
This is a repository copy of Adaptive Hash Retrieval with Kernel Based Similarity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/114602/

Version: Accepted Version

Article:

Xiao, Bai, Yan, Cheng, Yang, Haichuan et al. (3 more authors) (2018) Adaptive Hash 
Retrieval with Kernel Based Similarity. Pattern Recognition. pp. 136-148. ISSN 0031-3203 

https://doi.org/10.1016/j.patcog.2017.03.020

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Adaptive Hash Retrieval with Kernel Based Similarity

Xiao Baia, Cheng Yana, Haichuan Yanga, Lu Baib, Jun Zhouc, Edwin
Robert Hancockd

aSchool of Computer Science and Engineering, Beihang University, Beijing, China
bSchool of Information, Central University of Finance and Economics, Beijing, China
cSchool of Information and Communication Technology, Griffith University, Nathan,

QLD, Australia
dDepartment of Computer Science, University of York, York, UK

Abstract

Indexing methods have been widely used for fast data retrieval on large scale
datasets. When the data are represented by high dimensional vectors, hash-
ing is often used as an efficient solution for approximate similarity search.
When a retrieval task does not involve supervised training data, most hash-
ing methods aim at preserving data similarity defined by a distance metric
on the feature vectors. Hash codes generated by these approaches normally
maintain the Hamming distance of the data in accordance with the similar-
ity function, but ignore the local details of the distribution of data. This
objective is not suitable for k-nearest neighbor search since the similarity
to the nearest neighbors can vary significantly for different data samples. In
this paper, we present a novel adaptive similarity measure which is consistent
with k-nearest neighbor search, and prove that it leads to a valid kernel if the
original similarity function is a kernel function. Next we propose a method
which calculates hash codes using the kernel function. With a low-rank ap-
proximation, our hashing framework is more effective than existing methods
that preserve similarity over an arbitrary kernel. The proposed similarity
function, hashing framework, and their combination demonstrate significant
improvement when compared with several alternative state-of-the-art meth-
ods.
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1. Introduction

Nearest neighbor (NN) search is a flourishing area in computer vision,
machine learning and information retrieval. It can be directly used to im-
plement simple retrieval algorithms, or be adopted as a procedure in more
complex systems. The time complexity of the NN method on a dataset of size
n is O(n), which means it is infeasible in some applications, e.g., real-time
retrieval on large datasets. For data with relatively low dimensionality, this
problem can be solved using tree based methods such as the binary search
tree [4]. However, the dimensionality of most widely used image descriptors,
for example those constructed by the bag-of-words [18] and GIST [33] meth-
ods, is very large. Moreover, it degrades the efficiency of these methods to
that of exhaustive search [46]. To make the NN search scalable in this situ-
ation, approximate nearest neighbor (ANN) techniques have been proposed.
The idea is to find an approximate nearest neighbor rather than the exact
one. Locality-sensitive hashing (LSH) was introduced for this purpose [10].
It maps a vector x 2 Rd to a binary string h 2 {0, 1}r, and guarantees that
the neighbors in the original space have similar binary codes.

Hashing methods can be classified into two types, data-independent hash-
ing and data-dependent hashing, depending on whether or not a training set
is employed to learn the hash function. Data-independent hashing does not
require training data, but instead adopts specific rules to ensure that desir-
able mathematical properties are observed. Thus methods of this type are
robust to data variations. Data-independent methods [10, 5, 17, 16] can gen-
erate an arbitrary number of hash functions without a training set, but with a
decrease of efficiency [48]. Locality sensitive hashing based on a p-stable dis-
tribution (LSH) [5] is one of the most representative data independent hash-
ing methods. In addition to LSH, a number of alternative data-independent
hashing schemes have been proposed. For example, random Fourier features
have been used to make the Hamming distance related to the shift-invariant
kernel (e.g.,, Gaussian kernel) between vectors [35]. These methods usu-
ally need larger binary codes to reduce the false positive rate, which in turn
increases the storage costs and reduces the query efficiency.

On the other hand, data-dependent hashing approaches use a training
process. A common objective is to explicitly force the similarity measured
in the original feature space to be preserved in the Hamming space [48, 27,
29, 25, 26, 37, 16, 6, 22]. One representative data-dependent hashing scheme
is spectral hashing (SH) [48] which transforms the problem of finding a sim-
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ilarity preserving code for a given dataset to an NP-hard graph partitioning
problem that is similar to Laplacian eigenmaps [2]. SH relaxes this problem
and solves it using a spectral method [48, 2]. For a novel or unseen data point,
SH uses the Laplace-Beltrami eigenfunctions to obtain binary codes under the
hypothesis that the data is uniformly distributed. When this hypothesis does
not hold, anchor graph hashing (AGH) [24] uses an anchor graph to obtain a
low-rank adjacency matrix which is a computationally tractable approxima-
tion to the similarity matrix. Anchor Graph Hashing is then used to process
the low rank adjacency matrix in constant time using the Nyström sampling
method [3]. Zhang et al. proposed a self-taught hashing [51] method that
firstly performs Laplacian eigenmaps and then thresholds the eigen-vectors
to obtain a binary code for the training set. Subsequently, it trains an SVM
classifier as the hash function for each bit. Dimensionality reduction has
also been used to improve the efficiency of data-dependent hashing meth-
ods, such as [8, 32, 12]. IsoHash [12] learns projection functions which can
produce projected dimensions with isotropic variances. ITQ [8] formulates
the problem of learning a good binary code in terms of directly minimizing
the quantization error of mapping this data to vertices of the binary hyper-
cube. Several extensions of the above methods have also been developed with
various considerations in the training process [47, 21, 41, 28, 1, 20]. Both
supervised and semi-supervised learning settings have been explored in data
dependent hashing, such as [44, 45, 31, 23, 52, 17].

