the number of degrees
of freedom, and cn is a phase. The width parameter a can be taken,
for example, according to previous prescriptions [5], which are
based on the optimization for a reference set of over 100 molecules.

A single Ehrenfest configuration is not flexible enough to accu-
rately describe full quantum dynamics. In the MCE approach, mul-
tiple Ehrenfest configurations are used and these represent a basis
set in which the total wave-function is expanded such that:

WðtÞj i ¼
X
n

cnðtÞ wnðtÞj i: ð1:4Þ

The evolution of the Ehrenfest amplitudes aðnÞI , the momenta Pn

and positions Rn of the wave packets are driven by the Ehrenfest
equations, while the equations for the amplitudes cnðtÞ, which fol-
low from the Schrödinger equation, describe coherent coupling
between Ehrenfest configurations making the approach formally
exact [6–10]. The AIMC-MCE approach has a number of features
distinguishing it from the competing techniques

1) The Ehrenfest trajectories are nonclassical in a similar fash-
ion to those of vMCG. In regions of strong non-adiabatic cou-
pling the basis follows the dynamics of the quantum wave
packet more accurately than the simple classical trajectories
employed by AIMS. It is well known however that the Ehren-
fest equations of motion can be problematic after passing a
strong coupling region, where the Ehrenfest trajectories
guided by a potential energy surface average of those of indi-
vidual electronic states may move outside of the dynami-
cally important region. This is remedied in the AIMC-MCE
method by a procedure called cloning [6,7], which is an
adaptation of the spawning procedure of AIMS [1]. After
cloning, an Ehrenfest configuration (1.1) yields two configu-
rations such that the first ‘‘clone” has nonzero amplitude for
only one electronic state, and the second contains contribu-
tions of all other electronic states. Thus, cloning reprojects
the Ehrenfest trajectories on the individual electronic states
after quantum transitions are completed. Importantly, this
projection is done in a manner that does not alter the
nuclear wave-function at the time of cloning (similar to
spawning in AIMS). The cloned basis functions form an effi-
cient adoptive basis which follow the quantum wave packet
dynamics very efficiently. Thus the AIMC-MCE method com-
bines the best feature of AIMS and vMCG methods.

2) AIMC-MCE uses an interpolation procedure for calculating
matrix elements that is based solely on quantities calculated
at the centres of the time dependent Gaussians (1.3). There
are no calculations of energies, gradients, or non-adiabatic
coupling matrix elements at intermediate geometries
between trajectory centres; this minimizes the number of
computationally expensive calls of the ab initio electronic
structure code. Moreover, a large number of underlying
Ehrenfest trajectories can be run independently and then
later recombined in a ‘‘post-processing” procedure, which
calculates the quantum amplitudes cnðtÞ in (1.4) with
quantum mechanical coupling between the time-dependent
Ehrenfest basis functions (1.1) computed from the trajectory
data at low computational cost. This feature is not possible
in the vMCG method.

3) AIMC-MCE uses an incremental propagation procedure,
which we refer to as ‘‘bit-by-bit” propagation, in which the
propagation of a large basis is replaced by a large number
of Monte-Carlo repetitions of the wave-function ‘‘bits”, each
of them using a smaller basis. The incremental propagation
procedure is not an approximation, as it exploits the linear-
ity of the Schrödinger equations to make basis set sampling
more efficient [11].

4) AIMC-MCE makes use of the idea of train basis sets [6,12,13],
also known as time displaced basis sets. Basis functions in the
train follow each other along the same Ehrenfest trajectory
but with a time delay, so that propagating the trains does
not require any additional electronic structure calculations.
The trains serve to increase the original basis set by orders
of magnitude, reducing the noise and improving the quality
of quantum dynamics calculations at almost no extra cost.

As a result of all above features AIMC-MCE allows statistics
unmatched by other quantum ab initio direct dynamics methods.
It can afford basis sets comprised of thousands of coupled configu-
rations. With the use of hundreds and even thousands of wave-
function ‘‘bits”, the total number of TBFs used can reach hundreds
of thousands. Due to the high cost of electronic structure calcula-
tions, total CPU time can reach hundreds of years, but incremental
propagation of ‘‘bits” and the postprocessing procedure for quan-
tum coupling allows running Ehrenfest trajectories one-by-one
independently from each other, which can be easily parallelized.
It will be shown below that MCE can converge to the exact quan-
tum results when applied to model systems.
2. Theory – Working equations

MCE is an efficient tool for both on-the-fly ab initio non-adiabatic
dynamics of realmolecules and for the simulation ofmodel systems,
such as the spin bosonmodel [14]. AlthoughMCE treats, in principle,
all degrees of freedom(DOFs) ona fully quantumlevel, someof these
DOFs are ‘‘more quantum” than others. For example electronic
degrees of freedom are always ‘‘more quantum” than those of
nuclearmotion. Thus,while the electronic part of thewave-function
is represented inanaccurate regularbasis /Ij i; thewave-function for
nuclear coordinatesR is represented in a trajectory-guidedGaussian
basis vnðRn;PnÞ

�� �
. The choice of the electronic basis depends on

many factors. It is often convenient to use a diabatic basis for model
systems, as in this case it frequently allows a better representation
with the smoothest changes of coefficients. Real molecular systems
simulated using on-the-fly ab initio calculations however require an
adiabatic or time-dependent diabatic (TDD) basis.

Below we use the following notations: 1) diabatic electronic
states that do not depend on nuclear coordinates R are
referred as j/Ii, 2) adiabatic states are referred as j/IðRÞi, and 3)
TDD states that are the same adiabatic states taken in the centre

of nth Gaussian Rn are referred to either as
���/IðRnðtÞÞ

E
or just

/ðnÞ
I

��� E
in order to shorten long equations (i.e. /ðnÞ

I

��� E
�
���/IðRnðtÞÞ

E
.

We mostly omit obvious arguments, such as electronic

coordinates r in /Ij i, /IðRÞj i, and /ðnÞ
I

��� E
and write all integrals

in bra-ket notation, e.g. we write vm/I

� ��bV /Jvn

�� �
instead ofR

dRvmðR;Rm;PmÞ� vnðR;Rn;PnÞ
R
dr/IðrÞ�Vðr;RÞ/JðrÞ.
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2.1. MCE in a diabatic basis

The propagation of a total wave-function in a trajectory-guided
basis is determined by the time-dependence of the positions and
momenta of all Gaussians and the time-dependence of the corre-
sponding quantum amplitudes in (1.2), (1.4) or (2.1.6). The best
possible time-evolution for a given set of parameters determining
a wave-function can be found from the variational principle [15],
as is done in vMCG [2–4] and in similar G-MCTDH methods [16].
The problem is that these equations are very complicated and
unstable. They also cannot be parallelized easily, as all positions,
momenta and quantum amplitudes are coupled together. So, the
MCE method uses instead a simpler procedure, where each trajec-
tory is guided by its own Ehrenfest force:

Fn ¼
� d

dRn
wnh jbH wnj i

wnjwnh i : ð2:1:1Þ

The Hamiltonian is a sum of the nuclear kinetic energy operatorbT ¼ � �h2

2M
d2

dR2 (where the notation 1
M refers to a diagonal matrix of

the inverse masses of the atoms) and the potential energy operator

V̂:

Ĥ ¼ T̂ þ V̂ : ð2:1:2Þ
As the electronic diabatic basis functions /Ij i here do not

depend on R, we can write:

wnh jĤ wnj i ¼ vn

� ��T̂ vn

�� �þX
I; J

aðnÞ�I aðnÞJ vn/I

� ��V̂ /Jvn

�� �
: ð2:1:3Þ

The kinetic energy matrix element

vn

� ��T̂ vn

�� � ¼ ðP2
n þ a�h2Þ
2M

ð2:1:4Þ

does not depend on Rn, so for the Ehrenfest force we obtain:

Fn ¼
�
X
I; J

aðnÞ�I aðnÞJ
d

dRn
vn/I

� ��V̂ /Jvn

�� �
X
I

aðnÞ�I aðnÞI

: ð2:1:5Þ

In our previous works two different versions of MCE, referred as
MCEv1 and MCEv2, were introduced [11,14] using two possible
forms for the ansatz of the wave-function. The exact meaning

and time evolution of the Ehrenfest amplitudes aðnÞ
I ðtÞ are different

for MCEv1 and MCEv2. In the MCEv1 formulation, each amplitude

aðnÞI ðtÞ determines a contribution of an Ith state of the nth configu-
ration into a wave-function:

jWðtÞ ¼
X
n

vn

�� � X
I

aðnÞI ðtÞ /Ij i
 !

; ð2:1:6Þ

and the time evolution of these amplitudes is obtained through the
variational principle asX
n

vmjvn

� �
_aðnÞI ¼ � i

�h

X
n

X
J

vm/I

� ��Ĥ vn/J

�� �
aðnÞJ

	 

� i vm

@vn

@t

����� �
aðnÞI

 !
;

ð2:1:7Þ
where

vm
dvn

dt

����� �
¼ _Rn vm

d
dRn

���� ����vn

� �
þ _Pn vm

d
dPn

���� ����vn

� �� �
þ i
�h
_cn vn vm

��� �
:

ð2:1:8Þ
It can be seen from Eq. (2.1.7) that all amplitudes aðnÞ

I of all elec-
tronic states (I) and all trajectories (n) are coupled with each other.
This means that the Ehrenfest trajectories given by (2.1.5) are not
independent: they influence each other via the Eq. (2.1.8), and the
motion of all trajectory basis functions (TBFs) in the MCEv1
approach is coupled through the Ehrenfest amplitudes. The MCEv1
formulation was shown to be able to successfully simulate systems
of up to 2000 degrees of freedom [14], which implies that MCEv1 is
a very efficient method for treating multidimensional systems.
However the coupling between trajectories makes MCEv1 hard to
implement in ab initio direct dynamics context.

To remedy the above difficulties, the MCEv2 [11] approach was
formulated. MCEv2 uses a different form for the ansatz,

WðtÞj i ¼
X
n

cnðtÞ vn

�� � X
I

aðnÞI ðtÞ /Ij i
 !