The local data distribution and its impact on the retrieval performance of
hashing schemes worth further attention. Along this line, manifold methods
make use of the data distribution. Locally linear hashing (LLH) [7] learns
manifold structure by discovering the locally linear structure at each sam-
ple point and embeds the structure into binary codes. Inductive manifold
hashing (IMH) [41] achieves significant accuracy improvement on the ba-
sis of t-SNE [43]. However, since the similarity or distance to the nearest
neighbors varies considerably for different data samples, simple thresholding
on the similarity function returns different numbers of neighbors, as shown
in Figure 1. This does not meet the expectation that the retrieval results
shall not vary significantly for classes with different data densities when the
same threshold is used. Therefore, the local distribution of data should be
taken into consideration in order to generate consistent results. To solve this
problem, Qin et al [34] proposed an extended Euclidean distance metric by
normalizing the Euclidean distance locally so as to obtain a unified degree of
measurement across different queries. Inspired by this method, we propose
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an adaptive similarity function to replace Euclidean distance or Gaussian
kernel. For different data points, this similarity measure can adapt to the
local data distribution.

Threshold of similarity ε

Threshold of 2-NN

Figure 1: Simple thresholding on the similarity function returns different numbers of
neighbors, since the similarity to the nearest neighbors varies a lot for different data
samples.

1.1. Contributions and Overview

There are three original contributions in this paper. Firstly, we explore
the idea of normalizing the Gaussian kernel, and use this to construct a new
similarity function which gives consistent retrieval results. The normaliza-
tion takes the local distribution of data into consideration, and is suitable
for the k-nearest neighbour search. This new similarity function is proved to
give a positive semi-definitive (PSD) kernel. Secondly, we present two un-
supervised hashing methods which aim at reconstructing the kernel function
using binary codes. The first method takes the global similarity of measure
given by the kernel function into consideration. The second method is local
and focuses on the similarity of pairs of data, and can better capture seman-
tically meaningful manifold structure. Both hashing methods enables linear
training time with respect to the size of the training set, and gives a constant
time for indexing using the proposed hash function. Moreover, we present a

4



supervised hashing scheme based on subspace learning to improve semantic
retrieval performance. Our third contribution is using supervised informa-
tion (class labels) based on the former unsupervised hashing framework to
achieve semantically better results. In the experiments, we show that both
the proposed similarity function and the hashing methods are more effective
than several baseline methods.

This paper is a significantly extended from a previous published confer-
ence paper [50]. The extensions include a new objective formulation for the
case of supervised ground truth data (Section 4.2), development of a new
supervised hashing scheme (Section 5), and experiments on two newly added
methods in Section 6.

The remainder of this paper is organized as follows. A review of related
work is given in Section 2. The proposed adaptive similarity measure is
described in Section 3. A detailed description of the kernel based unsuper-
vised hashing methods are given in Section 4. An extension of our hashing
methods to the supervised setting is introduced in Section 5. We present
the experimental results in Section 6, and then draw conclusions and discuss
directions for future work in Section 7.

2. Related Work

In this section, we review some kernel based hashing methods and an
adaptive distance measure. These methods are related to our hashing schemes
which are based on normalized Gaussian kernel and hence provide the pre-
requisite material for our study.

2.1. Kernel Based Hashing Scheme

Kernel methods enable flexible models be constructed for a variety of
applications by adopting different types of kernel functions. Some hashing
methods take a kernel function as input. For instance, Kulis and Darrell pro-
posed a binary reconstructive embedding (BRE) approach [14] with a kernel-
ized hashing function. The objective of BRE is to minimize the reconstruc-
tion error between pairwise Euclidean distances in the kernel space and the
Hamming distances of the binary codes in the mapped feature space. Both
the original distance and the Hamming distances are scaled to the same range
over the interval [0, 1]. However, this objective function is non-convex, and
the reconstruction is binary which makes the objective none differentiable.
When a coordinate-descent optimization scheme is used [14], the objective
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function converges to a local minimum. The corresponding training time is
highly dependent on the number of input data pairs, which constrains the
scale associated with the training set. Besides BRE, the kernelized locality-
sensitive hashing (KLSH) method [15] can also preserve the kernel similarity
by generalizing the principle underlying LSH [5] to arbitrary reproducing ker-
nel Hilbert spaces. The SSH method [26] exploits shared structures across
hash functions. The time complexity of KLSH is much lower than BRE,
but the method suffers from the same problem as LSH, i.e., its performance
degrades with compact codes. Liu et al [24] proposed an anchor graph hash-
ing (AGH) method. which constructs a neighborhood graph and uses the
graph Laplacian to solve a relaxed graph partition problem. For efficient
training and indexing, this method approximates the neighborhood graph by
a sparse anchor graph. Although it can cope with any customized similarity
function including kernelized versions, the sparsity of the anchor graph limits
the accuracy of the approximation.

Existing kernel hashing schemes use kernels only in the process of hash
code calculation. In this paper, we propose a novel kernel which takes the
distribution of data into account, and we show how this can be used for the
purpose of hashing.

2.2. Query Adaptive Distance

Euclidean distance is the most widely used metric for measuring the sim-
ilarity between local feature descriptors. In order to derive a measure that is
adaptive to the query feature, Qin et al [34] proposed to use the normalized
Euclidean distance, defined as follows

dn(xi,xj) =
d(xi,xj)

E(d(xi))
(1)

where xi and xj are two different data vectors from the same dataset. d(xi,xj)
is the Euclidean distances between xi and xj and dn(xi,xj) is the normalized
version of the distance. E(d(xi)) is the expected Euclidean distance between
xi and its non-matching features, which can be randomly sampled. This
normalized Euclidean distance aims at obtaining unified degree of measure-
ment across different queries. Note that the normalized Euclidean distance
is not symmetric, which means that dn(xi,xj) 6= dn(xj,xi). Qin et al dis-
cussed feature similarity from a probabilistic perspective, with the aim of
obtaining better retrieval results, which they have achieved on several image
datasets [34].
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3. Normalized Kernel Similarity

In this section, we propose a normalized Gaussian kernel. We show that
this kernel is positive semi-definite.

The kernel trick allows methods defined in linear pattern spaces to be
transformed to nonlinear pattern spaces by adopting nonlinear kernel func-
tions. There are two key components in a kernel method. The first one is a
data mapping rule defined using the kernel function. The second component
is a learning algorithm, which is linear in the mapped feature space. The
best known example of the kernel methods is the support vector machine
(SVM)[11].

In this paper, we propose a retrieval framework which takes the kernel
function as the basis for measuring the similarity of two samples. For exam-
ple, a Gaussian kernel can be used to calculate the similarity in the following
manner

κ(xi,xj) = exp(�(d(xi,xj))
2/2σ2) (2)

where σ is used to scale the exponential function which defines a nonlinear
model that can accommodate linearly inseparable data. The Gaussian kernel
also benefits from the properties of the squared exponential function. If the
value of κ(xi,xj) is large, then we consider xi and xj to be similar, otherwise
they are considered relatively dissimilar. In k-NN search, the Gaussian kernel
is equivalent to the Euclidean distance. Data pairs with smaller Euclidean
distance have larger kernel function values, which means that they are similar
to each other, and vice versa.

The most commonly used application of hashing techniques is hash lookup
which uses binary codes as the addresses required to index data for retrieval.
Given a query, all samples with the same or similar hash codes are normally
returned as the results. If the objective of a hashing method is to preserve
the similarity conveyed by the kernel function, then it is equivalent to k-NN
search. For different queries, those samples which fall into the same hash
bucket may not have the same level of similarity because of the different
distribution of neighborhoods for the queries. If we wish to obtain a better
result for any query by hash lookup, then we should take into consideration
the local distribution of the different samples.

Here we propose a normalized kernel for local feature retrieval. The goal
is to achieve an adaptive similarity measure which not only considers the
neighborhood distribution of the data samples, but also improves the perfor-
mance of k-NN search. Motivated by the Bag-of-Words method [18] which
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uses a clustering method to cluster local features as different “visual words”,
we treat the data samples in the same cluster as being in correspondence to
each other. If the cluster center index of data sample a is designated as ι(a),
then we can compute the adaptive similarity C

κ(a) of a with its corresponding
points by averaging the kernel between a and the samples that belong to the
cluster with center ι(a). Furthermore, if the distribution of pairwise kernel
function values in the same cluster is approximately uniform, then we can
obtain C

κ(a) via:

C
κ(a) =

P

ι(xi)=ι(a),ι(xj)=ι(a) κ(xi,xj)

#({(xi,xj)|ι(xi) = ι(a), ι(xj) = ι(a)})
(3)

where #(·) is the number of elements in the set.
Since C

κ(a) only depends on ι(a), for simplicity, we denote it as C
ι(a), and

Ci = C
ι(a)=i defines the adaptive similarity of cluster i. If the corresponding

points are used to normalize the kernel, the generated similarity function
between a and b is κ(a,b)/C

ι(a), while the normalized similarity between b

and a is κ(a,b)/C
ι(b). This similarity is asymmetric because C

ι(a) and C
ι(b)

are not always the same. To overcome this problem, the geometric mean
p

C
ι(a)Cι(b) is used as the normalising denominator.
If the total number of clusters is l, let δ(a) 2 {0, 1}l×1 indicates to which

cluster center the data point a belongs. The normalized kernel for points a
and b is

κn(a,b) = (δ(a)TDδ(b))κ(a,b) (4)

where κn refers to the normalized kernel, D is an l ⇥ l matrix and Dij =
1/
p

CiCj. A simple example on the adaptability of the proposed similarity
function is shown in Figure 1.

For the clustering step, the kernel k-means algorithm is used to obtain
the cluster centers and δ(a). Kernel k-means is the kernel based version of
the k-means algorithm. In contrast to the original k-means algorithm, kernel
k-means takes the kernel matrix as input and represents each cluster centroid
as a linear combination of the mapped data φ(x). The objective function of
kernel k-means is almost identical to that of k-means, except that in this case
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all samples are mapped and as a result

min
k

X

j=1

n
X

i=1

Iijkφ(xi)� ujk2 (5)

subject to: Iij 2 {0, 1},
k

X

j=1

Iij = 1

where Iij indicates whether φ(xi) belongs to the j-th cluster, and uj is the
class center of the j-th cluster.

In the original k-means algorithm φ(xi) and uj can be updated iteratively.
For the kernel k-means algorithm, on the other hand, the original calculation
of vectors (e.g., Euclidean distance) has to be replaced by the kernel function.
At each iteration, the implicit vector uj is updated via

uj =

Pn
i=1 Iijφ(xi)
Pn

i=1 Iij

(6)

The squared Euclidean distance between φ(xi) and uj is:

kφ(a)� ujk2 = φ(a) · φ(a) + uj · uj � 2

Pn
i=1 Iijφ(xi) · φ(a)

Pn
i=1 Iij

(7)

The dot product or inner product between the mapped vectors can be ob-
tained from the kernel matrix directly calculated by equation 4.

3.1. Positive Semi-definiteness

Having defined a symmetric normalized similarity measure, we prove that
this kernel is positive semi-definite (PSD), which is necessary for a valid kernel
function.

Definition 3.1. Let X be a nonempty set. Function f : (X ⇥ X ) ! R

is a positive semi-definite kernel if and only if f is symmetric and for all

m 2 N,xi, ..., xm 2 X , and ci 2 R

m
X

i,j=1

cicjf(xi,xj) � 0 (8)

Based on this definition, we introduce a theorem which can be proved
directly by the Schur product theorem [40]:
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Lemma. If both κ1 and κ2 are positive semi-definite kernels, then their prod-

uct κ1 · κ2 is a positive semi-definite kernel.