; ð2:1:9Þ

where a separate set of amplitudes cnðtÞ is used to describe the con-
tributions of each configuration into a wave-function, while the

amplitudes aðnÞ
I ðtÞ now determine only the contribution of each

quantum state into the nth Ehrenfest configuration. As a result,
the coupling between the trajectories and the coupling between

the electronic states are now separated. The amplitudes aðnÞ
I ðtÞ in

the MCEv2 approach are normalized for each TBFX
I

aðnÞ�I aðnÞI ¼ 1; ð2:1:10Þ

and Eq. (2.1.5) for the Ehrenfest force takes the form:

Fn ¼ �
X
I; J

aðnÞ�I aðnÞJ
d

dRn
vn/I V̂

��� ���/Jvn

D E
: ð2:1:11Þ

The time evolution of amplitudes aðnÞ
I ðtÞ for each trajectory in

the MCEv2 approach depends only on the motion of this particular
TBF:

_aðnÞI ¼ � i
�h

X
J

vn/I Ĥ
��� ���vn/J

D E
aðnÞJ � vn

@vn

@t

����� �
aðnÞI : ð2:1:12Þ

Let us introduce, as is normally done, the evolution of the phase
cn as:

dcn
dt

¼ Pn
_Rn

2
: ð2:1:13Þ

Then, substituting this into (2.1.8) and using the following
expressions for the matrix elements of the Gaussians

vn
d

dRn

���� ����vn

� �
¼ � i

�h
Pn; ð2:1:14Þ

vn
d

dPn

���� ����vn

� �
¼ 0; ð2:1:15Þ

we obtain

vn
@vn

@t

����� �
¼ � i

2�h
_RnPn: ð2:1:16Þ

Now, substituting (2.1.3), (2.1.4) and (2.1.16) into (2.1.12) and
ignoring a small second term in (2.1.4) associated with Gaussian
width, we obtain a final equation for the evolution of Ehrenfest
amplitudes in the MCEv2 approach:

_aðnÞI ¼ � i
�h

X
J

vn/I V̂
��� ���vn/J

D E
aðnÞJ : ð2:1:17Þ

Thus in the MCEv2 approach, there is no coupling between coef-

ficients aðnÞ
I for different Ehrenfest configurations (n). Instead, the

quantum coupling between trajectories in MCEv2 is described by
the time-evolution of amplitudes cnðtÞ, which can be found by sub-
stituting the wave-function ansatz (1.4) into the time-dependent
Schrödinger equation:
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X
n

wm wnjh i _cn ¼ � i
�h

X
n

wm Ĥ
��� ���wn

D E
� i wm

@wn

@t

����� �� �
cn; ð2:1:18Þ

where

wm wnjh i ¼ vm vn

��� �X
I

aðmÞ
I

	 
�
aðnÞ
I ; ð2:1:19Þ

wm Ĥ
��� ���wn

D E
¼
X
I; J

vm/I Ĥ
��� ���vn/J

D E
aðmÞ
I

	 
�
aðnÞJ ; ð2:1:20Þ

and

wm
@wn

@t

����� �
¼ vm

@vn

@t

����� �X
I

aðmÞ
I

	 
�
aðnÞI þ vm vn

��� �X
I

aðmÞ
I

	 
� @

@t
aðnÞI :

ð2:1:21Þ
The absence of coupling between amplitudes aðnÞI for different

trajectories means that the TBFs in the MCEv2 formulation move
independently from each other, which significantly simplifies the
computational procedure and makes MCEv2 a method of choice
for the direct ab initio dynamics. Eqs. (2.1.11) and (2.1.17)–
(2.1.21) form a complete set for calculating time evolution of the
wave-function in the MCEv2 approach. These equations, while dif-
ferent in notation, are identical to those of Ref. [11].

2.2. Ab initio MCE in an adiabatic basis

Although a diabatic basis is often convenient for model calcula-
tions, it is inappropriate for ab initio non-adiabatic direct dynamics
of the molecules. The electronic structure calculations are usually
performed only for several lowest electronic states, and these
wave-functions strongly depend on nuclear coordinates. In order
to address this, we can reformulate the MCEv2 approach in an adi-
abatic basis /IðRÞj i. The electronic coordinates r are omitted to
make the equations shorter.

Unlike the case of diabatic representation, the potential energy

operator V̂ is diagonal in the adiabatic basis

/IðRÞ V̂ðRÞ
��� ���/JðRÞ

D E
¼ VI Rð ÞdIJ; ð2:2:1Þ

and the coupling between electronic states originates from off-diag-
onal matrix elements of the kinetic energy operator, which are non-
zero because of the parametric dependence of the electronic wave-
functions on the coordinates R of the nuclei.

Computing the matrix elements of V̂ requires the potential
energy surfaces VIðRÞ generated by electronic structure calcula-
tions, which are the most expensive part of ab initio dynamics.
Therefore, we must apply approximations in order to minimize
the cost and to obtain these matrix elements using a small number
of electronic structure calculations for few nuclear geometries. In
ab initio MCE approach, the diagonal matrix elements are approx-
imated by the potential energies in the centres instead of averaging
over Gaussians:

vn VI Rð Þj jvn

� � � VI Rn
� �

: ð2:2:2Þ

For matrix elements between different trajectories, the first-
order bra-ket averaged Taylor (BAT) expansion [6] is applied:

vm VI Rð Þj jvn

� � � 1
2
vm vn

��� �
VI Rm
� �þ VIðRnÞ

� �
þ 1
2
vm R � Rm

� ��� ��vn

� � d
dRm

VI Rm
� �

þ 1
2
vm R � Rn

� ��� ��vn

� � d
dRn

VI Rn
� �

: ð2:2:3Þ
Approximation (2.2.3) uses energies and gradients only from
the centres of the Gaussians, which are calculated anyway to find
the Ehrenfest trajectories guiding the basis. The matrix elements
given by this approximation are used to solve quantum coupling
equations (2.1.18) that give amplitudes cnðtÞ in the wave-function
representation (2.1.9). Thus, unlike the saddle point approximation
(SPA) [1], approximation (2.2.3) provides the interaction between
trajectories at practically no additional computational cost. Note
that the first-order term is extremely important here, as the one-
way transfer of quantum amplitude between different Gaussians
is driven by the imaginary part of the prefactor of the matrix ele-
ments of the Hamiltonian. If two Gaussians differ mostly by the
coordinates, the transfer of amplitude reflects the motion of the
atoms; in this case it is driven by the imaginary part of the prefac-
tor for the kinetic energy matrix elements, which is proportional to
the average momentum and is always taken into account (see Eq.
(2.2.7) below). In the case where two Gaussians differ mostly by
the momenta, the transfer of quantum amplitude reflects the
acceleration, and is guided by the imaginary part of the prefactor
for the potential energy matrix elements, which is proportional
to the gradients and is given in our approximation by the first
order term in (2.2.3).

Because of the dependence of adiabatic electronic wave-func-

tions on nuclear coordinates R, the kinetic energy operator T̂ pro-
vides the non-adiabatic interstate coupling. Disregarding, as is

normally done, the second derivatives d2j/IðRÞi=dR2 which, by
experience [17], have a negligible effect on the nuclear dynamics
and using an approximation similar to (2.2.2), we get:

vn/IðRÞ T̂
��� ���/JðRÞvn

D E
� � �h2

2M
vn/IðRÞ /JðRÞ

d2vn

dR2

�����
* +

� �h2

M
vn/IðRÞ

d/JðRÞ
dR

���� dvn

dR

� �
�

�P2
n

2M
dIJ � i�h

�P2
n

M
dðnÞ
IJ ; ð2:2:4Þ

where

dðnÞ
IJ ¼ /IðRÞ

�����d/JðRÞ
dR

* +�����
R¼Rn

ð2:2:5Þ

are the non-adiabatic coupling matrix elements (NACMEs). For the

matrix elements of T̂ between the trajectories, a simple approxi-
mation is used:

vm/I T̂
��� ���/Jvn

D E
� vm T̂

��� ���vn

D E
dIJ � i�h

�Pn

2M
dðmÞ
IJ þ dðnÞ

IJ

	 

; ð2:2:6Þ

where

vm T̂
��� ���vn

D E
¼ 1

2M
ððPn þ PmÞ=2Þ2 þ a�h2 � a2ðRn � RmÞ2�h2
h

�iaðRn � RmÞðPn þ PmÞ�h
i
vm vn

��� �
: ð2:2:7Þ

The expression for the force driving Ehrenfest trajectories in an
adiabatic basis

Fn ¼ �
X
I

aðnÞ�I aðnÞI
d

dRn
VI þ

X
I–J

aðnÞ�I aðnÞJ dðnÞ
IJ ðVI � VJÞ ð2:2:8Þ

is different from the expression for the force in a diabatic basis
(2.1.11). One can see that together with a usual gradient term,
Eq. (2.2.8) also includes a second term that compensates for the
potential energy change associated with non-adiabatic electronic
population transfer. This force is often called the Hellmann-Feyn-
man force. The values of NACMEs entering this second term are
calculated by electronic structure codes alongside with potential
energies and their gradients. A detailed derivation of Eq. (2.2.8) is
given in the Appendix A.
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The motion of each TBF (1.1) is coupled with the evolution of

the Ehrenfest amplitudes aðnÞ
I , which is also different here from

the one in a diabatic basis given by (2.1.17). Substituting (2.2.1),
(2.1.16) and approximations (2.2.2), (2.2.4) into Eq. (2.1.12), we
obtain

_aðnÞI ¼ � i
�h

X
J

Heff ðnÞ

IJ aðnÞJ ; ð2:2:9Þ

where the matrix elements of the effective Hamiltonian Heff ðnÞ
IJ are

expressed as:

Heff ðnÞ

IJ ¼ VIðRnÞ; I ¼ J

�i�h PnM
�1dðnÞ

IJ ; I–J

(
: ð2:2:10Þ

In the above, we used time evolution of the nuclear phase cn
given by Eq. (2.1.13), the same as in a diabatic basis, which cancels
the diagonal matrix elements of the kinetic energy operator. Eqs.
(2.2.8)–(2.2.10) form a complete set of equations determining the
evolution of the Ehrenfest TBFs wnðtÞj i. The evolution of the ampli-
tudes cnðtÞ is described, as before, by Eq. (2.1.18), where approxi-
mations (2.2.3) and (2.2.6) are used to calculate the matrix
elements between different trajectories.