Recall the matrix D defined in equation (4). If we we rewrite it as D =
γγ

T where γ is an l ⇥ 1 vector and γi = 1/
p
Ci, then δ(a)TDδ(b) becomes

(γT δ(a))(γT δ(b)). Because γ
T δ(a) is a feature mapping of a, δ(a)TDδ(b)

can be considered as the inner product between features γT δ(a) and γ
T δ(b)

which is obviously PSD. Since we already know that the kernel is PSD, by
using the Lemma 3.1, the kernel function κn(a,b) defined in equation (4) is
also PSD.

4. Kernel Reconstructive Hashing

After defining the similarity measure in a kernel form, now we show how
to perform fast retrieval based on this metric. In this section, we propose two
unsupervised hashing methods that preserve the similarity defined by an arbi-
trary kernel using a compact binary code. The first method is Kernel Recon-
structive Hashing (KRH) which uses Multidimensional Scaling (MDS) [38]
to preserve the similarity in a compact binary code. KRH is effective in re-
trieving neighbours for which the metric distance is a good global distance
measure. The second method addresses the need in many real-world applica-
tions where the data reside on a low-dimensional manifold. In this situation
accurately capturing the nearest neighbor relationships on the corresponding
manifold is crucial. We use the Laplacian Eigenmap to preserve the manifold
structure of the dataset, and the resulting hashing algorithm is referred to
as KRHs.

4.1. KRH Hashing Scheme

Let X = {x1,x2, ...,xn} be a training set of size n, and κ(xi,xj) be a
kernel function over X. Our objective formulation is learning a set of r
hash functions which generate the binary code of xi as a {�1, 1}1×r vector
x̃i = [h1(xi), h2(xi), ..., hr(xi)]. The Hamming distance dh(x̃i, x̃j) between
the binary codes for all instance pairs in X should have a negative corre-
lation with the similarity represented by the kernel function κ(xi,xj), i.e.,
a smaller dh(x̃i, x̃j) corresponds to a larger κ(xi,xj). Liu et al [23] showed
that the inner product hx̃i, x̃ji = x̃ix̃

T
j between binary codes has a one-to-one

correspondence with the Hamming distance dh(x̃i, x̃j), i.e.

hx̃i, x̃ji = r � 2dh(x̃i, x̃j) (9)
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This implies that the inner product also has a negative correlation with
the Hamming distance. Therefore, our objective is to use the inner prod-
uct hx̃i, x̃ji to reconstruct the kernel κ(xi,xj). To do so, we minimize the
reconstruction error

min
X

xi,xj∈X

(s · hx̃i, x̃ji � κ(xi,xj))
2 (10)

where s is a positive number for scaling the inner product. It should be noted
that although hx̃i, x̃ji 2 [�r, r], the kernel κ(xi,xj) is not bounded in this
range.

The objective function in equation (10) is difficult to solve because op-
timization with respect to binary code is not straightforward. However, if
we relax the problem and do not constrain the output to be binary, it will
be much easier to solve. Here, we use a vector x̂i 2 R

1×r to substitute the
binary vector x̃i in equation (10), so that the optimisation problem becomes

min
X

xi,xj∈X

(hx̂i, x̂ji � κ(xi,xj))
2 (11)

The scaling factor s in formula (10) is absorbed into x̂i. This is a basic
MDS problem [38]. Its optimal solution can be obtained by the spectral
decomposition of the n ⇥ n kernel matrix K whose entries Kij = κ(xi,xj).
If λ1,λ2, ...,λr > 0 are the r largest eigenvalues, and their corresponding
eigenvectors are v1,v2, ...,vr 2 R

n×1, then the optimal solution is

(x̂i)α =
p

λα(vα)i (12)

for i = 1, 2, ..., n,α = 1, 2, ..., r

Using the standard numerical algorithm to perform the spectral decom-
position of the n ⇥ n kernel matrix K requires O(n3) time [49]. This cubic
method is intractable for large training sets. A possible solution to this prob-
lem is to use a low-rank approximation of the kernel matrix. Here we use the
Nyström method to construct a low-rank approximation K̃ of K [49]. We
randomly select m (m < n) columns of K to form an n ⇥m sub-matrix A.
Let I be the set of indices of the sampled columns, and M be an m⇥m sub-
matrix of K such that Mij = Kij, i 2 I, j 2 I. The low-rank approximation
for matrix K is K̃ = AM−1AT . If M is not invertible, then the Moore-
Penrose generalized inverse is used to substitute M−1. In our method, the

11



operations for the inverse and the generalized inverse are similar, so we as-
sume M is invertible. The approximation K̃ is exactly the same as K when
the rank of K equals the rank of M. Using this approximation, we perform
the eigen decomposition on K̃ instead of K.

To solve for the eigenvalues and eigenvectors of K̃ efficiently, we adopt
the following procedure: Firstly we perform the eigen decomposition M =
ZΣZT , where Σ is a diagonal matrix containing the eigenvalues of M, and
the columns of Z are the corresponding eigenvectors. Since M is a pos-
itive semi-definite matrix and is invertible, we have M−1 = ZΣ−1ZT =
ZΣ−1/2

Σ
−1/2ZT . Furthermore, introducing an m ⇥m matrix B = ZΣ−1/2,

we have M−1 = BBT . If let F = AB be an n ⇥ m matrix, we can obtain
K̃ = FFT . By letting E = FTF where E is an m ⇥m matrix whose eigen-
values and eigenvectors can be computed in O(m3), we can directly perform
eigen decomposition on E

E = UΛUT (13)

where Λ and U are eigenvalue and eigenvector matrices of E. Based on the
singular value decomposition (SVD) of F, we know that FFT has the same
nonzero eigenvalues as FTF, so m positive eigenvalues of K̃ are diagonal
entries of Λ: λ1,λ2, ...,λm, and the remaining n � m eigenvalues are all
zero. If V is an n ⇥ m matrix whose columns are the eigenvectors of K̃
corresponding to λ1,λ2, ...,λm, by SVD we have:

V = FUΛ
−1/2 = ABUΛ

−1/2 (14)

From equations (13) and (14), we can obtain the m positive eigenvalues
and their corresponding eigenvectors of K̃. Selecting the r largest values,
x̂i for xi 2 X can then be effected using equation (12).

This procedure only generates the r-dimensional real-valued reconstruc-
tions for the training data. For an arbitrary input, we generalize the eigenvec-
tors to be the eigenfunctions φα(·),α = 1, 2, ..., r such that xi gives the i-th
entry of the eigenvector corresponding to the eigenvalue λα. Given a novel
input y, we also obtain the eigenfunction using the Nyström method [3]

φα(y) =
n

X

i=1

κ(y,xi)(vα)i/λα (15)

Calculating this eigenfunction has time cost O(n) for each data point. We
can decrease the time complexity to O(m) using the Nyström approxima-
tion. Let ϕ(y) be a 1⇥ n vector such that ϕ(y)i = κ(y,xi), and ϕ(y)I be a
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1⇥m vector whose entries correspond to the sampled index set I, then the
Nyström approximation of ϕ(y) is ϕ(y)IM

−1AT . As a result the approxi-
mate eigenfunction φ̃α(y) is given by

φ̃α(y) = (ϕ(y)IM
−1ATVΛ

−1)α

= (ϕ(y)IBBTATABUΛ
−3/2)α

= (ϕ(y)IBEUΛ
−3/2)α

= (ϕ(y)IBUΛ
−1/2)α (16)

Let J be the set of indices α such that λα is one of the r largest eigenvalues.
According to equations (12) and (16), we obtain a 1 ⇥ r vector which is a
real-valued reconstruction for y satisfying

ŷ = (ϕ(y)IBU)J (17)

Note that this formula holds irrespective of whether y is training data or a
novel input.

We now turn our attention to analysing the time complexity of KRH. In
the training phase, if A is given then M−1 and its eigen decomposition can
be computed in O(m3) time. The matrix multiplication for constructing E

requires O(n⇥m2) time, and performing the eigen decomposition of E costs
O(m3) time, so obtaining BU in equation (17) requires at most O(n ⇥m2)
time. For minimizing the quantization loss, each iteration requires O(r2⇥n)
time. In our experiments, we have found that 50 iterations are usually suffi-
cient to obtain convergence. In the search phase, for each query y, computing
ŷ in equation (17) costs time O(m⇥ r). Therefore, the training time is lin-
ear with the size of training set, and the binary code can be generated in
constant time.

4.2. KRHs Hashing Scheme

The objective formulation of KRHs is

min
n

X

i,j=1

Kijkx̃i � x̃jk2 (18)

subject to : x̃i1 = 0, x̃ix̃
T
j = nI

where K is the reconstructive kernel matrix containing pairwise similarity
values and 1 = [1, 1, ..., 1]T 2 R

n. Hashing based on the Laplacian eigenmap
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for large training sets can be solved by using the anchor graph in AGH [24].
We also adopt real-valued relaxation for finding the solution. First, we per-
form k-means clustering on the training set to obtain c (c ⌧ n) clusters uj

(1 6 j 6 c) whose centres give the anchor point positions. We then define a
truncated similarity Z

Zij =

(

κ(xi,uj)P
j02hii κ(xi,uj)

, 8j 2 hii
0, otherwise

(19)

where hii ⇢ [1 : c] denotes the set of indices of the s (s ⌧ c) nearest anchors
of xi. For s ⌧ c, Z 2 R

n×c is a sparse matrix.
Based on the similarity matrix Z, the adjacency matrix A can be approx-

imated as Â = ZΛ−1ZT where Λ = diag(ZT1). Matrix M = Λ
−

1
2ZTZΛ−

1
2

has the same decomposition as Â, giving the eigenvector-eigenvalue pairs of
the r largest eigenvalues {(vk, σk)}

r
k=1 (1 > σ1 > ... > σr > 0). Let the

eigenvector matrix be V = [v1, ...,vr] 2 R
c×r and the eigenvalue matrix be

Σ = diag(σ1, σ2, ..., σr) 2 R
r×r. After the spectral composition of Â, the

r-dimensional real-valued embedding of X can be represented as

Y = [ŷ1, ŷ2, ..., ŷn]
T =

p
nZΛ−

1
2VΣ

−
1
2 = ZW (20)

where W =
p
nΛ−

1
2VΣ

−
1
2 = [w1,w2, ...,wr] 2 R

c×r.
For a novel or unseen input y, first a truncated similarity vector z(y) is

needed, which can be regarded as a row in Z. The elements of this vector
are given by

z(y)i =

(

κ(y,ui)P
j2hzi κ(y,uj)

, 8i 2 hzi
0, otherwise

(21)

Then the real-valued embedding of y is

ŷ = z(y)W (22)

The time complexity of the k-means algorithm with T iterations isO(dcnT ),
and of the construction of matrix Z is O(dcn). The matrix M is computed
using matrix multiplication, which costs O(nc2). The eigen-decomposition of
M costs O(c3). The calculation of the matrix Y requires O(ncr) time. For
r ⌧ n, the construction of the Anchor Graph is linear of n.
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4.3. Minimizing the Quantization Loss

The methods described in Section 4.1 and Section 4.2 both give real-
valued results from input data (from equations (17)(20)(21)). We now need
to transform the real-valued result into a binary one. The simplest way to
do this is using the sign function ỹ = sign(ŷ). However, sometimes, directly
using the sign(·) function may cause ŷ to deviate significantly from ỹ. To
address this problem, we define the following quantization loss Q(·)

Q(G) = kG� s̃ · sign(G)k2F (23)

where k · kF denotes the Frobenius norm. G is an arbitrary real-valued
matrix, sign(G) has the same size as G and sign(Gij) = 1 for Gij � 0,
and sign(Gij) = �1 otherwise. The scaling factor s̃ is introduced to match
the ranges between the real-valued matrix and the binary matrix. A similar
loss function was adopted in [8], which, however, does not have the scaling
factor. This is not optimal because the ranges of G and sign(G) may be
very different.