2.3. Ab initio MCE in a time-dependent diabatic basis (TDDB)

The MCE approach in an adiabatic electronic basis has been
used by us to simulate the photodynamics of ethylene after p?
p⁄ excitation [6] and the photodissociation of pyrrole [7], where
it worked well. However, this version of the method can fail for
large conjugated molecules where electronic states can change sig-
nificantly on the length-scale of the Gaussian width. In particular,
the wave-function can change instantly at trivial unavoided cross-
ings [18] where two electronic states localized on two spatially
separated parts of a large molecule change their order. To remedy
this, another version of the method, Multiconfigurational Ehrenfest
in time-dependent diabatic basis (MCE-TDDB), was developed [19].
In this version of MCE, each Gaussian trajectory carries its own
time-dependent diabatic electronic basis that coincides with adia-
batic basis in the centre of the Gaussian:

/ðnÞ
I

��� E
¼
���/IðRnðtÞÞ

E
: ð2:3:1Þ

The new electronic basis functions /ðnÞ
I

��� E
do not depend explic-

itly on R as is customary in many theories of non-adiabatic cou-
pling. Instead the coupling now originates from the time-
dependence of the electronic basis functions through the motion
of Rn. We would like to emphasize that the ‘‘time-dependent dia-
batic basis” used here should not be confused with the ‘‘diabatic
basis” used in Section 2.1; the trajectories here are still calculated
using Eqs. (2.2.8)–(2.2.10) for an adiabatic basis (see below), and
the new representation affects only matrix elements between dif-
ferent TBFs.

It was shown in Ref. [6] that the TDDB representation leads to
the same set of final equations as the adiabatic one when the elec-
tronic wave-function does not depend too strongly on the nuclear
coordinates. However, in this section we are considering a different
case when the overlaps between the electronic eigenstates belong-

ing to the different Gaussians /ðnÞ
I /ðmÞ

J

���D E
can be very far from Kro-

necker’s dIJ , even when these Gaussians are sufficiently close to
each other and nuclear parts have a significant overlap. In this sit-
uation, these overlaps must be taken into account accurately. In
principle, they can be calculated directly, but it is more convenient
to propagate them together with the basis. The following equation
for the time-dependence of the overlap integrals is used:
d
dt

/ðmÞ
I /ðnÞ

J

���D E
¼ _Rm

X
K

/ðmÞ
K /ðnÞ

J

���D E
dKIðRmÞ

þ _Rn

X
K

/ðmÞ
I /ðnÞ

K

���D E
dKJðRnÞ: ð2:3:2Þ

Because summation in Eq. (2.3.2) is limited to only a few lowest
electronic states for which NACMEs are calculated, in practice this
method may slightly overestimate the electronic overlaps. Never-
theless, the accuracy of this approximation is compatible with
the accuracy of other approximations used in this approach. The

overlap matrices /ðnÞ
I /ðmÞ

J

���D E
trace the difference between adiabatic

electronic states for each pair of trajectories. Along with the differ-
ence in the order of states, it would also reflect the difference of
their signs, known as the geometric phase effect [20,21], which
can appear when a pair of trajectories passes on two different sides
of a conical intersection. Thus, unlike adiabatic representation, a
TDD basis naturally accounts for the geometric phase. Although
it is unclear whether geometric phase can significantly affect direct
dynamics simulations of multidimensional systems, for small low
dimensionality systems it is certainly important.

It is easy to show (see Appendix A) that the evolution of TBFs in
the MCE-TDBB method is described by the same set of equations as
in the adiabatic basis. The difference between the MCE and MCE-
TDDB approaches is in the time evolution of amplitudes cnðtÞ:
although it is determined by the same Eq. (2.1.18), the matrix ele-
ments between trajectories are different. The overlaps now include
both the nuclear and electronic parts,

hwmðtÞ wnðtÞj i ¼ hvmjvni
X
I; J

aðmÞ
I

	 
�
aðnÞJ /ðmÞ

I /ðnÞ
J

���D E
; ð2:3:3Þ

as the overlap between electronic functions is not a simple Kro-

necker’s delta /ðmÞ
I /ðnÞ

J

���D E
–dIJ .

Similarly, for kinetic energy matrix elements, we have:

vm/
ðmÞ
I T̂
��� ���vn/

ðnÞ
J

D E
¼ vm � �h2

2M
d2

dR2

�����
�����vn

* +
/ðmÞ

I /ðnÞ
J

���D E
: ð2:3:4Þ

For the potential energy matrix, we use an approximation sim-
ilar to the first order BAT expansion applied above in the case of the
adiabatic representation:

vm/
ðmÞ
I V̂ðRÞ
��� ���vn/

ðnÞ
J

D E
� 1

2
/ðmÞ

I /ðnÞ
I

���D E
hvmjvni VIðRmÞ þ VJðRnÞ

� �
þ vm ðR � RmÞ � d

dRm
VIðRmÞ

� �
þ ðR � RnÞ � d

dRn
VJðRnÞ

� ����� ����vn

� ��
ð2:3:5Þ

which again differs from (2.2.3) by the presence of the overlap

/ðmÞ
I /ðnÞ

J

���D E
of electronic wave-functions belonging to different

Ehrenfest configurations or TBFs. Finally, the term wmðtÞ d
dt

�� ��wnðtÞ
� �

in Eq. (2.1.18) is now written as:

wm
dwn

dt

����� �
¼ vm

dvn

dt

����� �X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
aðnÞJ � i

�h

�hvmjvni
X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
aðnÞJ V JðRnÞ: ð2:3:6Þ

More details on the approximations used for matrix elements
between different trajectories in the TDD representation are given
in the Appendix A.

The interpretation of the results of MCE-TDDB calculations, for
example population analysis, is non-trivial because the nature of
electronic states can change very quickly and their order can be
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different for different basis functions. A special procedure must be
applied for calculating electronic properties.

For population analysis, let us introduce the adiabatic popula-
tion operator

P̂KðRÞ ¼ /KðRÞih/KðRÞj j; ð2:3:7Þ
where, as before, /KðRÞj i are the adiabatic electronic eigenfunc-
tions. Then, the electronic state populations can be expressed as:

PK ¼ W P̂K

��� ���WD E
¼
X
m;n

c�mcn
X
I; J

aðmÞ
I

	 
�
aðnÞJ vm /ðmÞ

I

���/KðRÞ
D E

/KðRÞ /ðnÞ
J

���D E��� ���vn

D E
:

ð2:3:8Þ
Using an approximation similar to the one used for other matrix
elements between trajectories (see Appendix A), we can write

PK ¼ 1
2

X
m;n

c�mcn vm vn

��� �X
I; J

aðmÞ
I

	 
�
aðnÞJ /ðmÞ

K /ðnÞ
J

���D E
dIK

n
þ /ðmÞ

I /ðnÞ
K

���D E
dJK
o
; ð2:3:9Þ

which can be simplified to

PK ¼ Re
X
m;n

c�mcn vm vn

��� �
aðmÞ
K

	 
�X
I

aðnÞI /ðmÞ
K /ðnÞ

I

���D E( )
: ð2:3:10Þ

The same approach can be applied for the calculation of any
other electronic property. If this property can be described by a

quantum operator N̂, then

N̂
D E

¼
X
m;n

c�mcn
X
I; J

aðmÞ
I

	 
�
aðnÞJ vm /ðmÞ

I N̂
��� ���/ðnÞ

J

D E��� ���vn

D E
: ð2:3:11Þ

Using the same approximation as in (2.3.9) and assuming that N̂
is real and depends only on the electronic degrees of freedom, we
get:

N̂
D E

¼ Re
X
m;n

c�mcnhvmjvni
X
I;J;K

aðmÞ
I

	 
�
aðnÞJ /ðmÞ

K /ðnÞ
J

���D E
NðmÞ

IK

( )
;

ð2:3:12Þ

where NðmÞ
IK ¼ /ðmÞ

I N̂
��� ���/ðmÞ

K

D E
are the matrix elements of the operator

N̂ between eigenstates for the centre of the mth Gaussian, which
can be easily calculated from the electronic structure data for the
trajectories.

3. Basis set sampling techniques for ab initio MCE dynamics

Sampling a basis of Gaussians such that it would represent well
the molecule wave-function for a long time is key to the efficiency
of trajectory based methods. However, there are several problems
which make sampling difficult. Firstly, full sampling of the initial
wave packet in systems with many degrees of freedom is practi-
cally impossible. Secondly, in multidimensional systems the Gaus-
sians run away from each other, their overlaps tend to zero, and
the coupling between them is lost very quickly. Thirdly, after a
while the Ehrenfest trajectories start to misguide the basis and it
no longer follows the wave-function in phase space. In this section
we will describe the algorithms which have been developed to
address these issues.

3.1. Bit-by-bit propagation

Bit-by-bit propagation addresses the first problem mentioned
above. Often, a multidimensional wave-function is complicated
and cannot be easily represented on a small basis of coherent
states. One can however decompose it into a superposition of a
number of coherent states by inserting the coherent state identity

operator Î ¼ R vðR0;P0Þ
�� � d2R0 ;P0

ð2p�hÞM vðR0;P0Þ
� �� as follows

jWð0Þi ¼
Z

vðR0;P0Þ
�� � d2R0;P0

ð2p�hÞM
vðR0;P0Þ Wð0Þj� �

: ð3:1:1Þ

Following this, one can propagate each Gaussian vðR0;P0Þ
�� �

in
the expansion (3.1.1) individually and represent the total time
dependent wave-function as a superposition

e�
i
�hĤtjWð0Þi ¼

Z
e�

i
�hĤt vðR0;P0Þ
�� � d2R0;P0

ð2p�hÞM
vðR0;P0Þ Wð0Þj� �

: ð3:1:2Þ

The advantage is that the propagation e�
i
�hĤt vðR0;P0Þ
�� �

of a Gaus-

sian wave packet vðR0;P0Þ
�� �

can be efficiently done on a small com-

pressed basis initially biased to vðR0;P0Þ
�� �

as will be described in
the Section 3.2. This idea, which is very similar to the semiclassical
initial value representation [22–26] (IVR), has been previously used
for quantum propagation in Ref. [27] and in the previous version of
MCE in Ref. [14]. Therefore, IVR (3.1.2) implements a useful strategy
of decomposing a complicated problem into a number of relatively
simple tasks, which can be performed in parallel. Although IVR and
basis set bias do not constitute any formal approximations, in prac-
tice for any finite basis set size N the procedure is accurate only for
some time (perhaps rather short), which nevertheless can be suffi-
cient for reproducing the physical properties of the system.

3.2. Swarms of trajectories and coherent state trains

Once the initial wave-function is decomposed into ‘‘bits” each
of them should be sampled with a basis set and propagated. The
use of trajectory swarms and coherent state trains addresses the
second problem of creating a basis of overlapping TBFs which stay
close to each other. Usually, the initial positions and momenta of
TBFs are chosen according to some semi-classical distribution, such
as the Wigner function [28] or Husimi Q representation [29]. Such
ensembles indeed describe the properties of the initial wave-func-
tion. In a multi-dimensional system however, the basis Gaussians
selected this way will be very far from each other in phase space,
and for any realistic size of a basis set there will be no overlap
and interaction between Gaussians even at the initial moment.
This does not present a problem in many cases but if we want to
move from a semi-classical to a more quantum description, we
should use the basis where the TBFs are interacting providing a
transfer of quantum amplitudes between them.

The simplest way to create a basis of interacting Gaussians is to
use a compressed swarm of trajectories. In this approach, each
principal trajectory originating at the centre of the ‘‘bit” carries a
swarm of satellites, which is placed in its close vicinity providing
better sampling and additional flexibility for the wave-function
in this part of the phase space. The initial conditions for the prin-
cipal trajectories are generated as above (i.e. from Husimi or
Wigner distribution); the initial conditions for the satellites are
taken very close to those for the principal trajectory [13] with ran-
dom shifts in position and momentum, DR and DP, generated
according to a distribution

FðDR;DPÞ / exp �b ajDRj2 þ 1

4�h2a
jDPj2

� �� �
; ð3:2:1Þ

where b is a compression parameter. The value of b should be care-
fully optimized for each particular case. The basis is optimal when
the overlaps between TBFs in the swarm are in the region of 0.6–
0.7. The problem is that, in anharmonic systems, these overlaps will
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quickly go down to zero once the TBFs start moving and as soon as
the basis Gaussians are no longer coupled to each other the propa-
gation will yield the semi-classical result [29]. Therefore, for smaller
values of the parameter b, the basis will be efficient in the begin-
ning, but the interaction between trajectories will disappear it the
later times of dynamics. In the opposite case, the basis will be over-
complete in the beginning, as the initial basis functions will be prac-
tically indistinguishable. This basis can however become efficient at
later times of dynamics as the trajectories run slightly away from
each other. Thus, the value of b determines a window in which
the swarm basis is optimal.

The basis can be further improved by using coherent state trains
[6,12,13], in which additional TBFs are placed along the same tra-
jectory but with a time-shift dttrain, as shown in Fig. 1. This greatly
expands the basis set at very little computational cost: the most
expensive part of on the fly dynamics is electronic structure calcu-
lations, and all TBFs in a train are moving along the same trajectory
using repeatedly the appropriate electronic structure data, which
needs to be calculated only once. An additional advantage of a train
basis set is that the interaction between TBFs in the train is pre-
served during the run.

Expanding the wave function as a sum of ‘‘bits” (3.1.2) and
propagating each bit independently is not an approximation, but
simply a way to exploit the linearity of the Schrödinger equation.
Bit-by-bit propagation is accurate only on a short time scale, but
the accurate propagation time can be prolonged if the bits are
repeatedly branched by reexpanding them according to (3.1.2) into
a new swarm basis. However this procedure will rapidly increase
the number of bits and the computational cost. In the next section
another way of branching the wave function, which is suited to the
nonadiabatic dynamics, will be presented.

3.3. Ab initio Multiple cloning algorithm

The Ehrenfest basis set is guided by an average potential, which
can be advantageous when quantum transitions are frequent. How-
ever, it becomesunphysical in regions of lownon-adiabatic coupling
when twoormore electronic states have significant contributions to
the Ehrenfest configuration (1.2): in this case, the difference
between the shapes of the potential energy surfaces for different
electronic states should lead to branching of the wave packet.
Fig. 1. A sketch of the AIMC-MCE propagation scheme. First the wave-function (encircle
(‘‘bits” shown by the dark blue circles), each of which is propagated along its trajectory (
the intersection the trains bifurcate in the process of cloning. Each bit is actually propag
trajectory is shown without satellite trajectories.
In order to reproduce bifurcations of the wave-function after
leaving the non-adiabatic coupling region, we introduced the so
called Ab Initio Multiple Cloning (AIMC-MCE) [6] algorithm, which
was very much inspired by the well-established Ab Initio Multiple
Spawning (AIMS) [1,30,31]. Cloning addresses the problem of basis
misguiding by way of the cloning procedure illustrated in Fig. 1.
After a cloning event, an Ehrenfest configuration

jwni ¼ jvni
P
J
aðnÞJ j/Ji

 !
yields two ‘‘clones” of the same

configurations:

jw0
ni ¼ jvni

aðnÞI

aðnÞI

��� ���� j/Ii þ
X
J–I

0� /J

�� �0B@
1CA; ð3:2:2Þ

and

jw0
n0 i ¼ jvni 0� j/Ii þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðnÞI

��� ���2r �
X
J–I

aðnÞJ j/Ji

0BB@
1CCA; ð3:2:3Þ

that is, the appropriate basis function is replaced by two basis func-
tions, one of which is now guided by a single potential energy sur-
face, and another by an Ehrenfest force for the remaining electronic
states.

The first clone configuration has nonzero amplitudes for only
one electronic state, and the second clone contains contributions
of all other electronic states. The amplitudes of the two new con-
figurations become:

c0n ¼ cn aðnÞI

��� ��� ; c0n0 ¼ cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðnÞI

��� ���2r
; ð3:2:4Þ

so that the contribution of the two clones w0
n

�� �
and jw0

n0 i to the
whole wave-function (1.4) remains the same as the contribution
of original function:

cn wnj i ¼ c0n w0
n

�� �þ c0n0 w
0
n0j i: ð3:2:5Þ

We apply the cloning procedure shortly after a trajectory passes
near a conical intersection, when the non-adiabatic coupling is suf-
ficiently low and, at the same time, the so-called breaking force
d by the dotted line) is represented as a superposition of Gaussian Coherent States
dotted line). A train basis (light blue) is constructed based on each bit. After passing
ated on a swarm of trains. For simplicity only the central train following the central



Fig. 2. Illustration of the algorithm used to treat tunnelling in our approach. The set
of solid lines represents the barrier, and the dashed lines are the trajectories. (A)
Identify turning point (red cross); (B) find a point with the same potential energy on
the opposite side of the barrier (green cross); (C) run an additional trajectory
through this point; (D) solve the time-dependent Schrodinger Equation in the basis
of a coherent state trains moving along the trajectories on both sides of the barrier.
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FðbrÞ
I ¼ aIj j2 rVI �

X
J

aJ
�� ��2rVJ

 !
; ð3:2:6Þ

which is the force pulling the Ith state away from the remaining
states, is sufficiently strong.

The cloning procedure is very much in spirit of the spawning
used in the AIMS approach. But, while the AIMS and AIMC-MCE
methods have similar computational cost, the advantage of cloning
is in exploiting Ehrenfest configurations: in the AIMC-MCEmethod,
the non-adiabatic population transfer between electronic states is
possible not only in a small vicinity around conical intersections, as
in AIMS, but over the entire relevant phase space. This can be
important when conical intersections are not clearly localized.
The AIMC-MCE algorithm also does not require any back-propaga-
tion of the spawned/cloned basis functions, unlike many [1] (but
not all [32,33]) implementations of spawning.

3.4. Tunnelling

The tunnelling of the hydrogen atom can play an important role
in many photodynamic processes. As it was mentioned above, all
variants of MCE are fully quantum methods because classical tra-
jectories are used only to propagate the basis, while the amplitudes
cnðtÞ are found by solving time dependent Schrodinger Equation.
When Gaussian basis functions are present on either side of the
potential barrier, the coupling between them can provide quantum
tunnelling through the barrier. In the case of direct ab initio
dynamics however, the trajectories do not overcome the barrier.
A further consideration is that the basis should be kept relatively
small. As a result, no basis functions normally would be present
on the other side, and they must be placed there ‘‘by hand” in order
to take tunnelling into account.

Based on the ideas [34,35] previously used in the AIMS method,
the algorithm illustrated in Fig. 2 was developed [36] to include
tunnelling in AIMC-MCE calculations. We consider here, as an
example, the photodissociation of the NAH bond in pyrrole,
although this algorithm can be applied to the simulation of any
process with a distinctive tunnelling coordinate.

Firstly, the usual AIMC-MCE trajectories are calculated and
turning points, where the distance between the hydrogen atom
and the radical reaches a local maximum, are identified. Following
this, for each of these turning points the shape of the potential bar-
rier is calculated: the length of NAH bond is increased keeping all
other degrees of freedom frozen, potential energies are calculated,
and the point on the other side of the barrier with the same energy
as in the turning point is found. If this point lies farther from the
turning point than a set threshold, it is assumed that tunnelling
is not possible here, as the potential barrier is too wide. Otherwise,
it is used as a starting point for an additional AIMC-MCE trajectory.
The new trajectory is calculated both forward and backward in
time, and the initial momenta are taken the same as in the turning
point ensuring that new trajectories have the same total classical
energies as their parent trajectories. This is exactly the procedure
used in the multiple spawning approach, thus the method combi-
nes cloning for non-adiabatic events and spawning for tunnelling
events. The forward propagation of new trajectories often involves
branching as a result of cloning; backward propagation is per-
formed without cloning and for a sufficiently short time, until
the new and the parent trajectories separate in phase space.

3.5. Solving quantum equations for the amplitudes of Ehrenfest
configurations. Post processing

The ideas described above have been implemented in several
codes, including ab initio direct dynamics programs such as the
Stanford AIMS code. All implementations of the AIMC-MCE algo-
rithm run a large number of Ehrenfest trajectories independently
which are allowed to clone and tunnel creating new branches. At
this stage the required total CPU timemay reach hundreds of years.
Because the trajectories are independent however, all the branches
are able to be run in parallel on a large number of processors. When
all the trajectories are calculated, we solve Eq. (2.1.18) for quantum
amplitudes cnðtÞ in a basis of coherent state trains, which have
cloned and tunnelled as described above, forming a basis of several
trains. The program for solving the equations for cnðtÞ simply reads
the data accumulated during long and expensive direct dynamics
calculations and does not require much CPU time at this stage.

4. Computational results

4.1. Model tests

To verify the sampling techniques described above we report an
original set of model tests using the benchmark of the Spin-Boson
model, which is a generic paradigmatic model for quantum dissi-
pation, describing a two level (spin ½) system with donor and
acceptor states /1j i and /2j i linearly coupled to a bath of harmonic
oscillators. The Hamiltonian is given by

Ĥ ¼ ĤB þ ĤC þ e D

D ĤB � ĤC � e

" #
; ð4:1:1Þ

where the bath Hamiltonian HB and the system-bath coupling
Hamiltonian HC are expressed in mass weighted coordinates as

HB ¼
X
j

1
2
ðp2

j þx2
j q

2
j Þ ð4:1:2Þ
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HC ¼
X
j

gjqj: ð4:1:3Þ

Both the reduced asymmetry parameter, e, and the coupling
parameter between the two spin states, D, can be assumed to be
constant. The coupling between electronic states and the nuclear
bath is given by gj, which is provided by the bath spectral density

JðxÞ ¼ p
2

X
j

g2
j

xj
dðx�xjÞ: ð4:1:4Þ

The spin boson model can be used to simulate many different
dissipation driven systems, from decoherence in qubits passing
through entanglement gates [37] to electron transfer in the con-
densed phase [38]. The spin boson model is also a very useful test
for simulation methods due to its high dimensionality and the
comparative simplicity of the Hamiltonian and as such it has been
used to test, among others, the path integral method of Makri [39],
the method of semiclassical initial value series by Martin-Fierro
and Pollak [40], the semiclassical self-consistent approach by Stock
[41] and notably the multi-layer multiconfigurational time depen-
dent Hartree (ML-MCTDH) approach by Wang and Thoss [42–44].