Let X̂ be an n⇥ r matrix whose rows are the real-valued reconstruction
vectors x̂i, then Q(X̂) is the quantization loss for our solution. Recall that
x̂i, i = 1, 2, ..., n aim to approximate the kernel κ(xi,xj) by the inner product
x̂ix̂

T
j . Because multiplying a vector by an arbitrary orthogonal matrix R

does not change the value of the inner product x̂ix̂
T
j = x̂iR(x̂jR)T , X̂R

has the same effect as X̂. As a result we need to find the matrix R which
gives the minimum value of Q(X̂R). A similar problem was proposed and
solved in [8] by iteratively updatingR using the classic orthogonal Procrustes
method [39]. In our method, we iteratively update both R and s̃. At each
iteration i, we estimate the optimal orthogonal matrix R(i) by

argmin
R(i)

kX̂R(i) � s̃(i−1) · sign(X̂R(i−1))k2F (24)

This is a classic Orthogonal Procrustes problem [39] which can be solved
by singular value decomposition. If the SVD of X̂T (s̃(i−1)sign(X̂R(i−1))) is
ŪSV̄T , then R(i) should be ŪV̄T . The optimized s̃(i) can be obtained by

setting the partial derivative ∂Q(X̂R(i))/∂s̃ = 0, such that

s̃(i) =
tr(sign(X̂R(i))

T X̂R(i))

tr(sign(X̂R(i))sign(X̂R(i))T )
(25)
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We initialize R(0) as a random orthogonal matrix and s̃(0) as 1. s̃ ·

sign(X̂R) approximates X̂R by minimizing the quantization loss. s̃2hsign(x̂iR), sign(x̂jR)i
is equivalent to the inner product hx̂i, x̂ji, which in turn is an approximation
the of kernel κ(xi,xj). Therefore, we obtain an approximate minimiser of the
objective function in (10): x̃i = sign(x̂iR) and s = s̃2. The time complexity
of computing the orthogonal transformation is O(r2).

Two proposed unsupervised hashing methods with the minimization of
quantization loss are summarized in Algorithms 1 and 2.

Algorithm 1: Kernel Reconstructive Hashing (Related to Section 4.1
and 4.3)

Data: training data X, kernel function κ(·), code length r,
Result: r hash functions hp(·), p = 1, 2, ..., r
Randomly sample m indices I to generate sub-matrices A, M;
Eigen decomposition: M = ZΣZT ;

Assign B = ZΣ−1/2, F = AB;
Assign E = FTF, solve its eigenvectors for the r largest eigenvalues,
build m⇥ r matrix UJ ;

Assign X̂ = ABUJ , assign R(0) as random orthogonal matrix, and
s̃(0) = 1;
while R, s̃ is not converged do

Update R by Equation (24);
Update s̃ by Equation (25);

end

Define row vector ϕ(y) as in Section 4.1, and hash functions
[h1(y), h2(y), ..., hr(y)] = sgn(ϕ(y)IBUJR).

5. KRH with Supervised Information

In this section, we aim to incorporate supervised information, i.e., the
class labels of the data, into our hashing scheme. A straightforward super-
vised extension to the proposed KRH algorithm is presented in this section.
We use Linear Discriminant Analysis (LDA) to pre-process the dataset. LDA
is widely used in statistics, pattern recognition, and machine learning to find
a linear projection of features that well separates two or more classes of
features. The main goal of LDA is to find a linear projection of data that
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Algorithm 2: KRHs (Related to Section 4.2 and 4.3)

Data: training data X, kernel function κ(·) , code length r, number of
anchor points c, a novel input y

Result: r hash functions hp(·), p = 1, 2, ..., r
Perform K-means on training data to get c clusters and their class
centres uj(1 6 j 6 c) as anchor points.;
Calculate truncated similarity matrix Z by Equation (19);

Assign Λ = diag(ZT1)Â = ZΛ−1ZT ;

Assign M = Λ
−

1
2ZTZΛ−

1
2 ;

Perform eigen decompostion on M, getting r largest eigenvalues and
their corresponding eigenvectors, forming the eigenvalue matrix Σ and
eigenvector matrix V; Calculate projection matrix W and embedding
Y by Equation (20);
Assign R(0) as random orthogonal matrix, and s̃(0) = 1;
while R, s̃ is not converged do

Update R by Equation (24);
Update s̃ by Equation (25);

end

Calculate z(y) by Equation (21);
The r hash functions hi(y) = z(y)wiR(1 6 i 6 r).
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maximises the ratio of the between class and within class dispersion. This
gives well separated and compact classes. The objective formulation of LDA
is

max
P

J =
PTSBP

PTSωP
(26)

where Sω =
PC

i=1

P

x∈ωi
(x� µi)(x� µi)

T is the within-class variance, SB =
PC

i=1
Ni

N
(µi � µ)(µi � µ)T is the between class variance, and P is a linear

projection matrix (µi is the mean of class ωi and µ is the mean of µi (1 6

i 6 C)). To solve this problem, eigen decomposition is performed on S−1
ω
SB

and the eigenvector matrix P 2 R
r×n gives the optimal projection matrix.

LDA is directly applied to the data before we attempt KRH. This leads
to a supervised hashing scheme (LDA-KRH). The training process with LDA
is summarised in Algorithm 3. With the LDA preprocessing, the distribution
of data points in the Euclidean space is aligned in the direction of maximum
separation of the class labels. As a result the hashing scheme is adapted to
class labels, and consequently it gives better results.

Algorithm 3: LDA-KRH

Data: training data X, label vector l, normalized kernel function
κn(·), code length r, number of anchor points c, a novel input y

Result: r hash functions hp(·), p = 1, 2, ..., r
Perform LDA on the training data X with label l, and get the
projection matrix P;
Assign the low-dimensional embedding E = PTX = [e1, ..., en];
Calculate kernel matrix K by normalized kernel function
Kij = κn(ei, ej)(1 6 i, j 6 n);
Execute unsupervised hashing schemes in Algorithm1.

6. Experiments

We evaluate the performance of the proposed methods on four datasets.
The first dataset is SIFT-1M [45], which contains 1 million local features
represented as a vector of 128 dimensional SIFT descriptors [30]. The sec-
ond dataset is the CIFAR-10 dataset [13] that consists of 60,000 32⇥32
color images belonging to 10 classes. Figure 2 shows some sample images
in this dataset. We used a 384 dimensional GIST descriptor [33] to represent
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each image. The third dataset is MNIST from [19], which has 70000 size-
normalized and centered images of handwritten digits. The fourth dataset
is ILSVRC2012 which is a subset of Imagenet. This dataset contains over
1.2 million images belonging to 1,000 categories. Here we used a 4096 di-
mensional feature-vector computed by a convolutional neural network [36]
on this dataset.

Figure 2: Sample images in CIFAR-10 dataset. Each row contains 10 images of the same
class.

To evaluate the performance of different methods under comparison, we
used precision-recall and recall curves. The precision and recall are calculated
by

precision =
Number of retrieved relevant pairs

Total number of retrieved pairs
(27)

recall =
Number of retrieved relevant pairs

Total number of all relevant pairs
(28)

We also used the Mean Average Precision (MAP) which is the mean of the
average precision scores for each query. All the evaluations were based on
hash lookup usage [8, 12].

Some parameters have to be set in our methods. For the proposed kernel,
the length l of δ(a) in Equation (4) and the constant σ in the Gaussian kernel
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Figure 3: Precision-recall curves of k-NN search on SIFT-1M and CIFAR-10 when different
distance metrics are compared.

function in Equation (2) can be selected empirically. In the experiments, we
found that the accuracy is relatively stable when l � 30. A large value of l
makes κn complex valued, and so we set l = 30 in all the experiments. For
a fair comparison, we set σ as the averaged Euclidean distance for all the
methods that make use of a Gaussian kernel. In KRH, there is nearly no
difference in performance when the sample number m � 1000, and so we set
m = 1000. We set the parameters in remaining methods to the values that
achieve the best performance on the different datasets.

6.1. Finding k-NN using Normalized Kernel Similarity

In this section, we demonstrate that the proposed normalized Gaussian
kernel in the k-NN search task is superior in performance to the alternatives
studied. For each query, we took the 100 nearest neighbors from Euclidean
distance as the ground-truth. By decreasing the similarity threshold, we
obtained various precision and recall values using equations (27) and (28),
and then constructed precision-recall curves from them. In this setting, the
Gaussian kernel and the Euclidean distance are equivalent.

Figure 3 shows the results using both the Gaussian kernel and the nor-
malized Gaussian kernel as the similarity function. It can be seen that the
proposed normalized Gaussian kernel has significantly outperformed the non-
normalized counterpart in the precision recall curves.
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Figure 4: Precision-recall curves for kernel similarity preserving on SIFT-1M.
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Figure 5: Precision-recall curves for kernel similarity preserving on CIFAR-10.

6.2. Performance of Kernel Reconstructive Hashing

The proposed KRH method can in principle make use of an arbitrary ker-
nel function. We compared the method with several similar hashing methods
including BRE [14], KLSH [15] and AGH [24]. For all the methods studied,
we used the same Gaussian kernel as defined in equation (2). We aim to
evaluate the degree of similarity preservation based on the kernel. To this
end we defined τ as the average Euclidean distance between queries and their
50th nearest neighbors. For each query y, we set all points xi whose kernel
satisfies the condition κ(y,xi) � exp(�τ 2/2σ2) as the “true” neighbors. The
precision-recall curves under different code lengths are illustrated in Figures 4
and 5. The results show that our method has significant advantages over the
competitors on the SIFT-1M dataset. On the CIFAR-10 dataset, our method
outperforms the alternative methods by a significant margin when the preci-
sion is high. It should also be noted that KLSH is relatively sensitive to the
code length.
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Figure 6: Mean averaged precision of several unsupervised hashing methods on SIFT-1M
and CIFAR-10.

6.3. Comparison with State-of-the-art Hashing Methods

In this experiment, we focus on the KRH and KRHs methods with the
normalized Gaussian kernel, and compare them with several state-of-the-art
unsupervised hashing methods. These methods are locality sensitive hashing
(LSH) [5], spectral hashing (SH) [48], unsupervised sequential projection
learning hashing (USPLH) [45], iterative quantization (ITQ) [8], Isotropic
Hashing (IsoHash) [12] and k-means Hashing (KMH) [9]. We did not include
AGH in this experiment because it performs better in a supervised setting.

With respect to KRH, the top 2 percentile nearest neighbors in the Eu-
clidean distance were taken as the true positives as in the original paper [45].
The resulting recall curves are shown in Figures 7 and 8. Since we used hash
lookup, the recall values were obtained by evaluating the recall for the aver-
age first N Hamming neighbors for all the queries. Due to space limitations,
we do not show the precision-recall curves. Instead we use a more succinct
measurement, namely the mean averaged precision (mAP) which is the area
under the precision-recall curve, as shown in Figure 6.

The performance of the various methods being compared on the two
datasets follows the same trend. The proposed method has outperformed
all alternative methods by a clear margin. It can be observed from Fig-
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Figure 7: Recall curves for several unsupervised hashing methods on SIFT-1M.
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Figure 8: Recall curves of several unsupervised hashing methods on CIFAR-10.

ure 6 that the advantage offered by our method becomes larger when the
code length increases. This is because a large code length gives more precise
approximation of the normalized Gaussian kernel, which is reasonable for
k-NN search. Among the alternative methods, ITQ is the most competitive.
The performance of LSH grows rapidly with increasing code length. On the
other hand, USPLH performs more poorly with longer code-length. We also
found that our method can retrieve images with greater semantic similarity.
Figure 9 shows some sample retrieved images from CIFAR-10.