As has been already mentioned above, two versions of the MCE
method have been developed. The first version, MCEv1, is mostly
applied for model systems but the second version, MCEv2, is based
on independent Ehrenfest trajectories and is in the core of the
direct dynamics via AIMC-MCE approach.

The MCEv1 method was tested [14] against the spin boson
model using the Ohmic form of the spectral density with an expo-
nential cutoff, given by

JOðxÞ ¼ p
2
aKxe�x=xc ; ð4:1:5Þ

where aK is the so-called Kondo parameter and xc is the cutoff fre-
quency. The bath is discretised over Ndof degrees of freedom as in ref
[45] and as such, the frequencies and coupling coefficients are given
by

xj ¼ �xc ln 1� j
Ndof

ð1� e�xm=xc Þ
� �

ð4:1:6Þ

and

gj ¼ xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aKxc

Ndof
ð1� e�xm=xc Þ

s
; ð4:1:7Þ

where is the maximal frequency, taken to be xm ¼ 5xc . In order to
calculate thermally averaged populations, the ‘‘bits” (3.1.1) were
chosen from a normal distribution sampled with rj ¼
exp xj=kT

� �� 1. Then a swarm of Gaussian basis functions was cre-
ated for each ‘‘bit” by sampling from a normal distribution around its
centre (details of this sampling are given in full in ref [14]). To
improve convergence, a number of repeat calculations Nrpt were car-
ried out by resampling the ‘‘bits” and the Gaussian basis functions.

It was shown [14] that the MCEv1 formulation was capable of
simulating the spin boson model with very many degrees of free-
dom accurately, and compared against results gained from the
MCTDH simulations of Wang [44] and the ML-MCTDH simulations
of Wang and Thoss [42,43]. Using only bit-by-bit propagation and a
compressed swarm of basis Gaussians, the MCEv1 approach gave
results which were almost indistinguishable from the MCTDH
benchmark.

The MCEv2 formulation has been shown to be capable of accu-
rately simulating the short time dynamics of pyrazine, which
determines its Franck-Condon spectrum [11,46]. The situation is
more complicated however in the case of model systems with high
dimensionality and long-time dynamics, such as the spin boson
model. The separation of the electronic state coupling and the cou-
pling between the trajectories means that in some systems the
MCEv2 basis set does not adequately describe quantum dynamics
in phase space, meaning that extra care needs to be taken in con-
structing and propagating the basis set. This is the case with the
spin boson model, as demonstrated in Fig. 3, which compares the
results of MCEv2 calculations [47] with the MCTDH benchmark
used in the tests for MCEv1. The parameters of calculations using
D as the unit of energy were the following: for symmetric wells
�hxc=D ¼ 2:5, aK = 0.09, D/kT = 5.0, and e/D = 0 with Ndof ¼ 50
degrees of freedom; for asymmetric wells �hxc=D ¼ 7:5, aK = 0.10,
D/kT = 5.0, and e/D = 1.0 with Ndof ¼ 50 degrees of freedom.
Fig. 3 (A) shows the population differences calculated using MCEv2
in a basis of trajectory swarms (this method which uses no train
basis sets is referred to below as standard MCEv2), using 50 trajec-
tories to construct the swarm in the symmetric case and 200 tra-
jectories to construct the swarm in the asymmetric case. Results
were averaged over Nrpt = 256 repetitions using the same sampling
procedure to construct the basis sets as was used for MCEv1 ear-
lier. One can see that the size of the oscillations in the population
difference for MCEv2 is large in comparison to those from the
MCTDH benchmark for both the symmetric (A I) and asymmetric
(A II) cases.

Simple independent Ehrenfest trajectories, used by MCEv2, mis-
guide the basis set. In this particular case the trajectories do not
spread out sufficiently, acting as almost a single basis function
for both the symmetric and asymmetric cases. By increasing the
size of the basis set during propagation through the use of the clon-
ing procedure described in Section 2.3, this can be mitigated. Clon-
ing can however cause the basis set to grow to sizes which make
simulation very difficult and time consuming, and so the number
of repetitions was reduced to Nrpt = 100 and a limit was placed
on the maximum number of cloning events allowed for each tra-
jectory in the initial swarm. While the imposition of this limit is
necessary to ensure that the computational cost of the simulation
does not become too cumbersome, it can be implemented without
too large an effect on the accuracy of the results due to the fact that
the population of a trajectory drops after each bifurcation. This
means that a trajectory becomes low-populated after several clon-
ing events making further improvement of sampling by applying
additional cloning to this trajectory unpractical. In the case of sym-
metric wells, the maximum number of cloning events was set to
Ncln ¼ 4 per initial trajectory, as in this case the probability of a
cloned trajectory undergoing further cloning events is equal for
the trajectories on both states. This being the case, the basis set
will grow by a factor of up to 2Ncln assuming each of the initial tra-
jectories and its subsequent clones undergo the maximum allowed
number of cloning events. In the case of the asymmetric spin boson
model however more cloning events can be allowed per trajectory,
as for this system the wave-function as a whole is decaying onto an
acceptor state and so once the cloned basis functions are placed
wholly onto the two states the probability of the cloned basis func-
tion on the acceptor state undergoing further cloning is negligible;
thus it will only be the function placed on the donor state that will
experience further cloning events, meaning the basis set will grow
instead by up to a factor of Ncln þ 1 As such in this case Ncln ¼ 8
cloning events are allowed per initial trajectory. Applying cloning
to the basis set gives an improved result, as shown in Fig. 3 (B).
However in both symmetric and asymmetric cases the oscillations
are still too large, meaning that cloning alone does not give a suf-
ficient improvement to the MCEv2 result.

We next look at the impact of using the coherent state trains
presented in Section 3.1 to construct our basis. As stated earlier,
the use of this approach ensures the preservation of the interaction
between basis functions while also greatly increasing the area of



Fig. 3. Comparison of the population differences given by different modifications of the MCE approach for the spin boson model with symmetric (I) and asymmetric (II) wells.
All the results are also compared to the numerically exact MCTDH benchmark from ref [42], which is indistinguishable from MCEv1 results [14]. (A) Standard MCEv2. (B)
MCEv2 with cloning. (C) MCEv2 with a train-type basis set (D) MCEv2 with cloning and a train-type basis set.

D.V. Makhov et al. / Chemical Physics 493 (2017) 200–218 209
phase space initially covered by the wave-function, and so it is
expected that the result would be greatly improved. Trains were
constructed as series of 20 TBFs separated by a time displacement
of 0:25D�1�h for the symmetric case and 0:15D�1�h for the asymmet-
ric case. Swarms of 20 coherent state trains were used giving a
total of 400 TBFs in the basis set. The results were averaged over
Nrpt = 100 repeat calculations. Fig. 3 (C) shows that for the symmet-
ric case the results are almost indistinguishable from the MCTDH
results. However for the more difficult asymmetric case there is
only agreement over short timescales (t � 1.25 D�1�h), with the
oscillations greatly dampened as the wave-function decays onto
the acceptor state.

Combination of trains with cloning is more successful, yielding
a good agreement between the MCEv2 result and that of the



Fig. 4. An example of the spreading of a nuclear part wave-function in a train basis
set. The basis is moving along a quasi-classical trajectory so that themaximumof the
amplitude remains in the middle of the train. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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MCTDH benchmark for both the symmetric and asymmetric cases
of the spin boson model, as demonstrated in Fig. 3 (D). To deal with
the constantly growing basis, the trains here were constructed as a
series of only 10 TBFs. Swarms of 10 and 20 coherent state trains
were used for symmetric and asymmetric cases respectively, and
the restrictions on the number of cloning events were applied as
above.

One can see that the results of the MCEv2 calculations in Fig. 3
(D) are practically indistinguishable from those given by MCTDH
and thus the accuracy of MCEv2 matches that of MCEv1. This
demonstrates that a combination of coherent state trains with
cloning is capable of accurately propagating the wave-function
for a model system, while each of these basis set improvements
may not be sufficient on its own. This conclusion is important
because in our ab initio direct dynamics calculations we will rely
the same sampling techniques verified in this model calculation.
A more detailed account of the model calculation can be found in
the Ref. [47].

4.2. Direct dynamics calculations

As short time convergence of MCE calculations can be achieved
and has been tested on the model systems as described in Sec-
tion 4.1 above, one can be reasonably confident in the quality of
direct dynamics. In this chapter several previously reported ab ini-
tio direct dynamics ‘‘on the fly” MCE simulations are reviewed. The
approach was first tested on the calculations of the photodynamics
of ethylene after p? p⁄ excitation [6]. Then, the photodissociation
of pyrrole was investigated [7,36]. Finally, to push the limits of the
ab initioMCE method, simulations were performed of the photody-
namics of dendrimer building blocks [19].

The simulation of the dynamics of ethylene and pyrrole was
carried out with a modified version of AIMS-MOLPRO [48], which
was extended to include Ehrenfest dynamics, using electronic
structure data given the complete active space self-consistent field
(CASSCF) calculation at SA3-CAS(2,2)/6-31G⁄⁄ and SA4-CAS(8,7)/
cc-pVDZ levels of theory respectively. For dendrimers, the MCE-
TDDB method was implemented together with the Collective Elec-
tron Oscillators (CEO) [49–52] electronic structure code. Excited
state energies, gradients and non-adiabatic couplings were calcu-
lated on the fly using the Austin Model 1 (AM1) [53] semi-empir-
ical level of theory in combination with the configuration
interaction singles (CIS) formalism. This approach has worked well
in the previous studies of similar systems [54–56].

The width parameter a of the Gaussian trajectory functions was
taken to be 4.7, 22.7 and 19.0 Bohr�2 for hydrogen, carbon and
nitrogen atoms respectively, as suggested in ref [5]. For MCE and
AIMC calculations with train basis sets, each initial TBF generated
a single train with a time-shift of about 0.6 fs which corresponds
to a nearest neighbour overlap of 0.6–0.7. For the AIMC-MCE sim-
ulations, cloning was applied to TBFs when the breaking accelera-
tion of Eq. (3.2.6) exceeded a threshold of 5 � 10�6 a.u. and the
norm of the non-adiabatic coupling vector was simultaneously less
than 2 � 10�3 a.u. In order to control the growth of the basis set,
each TBF was allowed to clone at most 3 times.

Additional computational details can be found in the original
works [6,7,19,36].

4.2.1. Initial implementation and test of AIMC-MCE. Photodynamics of
ethylene

Ethylene is the most simple molecule with a C@C double bond
and has been extensively studied both experimentally and compu-
tationally [57–66]. This makes the photodynamics of ethylene an
ideal subject for benchmark calculations. We are comparing the
results given by the MCE (which refers to ab initio MCEv2),
AIMC-MCE (i.e. ab initio MCEv2 with cloning and train basis sets)
and AIMS methods, including the influence of the use of the coher-
ent state train basis. In all cases, the simulations were restricted to
two electronic states, S0 and S1, and initiated with 200 distinct ini-
tial TBFs, sampled randomly from a Wigner distribution [28] for
the ground vibrational state in the harmonic approximation, and
then projected onto the S1 state. This is equivalent to 200 repeti-
tions in the spin-boson simulations described above. The trajectory
swarms were not applied here, and the MCE calculations were run
in a basis of a single coherent state train. In the case of AIMC-MCE
calculations, the size of the basis increased every time that one of
TBFs in the train passed through a cloning point, and each of the
initial TBFs gave rise to an average of �4 further TBFs through this
process. This is compatible with the basis set growth rate in the
AIMS calculations, where each initial condition spawned an aver-
age of 4.1 new TBFs.

An example of a wave-function spreading over a train basis set
of 200 basis functions is shown in Fig. 4. The initial population is
placed on the central TBF of the train. As time progresses, the win-
dow of TBFs that are being included in the calculation also shifts
forward along the trajectory. Thus, the wave-function stays local-
ized in the middle of the train but gradually spreads over nearby
TBFs.

Fig. 5 compares the average ground-state population as a func-
tion of time given by several types of calculations: 1) The simple
Ehrenfest approach without basis set trains and cloning; 2) MCEv2
with train basis sets; 3) AIMC-MCE method, which is MCEv2 with
basis set trains and cloning; 4) Ab initio Multiple Spawning (AIMS)
benchmark. The ground-state population evolution predicted by
the MCE calculations with and without train basis functions is very
similar, except that the results are somewhat smoother when the
train basis set is used. One can conclude that for this particular
problem where the conical intersection is highly peaked (and thus
non-adiabatic transitions are both ultrafast and ultra-efficient) the
benefits of the train basis set expansion are not very pronounced.
As was shown in Section 4.1, the train efficiently smooths out
the oscillations in the population, which is not an issue for
ethylene.

The initial population dynamics predicted by all methods are
similar. However as the ground state population increases, the pre-
dictions begin to deviate, and by 100 fs they are quite different. The
relaxation rate predicted by AIMC-MCE is significantly faster, and
similar to the rate given by AIMS benchmark calculations. This
behaviour is as expected: when the population on the ground
and excited states are nearly equal, the Ehrenfest dynamics of
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Fig. 5. Calculated ground-state population dynamics of ethylene following p? p*

excitation. Compared are the results obtained using MCE approaches against those
given by Ab Initio Multiple Spawning (AIMS). Green – simple Ehrenfest dynamics;
black – MCE in a coherent state train basis set of 100 TBFs; red – AIMC-MCE; blue –
AIMS. The results are averaged over 200 sets of initial conditions. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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the TBFs becomes that of the average of the two electronic states.
This will tend to keep the TBFs in the region near the conical inter-
section longer and population transfer in both directions (to the
upper state and to the lower state) will be equally probable. This
is a manifestation of the violations of detailed balance which are
a well-known difficulty in pure Ehrenfest dynamics [67,68]. The
cloning procedure in AIMC-MCE solves this problem by allowing
the TBFs to separate and evolve on adiabatic states.
4.2.2. Photodissociation of pyrrole with AIMC-MCE
Photodynamics of pyrrole is an important prototype for a num-

ber of biologically relevant photochemical processes. For example,
light harvesting in plants, fluorescence of living organisms, and
visual reception all involve photochemical reactions that include
electronic excitation and subsequent electronically non-adiabatic
dynamics. Recently, significant progress has been made in experi-
mental ultrafast time resolved spectroscopy studies of various pho-
tochemical reactions, focused on biologically related molecules.
The derivatives of heteroaromatic molecules such as pyrrole, imi-
dazole, and phenol are important chromophores of many biologi-
cally relevant molecules. The mechanisms of their
photochemistry have been a focus of experimental [69–71] and
theoretical [72–79] attention. It was suggested that the NAH/
OAH bond fission was an important channel in the photodissocia-
tion dynamics, and the role of the 1pr⁄ states in this process has
been emphasized [80–88].

The AIMC-MCE approach was applied [7,36] to simulate the
dynamics of pyrrole following excitation to the first excited state.
In particular, the total kinetic energy release (TKER) spectra and
velocity map images (VMI) were calculated. The TKER and VMI
measurements can provide invaluable information on the dynam-
ics of various bond fission reactions, but their numerical calcula-
tion is a difficult task because they reflect important details of
quantum dynamics in multidimensional systems, where realistic
calculations beyond simple reduced dimensionality models are
challenging.
The calculations were run both with and without taking tun-
nelling into account. Three electronic states were taken into con-
sideration during the dynamics – the ground state and the two
lowest singlet excited states. The initial Ehrenfest configurations
were randomly sampled from the ground state vibrational Wigner
distribution [28] in the harmonic approximation. The transition
from the ground to the first excited state is symmetry-forbidden
in the Franck-Condon approximation and only occurs due to the
coordinate-dependence of the transition dipole moment. The pho-
toexcitation was approximated by simply lifting the ground state
wavepacket to the excited state, as would be appropriate for an
instantaneous excitation pulse within the Condon approximation.
Of course, the details of the initial photoexcited wavepacket are
not completely accounted for in this approximation (which
assumes the transition dipole moment for the transition is finite
and independent on nuclear coordinates). Although we expect
the simplest model of the initial wave packet to be qualitatively
correct, we are working on more rigorous and accurate ways to
treat initial excitation, which would be able to account for the
shape of the pump pulse.

Initially 900 non-interacting AIMC trajectories were run for
200 fs or until the dissociation occurred, defined as an NAH dis-
tance exceeding 4.0 Å. For a small number of trajectories, simula-
tions exhibiting NAH dissociation were carried out to the full
200 fs in order to investigate the dynamics of the radical. For all
initial trajectories, as well as for their branches resulting from clon-
ing, the turning points for the NAH bond length were identified
and the widths of the potential barrier were calculated. Additional
trajectories on the other side of the barrier were placed if the width
of the barrier did not exceed 0.5 Bohr, which corresponds to an
overlap of �0.3 between Gaussian basis functions. The new trajec-
tories were propagated backward for 20 fs to accommodate the
train basis set, and forward until dissociation occurred or until
the trajectory time exceeded 200 fs.

For each initial trajectory with all its branches and tunnelling
sub-trajectories, Eq. (2.1.18) was solved using train basis set of
N = 21 Gaussians per branch. The total size of the basis was con-
stantly changing because of the inclusion of new branches. The
final amplitudes cn provided statistical weights for each of the
branches, which were used in the analysis that follows.

As a result of cloning, 900 initial configurations gave rise to
1131 trajectory branches. This corresponds to an average of
�0.25 cloning events per initial trajectory. For these branches,
7702 local maxima of NAH bond length were found, of which
2376 have been identified as possible tunnelling points. For all
these points, the sub-trajectories were run, which finally gave
3203 additional branches, 4334 branches in total. The majority of
these branches underwent NAH dissociation within our computa-
tional time of 200 fs: the total statistical weight of dissociative tra-
jectories was 92%, of which 53% is the contribution of tunnelling
sub-trajectories.

The calculated kinetic energy distribution of the ejected hydro-
gen atom is presented in Fig. 6 together with the experimental
TKER spectrum [69]. Both distributions clearly exhibit two contri-
butions: a large peak at higher energies, and a small contribution at
lower energies. One can see that adapting the basis set to tun-
nelling leads to a significant increase in the dissociation yield in
the low/middle-energy region of the spectrum. After the renormal-
ization, this increase shifts the high-energy peak of TKER spectrum
toward the lower energies by about � 1000 cm�1 and makes the
low-energy peak slightly more pronounced. While the calculated
energies are still on average about 1.5 times higher than experi-
mental values, this difference can be ascribed to the lack of
dynamic electron correlation in the CASSCF approach. The compar-
ison of CASSCF and MS-CASPT2 energies for pyrrole indicates [7]
that the use of more accurate MS-CASPT2 potential energy surfaces



212 D.V. Makhov et al. / Chemical Physics 493 (2017) 200–218
would lead to a shift in the kinetic energy peak of �1800–
1900 cm�1 towards lower energies, significantly improving the
agreement with experimental results.

Analysis of the electronic state amplitudes in the Ehrenfest con-
figurations (1.2) shows that the bifurcation of the wave-function
while passing through a conical intersection plays an important
role in the formation of a two-peak spectrum: the high kinetic
energy product is predominantly in the ground state, while the
low energy peak is formed by mostly low-weight branches with
substantial contribution from excited electronic states. Fig. 7 pre-
sents an example of such a bifurcating trajectory. At about 55 fs
after photoexcitation, this trajectory reaches an intersection for
the first time. After passing the intersection, the ground and first
excited states of the original TBF are approximately equally popu-
lated, so the cloning procedure is applied creating instead two
TBFs, one in the ground state and one in the excited. At this point,
the potential energy surfaces for ground and excited states have
opposite gradients. This leads to the acceleration of the hydrogen
(A) 

(B) 

Fig. 6. Total kinetic energy release (TKER) spectrum for the photodissociation of
pyrrole calculated with (blue) and without (red) taking tunnelling into account.
Both spectra are averaged over the same ensemble of initial configurations and
smoothed by replacing delta-functions with Gaussian functions ðr ¼ 200 cm�1Þ.
Part (A) presents the spectra before normalization showing an increase of the yield
in the low- and middle-energy regions. Part (B) presents the same spectra after the
normalization, and the inset shows the experimentally measured spectrum [69].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
atom for the TBF associated with ground state and, at the same
time, slows it down for excited state TBF. As a result, although both
branches lead to dissociation, the kinetic energies of ejected atoms
are significantly different: the ground state branch contributes to
the high energy peak of the distribution in Fig. 7, while the excited
state branch contributes to the low energy peak. For the ground
state branch, the remaining vibrational energy of the radical is
low, so it remains in the ground state for the rest of the run and
does not reach the intersection again. For the excited state branch,
the energy taken away by the hydrogen atom is lower leaving the
pyrrolyl radical with sufficient energy to pass through numerous
intersections with population transfer between the ground and
both excited states. Naturally, quenching to the ground state will
happen eventually for this branch but the time scale of this process
is much longer than that for the dissociation, while the TKER spec-
trum is only affected by the radical dynamics until the H atom is
lost.

In order to calculate the velocity map image with respect to the
laser pulse polarization, we must average the velocity distribution
of hydrogen atoms relative to the axes of the molecule, over all
possible orientations of the molecule:

Iðr;uÞ / dðr�jvjÞ
Z Z Z

dadbdc cos2 ðnða;b;cÞÞ dðu�/ðh;a;b;cÞÞ;
ð4:2:1Þ

where a; b and c are Euler angles, h is the angle between the atom
velocity vector v and the transition dipole of the molecule, nða;b; cÞ
is the angle between the transition dipole and light polarization
vectors, and /ðh;a;b; cÞ is the angle between the light polarization
(A) 

(B) 

(C) 

Fig. 7. An example of trajectory bifurcation at a conical intersection in the
simulations of the photodissociation of pyrrole. Electronic state populations (A), the
kinetic energy of H atom (B) and N_H distance (C) as a function of time. Fast and
slow branches are referred as (1) and (2) respectively. Dotted vertical line indicates
the moment when cloning was applied. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 8. Simulated velocity map image (VMI) for the photodissociation of pyrrole
assuming that the transition dipole moment is normal to the molecule plane. The
experimental VMI [69] is shown in the inset.
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vector and atom velocity. Here we take into account that the prob-
ability of excitation is proportional to cos2ðnÞ. Integrating over Euler
angles and replacing, as usual, the d-function for |v| with a narrow
Gaussian function, we obtain:

Iðr;uÞ / exp �ðr � jvjÞ2
2r2

 !
cos2ðhÞ cos2ðuÞ þ 1

2
sin2ðhÞ sin2ðuÞ

� �
:

ð4:2:2Þ
Fig. 8 shows the simulated velocity map with respect to the

laser pulse polarization assuming that the transition dipole is nor-
mal to the molecular plane. The simulations reproduce the main
feature of the experimental [69] velocity map image, which is
the anisotropy of the intense high energy part. The results are also
consistent with experiment in the low energy region showing an
isotropic distribution, although admittedly the statistics of both
experiment and simulation are poorer in the region of low energy.

In the AIMC-MCE simulation of the photodynamics of ethylene
and pyrrole described in the above sections, all electrons and all
nuclei were treated on a fully quantum basis. The number of basis
functions was comparable with that used in the model simulations
in Section 4.1, and similar sampling techniques (i.e. cloning, trains
and bit-by-bit propagation) were used to improve convergence.
Thus, these calculations represent an example of a fully quantum
treatment of non-adiabatic dynamics in polyatomic molecules.

4.2.3. Excitation dynamics in dendrimers with ab initio MCE-TDDB
Dendrimers are highly branched conjugated macromolecules

which possess well-defined regular structures with numerous
peripheral groups, branched repeat units, and a core. Each of these
components acts as individual chromophore units absorbing light
at different ranges of the spectrum [89]. The p-conjugation in the
regular arrays of such coupled chromophore units provides an effi-
cient and controllable unidirectional energy transfer in dendrimers
[49].

The time evolution of electronic excitations in organic conju-
gated materials is determined by non-adiabatic dynamics involv-
ing multiple coupled electronic excited states. Following
photoexcitation, multiple pathways to electronic and vibrational
relaxation arise which involve energy and/or charge transfer, inter-
nal conversion, and transition density localization/delocalization. A
large number of electronic states and intersections between them
makes dendrimers and other large conjugated molecules a nearly
ideal object for Ehrenfest based approaches: a wave packet under-
goes frequent transition between many coupled electronic states
and, as a result, its motions can be well described by a mean-field
Ehrenfest trajectory. Electronic states can however change very
sharply in large conjugated molecules, in particular as a result of
the change in the energy order for the states localized on spatially
separated moieties. Such changes, known as trivial unavoided
crossings [18], can frequently occur for molecules composed of
multiple chromophore units, such as dendrimers.

The MCE-TDDB method has been developed specifically to treat
such systems. It was applied [19] to simulations of the excited
state dynamics of a system composed of two- and three-ring linear
polyphenylene ethynylene (PPE) chromophore units linked
through a meta-substitution, as shown in Fig. 9. These chro-
mophore units correspond to building blocks of more complex
phenylethynylperylene-terminated dendrimers, such as the nanos-
tar [49,90–93]. The figure shows that the excited states S1 and S2
are localized on different linear fragments. The non-adiabatic cou-
plings between these fragments are responsible for quantum tran-
sition from the S2 to S1 state resulting in the two-ring ? three ring
unidirectional electronic energy flow. Thus, this system is a good
model for analysing intramolecular electronic and vibrational
energy transfer between chromophore units.
Six singlet electronic states (S1-S6) were included in the simula-
tions, and the excited-state trajectories of 150 fs duration were
propagated at constant energy with a 0.02 fs time step. In order
to generate the initial conditions for excited-state dynamics, 1 ns
of ground state molecular dynamics at 300 K was first performed
with 0.5 fs time step using a Langevin friction coefficient c of
2.0 ps�1. Snapshots of nuclei positions and momenta (conforma-
tional phase space) have been collected and used as initial condi-
tions for the subsequent photoexcitation dynamics modelling.
The excited-state trajectories have been started from these initial
configurations by instantaneously promoting the system to the
state I selected according to a Frank-Condon window:

gIðRÞ ¼ f I exp½�T2 Xlaser �XIðRÞð Þ	2;

where Xlaser is the frequency of the laser pulse, XIðRÞ and f I are the
transition energy and normalized oscillator strength of the Ith
excited state respectively. The pulse is centred at 348 nm (the max-
imum of the absorption spectrum for the state S2) and assumed to
have a Gaussian shape f ðtÞ / expð�t2=2T2Þ with T = 42.5 fs corre-
sponding to a FWHM (Full Width at Half Maximum) of 100 fs.

The MCE-TDDB simulations were performed for 100 trajectory
swarms consisting of 10 trajectories each: the principle one and
9 satellites. The initial conditions for satellites were generated
according to Eq. (3.2.1) with b=1000, which corresponds to the ini-
tial overlap of about 0.93 between the principle and satellite
trajectories. For each trajectory in a swarm, the coherent state train
basis of 11 basis functions was used. The results were compared
with those given by the NA-ESMD (non-adiabatic excited-state



Fig. 9. Model dendritic molecule, which involves two- and three-ring linear poly
(phenylene ehynylene) units linked by meta-substitution. The figure shows the
initial localization of the electronic excitation for the two lowest excited states.

Fig. 10. Calculated dynamics of the model dendritic molecule shown in Fig. 9
following its photoexcitation. Average populations of the four lowest electronic
states as a function of time. The figure shows the results of MCE calculations (A) and
two limiting cases of surface hopping: NA-ESMD without (B) and with (C)
decoherence corrections [99]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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molecular dynamics) surface hopping method [94,95], which is
based on Tully’s fewest-switches (FSSH) algorithm [96–98]. The
NA-ESMD calculations were performed for a sets of 100 excited-
state trajectories with the same initial conditions as for principal
trajectories in MCE-TDDB calculations.

Fig. 10 presents the average populations of the lowest four elec-
tronic states as a function of time calculated using the MCE-TDDB
method, and their comparison with the results given by NA-ESMD
surface hopping with and without the instantaneous decoherence
corrections [99]. One can see that although all three dependencies
are generally similar, the rates of S2 ! S1 relaxation are sufficiently
different, and the rate given by the MCE calculations is in between
two limiting cases of surface hopping with and without decoher-
ence corrections. This can be an indication that the MCE approach
naturally accounts for decoherence and, unlike surface hopping, do
not require any additional ad hoc corrections. More details can be
found in Ref. [19]. MCE-TDDB can also be systematically improved.
In particular, no cloning was allowed in our simulation, as we
assumed that the Ehrenfest approach should be adequate for a sys-
tem with multiple crossings. This, however, should be verified and
we are working on introducing an efficient cloning algorithm here.
5. Summary and future prospects

In this paper we review the Multiconfigurational Ehrenfest
method as a technique to simulate quantummultidimensional sys-
tems. MCE uses Ehrenfest trajectories to guide the basis of Gaus-
sian Coherent States to simulate electronically non-adiabatic
dynamics, treating nuclear degrees of freedom also on a fully quan-
tum level. Two versions, MCEv1 and MCEv2, have been developed.
The MCEv1method, which uses interacting trajectories that ‘‘push”
each other, is an efficient technique to simulate model systems,
however it is not well suited to the case of direct dynamics. This
being the case, the MCEv2 method has been developed which uses
independent Ehrenfest trajectories. While such trajectories mis-
guide the basis somewhat, this can be corrected, and a number
of sampling techniques, such as ‘‘bit-by-bit” propagation, swarms
and train basis sets, basis tunnelling, and trajectory cloning, have
been developed by us in order to address this issue. These tech-
niques have been tested for the spin-boson model and it has been
shown that MCEv2 converges to the exact result. A direct dynamics
Ab initio Multiple Cloning algorithm has been developed, which
performs fully quantum MCEv2 simulations ‘‘on the fly” using
the sampling techniques proven by applications to model systems.
In addition to good sampling methods we have used interpolations
for nondiagonal coupling matrix elements that do not need any
additional information and new electronic structure calculations.
As a result, a large ensemble of Ehrenfest trajectories can be run
independently and solving the equations which couple the basis
configurations can be done later as a ‘‘post processing”. We have
performed a number of direct dynamics simulations which treat
both electrons and nuclei on a fully quantum level, albeit on a short
time scale of several hundred femtoseconds.

Several new projects are now in progress and will be reported
later

1) AIMC-MCE will be systematically applied to simulate ultra-
fast electronically non-adiabatic dynamics of hydrogen pho-
todetachment in small aromatic molecules, such as pyrrole
and azoles (imidazole, pyrazole etc), and in larger biomole-
cule analogues (e.g. nucleobases and amino acids) such as
indoles, phenols and thiophenols [80–82,85,100–103],
which are important because they serve as building blocks
of larger biomolecules. For example, it is believed that
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hydrogen photodetachment plays an important role in the
photostability of proteins [104]. The photodynamics of
aromatic molecules has been studied experimentally by
imaging techniques pioneered by M. Ashfold [80–88,100–
103,105–110], and AIMC-MCE simulations can help to reach
a better understanding of the mechanisms of hydrogen pho-
todetachment. Advantage will be taken of the fact that
AIMC-MCE theory is extremely well suited for comparison
with present gas phase time resolved imaging experiments
[69,107,110–118]. Both theory [6,7,9,10] and experiments
[69,107,110–118] probe the evolution of an initially local-
ized quantum wave packet on the sub-picosecond time
scale.

2) The AIMC-MCE method will also be applied to simulations of
hydrogen photodetachment in condensed phase pump-
probe experiments. By comparing the dynamics of hydrogen
photodetachment in gas and condensed phase, we will verify
the recent hypothesis that the dynamics in solution are often
similar to those in the gas phase on ultrafast timescales
[119–121].

3) We are now working on the implementation of the cloning
algorithm for MCE-TDDB calculations involving a large num-
ber of electronic states aiming at simulations of the photo-
dynamics in large conjugated molecules. Along with direct
dynamics, the MCE approach will be applied to models, such
as Frenkel-Holstein and Pariser–Parr–Pople, which are com-
monly used in the theoretical study of excitations in conju-
gated polymers (see, e.g., Refs. [122–126]).

4) The AIMC-MCE method has already been applied [127] to
simulations of emerging ultrafast time resolved X-ray scat-
tering experiments [128], which became possible with the
appearance of new powerful light sources and synchronizing
X-ray scattering probes with a femtosecond laser pumps.
Time resolved X-ray experiments allow one to observe
images of a molecule in motion frame by frame with a fem-
tosecond time scale resolution between laser pump and X-
ray probe pulses. More work is in progress to expand these
ideas.

The MCE method for model systems has been implemented in
several codes in our group. Its direct dynamics MCE/AIMC-MCE
and MCE-TDDB versions were implemented together with AIMS
and CEO packages respectively. The formalism itself is quite
straightforward and we hope that this review can help other
groups to use similar ideas alongside with other trajectory based
techniques of simulations of ultrafast photoprocesses.
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Appendix A. Ehrenfest force in adiabatic basis or TDD basis

In order to derive Eq. (2.2.8) for the Ehrenfest force in an adia-
batic basis, let us rewrite the Eq. (2.1.11) for the force as

Fn ¼ /n � d
dRn

V̂ðRnÞ
���� ����/n

� �
; ðA1:1Þ

where /nj i is the electronic part of nth basis function (see (1.2)).
Here we use the fact that diabatic wave-functions /Ij i in (2.1.11)
do not depend on R, and apply the approximation similar to

(2.2.2), replacing the averaging over vn by the operator V̂ðRnÞ for
the centre of Gaussian:

vn/I V̂
��� ���/Jvn

D E
� /I V̂ðRnÞ

��� ���/J

D E
; ðA1:2Þ

Eq. (A1.1), which represents a particular case of the Hellman-Feyn-
man theorem [129,130], is valid in both diabatic and adiabatic basis
sets; the force here is written as an expectation value of an operator
regardless of a particular representation of electronic wave-func-
tions /nj i. Thus, we can rewrite Eq. (A1.1) representing /nj i in the
basis /IðRnÞ

�� �
:

Fn ¼ �
X
I; J

aðnÞ�I aðnÞJ /IðRnÞ d

dRn
V̂ðRnÞ

���� ����/JðRnÞ
� �

: ðA1:3Þ

Taking into account that /IðRnÞ
�� �

are the eigenfunctions of the

operator V̂ðRnÞ, we get

d
dRn

/IðRnÞ V̂ðRnÞ
��� ���/JðRnÞ

D E
¼ d

dRn
VIðRnÞdIJ ðA1:4Þ

and

d
dRn

h/IðRnÞjV̂ðRnÞj/JðRnÞi ¼ /IðRnÞ d
dRn

V̂ðRnÞ
���� ����/JðRnÞ

� �
þ d

dRn
/IðRnÞ

����/JðRnÞ
� �

VJðRnÞ

þ /IðRnÞ d
dRn

���� /JðRnÞ
� �

VIðRnÞ: ðA1:5Þ

Then comparing these two equations, we obtain:

/IðRnÞ d
dRn

V̂ðRnÞ
���� ����/IðRnÞ

� �
¼ d

dRn
VIðRnÞdIJ

� d
dRn

/IðRnÞ
����/JðRnÞ

� �
VJðRnÞ

� /IðRnÞ d
dRn

���� /JðRnÞ
� �

VIðRnÞ:

ðA1:6Þ
Substituting (A1.6) into (A1.3) and taking into account that

NACMEs (2.2.5) are anti-symmetric dðnÞ
IJ ¼ �dðnÞ

JI

	 

, we come to

the Eq. (2.1.7) for the Ehrenfest force in an adiabatic or TTD basis:

Fn ¼ �
X
I

aðnÞ�I aðnÞI
d

dRn
VIðRnÞ þ

X
I–J

aðnÞ�I aðnÞ
J dðnÞ

IJ VIðRnÞ � VJðRnÞ
� �

:

ðA1:7Þ
A.2. The evolution of Ehrenfest amplitudes in TDD basis

Taking into account that the overlaps in TDD representation
include both nuclear and electronic parts, Eq. (2.1.12) for the
time-evolution of amplitudes takes the form
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_aðnÞI ¼
X
J

� i
�h

vn/I Ĥ
��� ���vn/J

D E
� /ðnÞ

I

@/ðnÞ
J

@t

�����
* + !

aðnÞJ � vn
@vn

@t

����� �
aðnÞI :

ðA2:1Þ
Then, substituting

/ðnÞ
I

d/ðnÞ
J

dt

�����
* +

¼ _Rnd
ðnÞ
IJ ðA2:2Þ

and using, as before, (2.1.16) and approximation (2.2.2), we get

_aðnÞI ¼ � i
�h
VIa

ðnÞ
J �

X
J

_Rnd
ðnÞ
IJ aðnÞJ : ðA2:3Þ

Taking into account that _Rn ¼ Pn=M, one can see that Eq. (A2.3)
is exactly the same as Eq. (2.1.8) with effective Hamiltonian (2.1.9).

A.3. The approximation of matrix elements in TDDB

First, we insert the unity
P
K

/KðRÞj i /KðRÞh j ¼ 1 into the matrix

elements between electronic states belonging to different Ehren-
fest configurations:

/ðmÞ
I V̂ðRÞ
��� ���/ðnÞ

J

D E
¼
X
K;L

/ðmÞ
I

���/KðRÞ
D E

/KðRÞ V̂ðRÞ
��� ���/LðRÞ

D E
/LðRÞ /ðnÞ

J

���D E
¼
X
K

/ðmÞ
I

���/KðRÞ
D E

VKðRÞ /KðRÞ /ðnÞ
J

���D E
;

ðA3:1Þ
where /KðRÞj i are adiabatic electronic eigenfunctions. Now, similar
to the case of an adiabatic basis, using the first-order BAT expansion
we can approximate the potential energy matrix elements as:

vm/
ðmÞ
I V̂ðRÞ
��� ���vn/

ðnÞ
J

D E
�1
2

vm

X
K

(
/ðmÞ

I /ðmÞ
K

���D E
VKðRmÞ /ðmÞ

K /ðnÞ
J

���D E�����
*

þðR�RmÞ d
dR

/ðmÞ
I

���/KðRÞ
D E

VKðRÞ /KðRÞ /ðnÞ
J

���D E
jR¼Rm

þ /ðmÞ
I /ðnÞ

K

���D E
VKðRnÞ /ðnÞ

K /ðnÞ
J

���D E
þðR�RnÞ d

dR
/ðmÞ

I

���/KðRÞ
D E

VKðRÞ /KðRÞ /ðnÞ
J

���D E
jR¼Rn

)�����vn

+

�1
2

/ðmÞ
I /ðnÞ

J

���D ED
vm

���vn

Eh
VIðRmÞþVJðRnÞ

i
þ1
2

vm ðR�RmÞ � d
dRm

VIðRmÞ
� �

þ ðR�RnÞ � d
dRn

VJðRnÞ
� ����� ����vn

� ��
ðA3:2Þ

In addition to the matrix elements of the Hamiltonian, Eq.
(2.1.18) for the time-evolution of amplitudes cn also includes term
hwmðtÞj d

dt jwnðtÞi, which has the following form in a TDD basis:

wm
dwn

dt

����� �
¼ vm

dvn

dt

����� �X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
aðnÞJ

þ hvmjvni
X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
_aðnÞJ

þ hvmjvni
X
I; J

/ðmÞ
I

d/ðnÞ
J

dt

�����
* +

aðmÞ
I

	 
�
aðnÞJ ðA3:3Þ

where

/ðmÞ
I

d/ðnÞ
J

dt

�����
* +

¼ _Rn /ðmÞ
I ðRmÞ d

dRn

���� ����/ðnÞ
J ðRnÞ

� �
: ðA3:4Þ

Inserting the unity, as above, we can express the matrix
elements (A3.4) as:
/ðmÞ
I

d

dRn

���� ����/ðnÞ
J

� �
¼
X
K

/ðmÞ
I j/ðnÞ

K

D E
/ðnÞ

K
d

dRn

���� ����/ðnÞ
J

� �
¼
X
K

/ðmÞ
I /ðnÞ

K

���D E
dkJðRnÞ: ðA3:5Þ

Substituting Eq. (A2.3) for _aðnÞ
j into (A3.3), one can see that its

off-diagonal terms are cancelled out by the terms of Eq. (A3.5).
Thus, we obtain:

wm
dwn

dt

����� �
¼ vm

dvn

dt

����� �X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
aðnÞJ

� i
�h
hvmjvni

X
I; J

/ðmÞ
I /ðnÞ

J

���D E
aðmÞ
I

	 
�
aðnÞJ V JðRnÞ: ðA3:6Þ

Calculations of the electronic populations and other electronic
properties in TDD representation requires the evaluation of the

matrix elements vm /ðmÞ
I

���/KðRÞ
D E

/KðRÞ /ðnÞ
J

���D E��� ���vn

D E
, for which an

approximation can be used similar to the one for other matrix ele-
ments between trajectories

vm /ðmÞ
I /K ðRÞj

D E
/K ðRÞ /ðnÞ

J

���D E��� ���vn

D E
� 1

2
vm /ðmÞ

I /ðmÞ
K

���D E
/ðmÞ

K /ðnÞ
J

���D E��� ���vn

D En
þ vm /ðmÞ

I /ðnÞ
K

���D E
/ðnÞ

K /ðnÞ
J

���D E��� ���vn

D Eo
¼ 1

2
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K /ðnÞ
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���D E
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