We evaluated the KRHs method in a supervised setting because the com-
bined AGH [24] method tends to capture semantic neighborhoods. Data
points that are close in the Hamming space, produced by AGH, tend to
share similar semantic labels. The MNIST, CIFAR and Imagenet datasets
were used for this experiment and the ground truths were defined by the cat-
egory information for the two labeled datasets. We compared the KRHs with
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Figure 9: Qualitative results on CIFAR-10. We use 64-bit hashing codes, and show the
false positives in red rectangle.

several state-of-the-art unsupervised hashing methods. These methods are
(PCAH) [5], spectral hashing (SH) [48], (SpH) [45] and iterative quantization
(ITQ) [8]. Tables 1, 2 and 3 show the results.

It is clear that KRHs gives good performance in its supervised mode,
especially with short hashing code lengths. Among the alternative methods,
ITQ is the most competitive. The performance of LSH grows quickly with
increasing code length, however, USPLH performs worse with longer code-
lengths.

To compare the efficiency of various methods, we show the training time
on CIFAR-10 in Table 4. All experiments were implemented using MATLAB
on a PC with Intel Core-i7 3.4GHz CPU, 16GB RAM. Since BRE and KLSH
cannot work on large training sets, the size of training set used for them were
based on the settings reported in [14, 15]. For the methods that use kernelized
data, we did not count the time for kernel computation as part of the training
time. It can be seen from Table 4 that BRE, USPLH and KMH are relatively
time consuming compared with the remaining methods.
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Table 1: MAPs of different methods for varying code lengths on CIFAR-10.

#bit 32 bits 48 bits 64 bits 96 bits 128 bits

KRHs 0.168 0.162 0.158 0.153 0.145
BRE [14] 0.156 0.148 0.158 0.161 0.163
PCAH [5] 0.132 0.129 0.123 0.120 0.118
AGH [24] 0.158 0.150 0.146 0.140 0.137
ITQ [8] 0.168 0.173 0.175 0.179 0.180
SpH [45] 0.152 0.158 0.162 0.165 0.168
SH [48] 0.125 0.129 0.126 0.125 0.125
KRH 0.124 0.128 0.130 0.132 0.135

Table 2: MAPs of different methods for varying code lengths on MNIST.

#bit 32 bits 48 bits 64 bits 96 bits 128 bits

KRHs 0.510 0.450 0.400 0.380 0.360
BRE [14] 0.380 0.400 0.410 0.430 0.430
PCAH [5] 0.250 0.220 0.210 0.190 0.180
AGH [24] 0.480 0.420 0.400 0.380 0.350
ITQ [8] 0.440 0.440 0.450 0.460 0.470
SpH [45] 0.310 0.310 0.320 0.370 0.380
SH [48] 0.275 0.250 0.220 0.230 0.220
KRH 0.282 0.303 0.337 0.385 0.396

6.4. Experiments with supervised information

The proposed KRH algorithm has been shown to work well without us-
ing label information. In this section, we demonstrate its performance on
labelled datasets. Linear discriminant analysis (LDA [42]) is taken as a base-
line to verify the efficacy of the proposed KRH algorithm. The proposed
method is also compared with several recently proposed supervised hashing
methods, such as semi-supervised hashing (SSH [44]) with sequential projec-
tion learning, ITQ with Canonical Correlation Analysis (CCA-ITQ [8]) and
kernel-based supervised hashing (KSH [23]).

Experiments were performed on the MNIST and CIFAR datasets. In
this experiment, 1000 labelled samples were randomly selected for super-
vised learning with SSH, KSH and the proposed KRHs, and all the available
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Table 3: MAPs of different methods for varying code lengths on Imagenet.

#bit 32 bits 48 bits 64 bits 96 bits 128 bits

KRHs 0.350 0.337 0.325 0.310 0.299
BRE [14] 0.143 0.190 0.228 0.243 0.272
PCAH [5] 0.108 0.106 0.106 0.105 0.104
AGH [24] 0.305 0.293 0.271 0.265 0.253
ITQ [8] 0.157 0.188 0.229 0.267 0.301
SpH [45] 0.096 0.125 0.156 0.178 0.193
SH [48] 0.103 0.105 0.109 0.110 0.110
KRH 0.125 0.139 0.165 0.173 0.189

Table 4: Training time (seconds) on CIFAR-10.

#bit 32 bits 64 bits 96 bits 128 bits

KRH 5.63 8.27 11.02 14.20
BRE [14] 53.61 279.23 492.81 931.54
KLSH [16] 7.83 8.21 8.58 8.75
AGH [24] 4.26 4.43 4.97 5.33
ITQ [8] 2.14 4.04 6.41 9.14

USPLH [45] 35.38 72.24 110.62 143.94
IsoHash [12] 0.35 0.51 0.72 1.61
KMH [9] 289.85 313.47 338.21 358.42
SH [48] 0.54 0.58 0.70 0.85
KRHs 9.51 12.67 15.31 19.29

labelled training data were used for the linear CCA-ITQ method. Since there
are only 10 classes with both datasets, the reduced dimensionality facilitated
by LDA (and thereby the binary code length) in the proposed KRHs was
fixed to 9. The results are reported in Figure 10.

It is clear that the proposed KRH with LDA has significantly improved
over the original KRH method. Among the supervised hashing methods,
KSH obtains the highest MAPs on both datasets. However, it requires much
larger binary code lengths to achieve comparable performance to the pro-
posed method. The proposed LDA-KRH has better performance than all
of the supervised methods other than KSH. The proposed supervised hash-
ing framework can therefore effectively leverage supervised information to
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Figure 10: Evaluation of KRH with supervised learning by LDA(LDA-KRH) on the
MNIST and the CIFAR datasets. Since there are only 10 classes in both datasets, the
reduced dimensionality by LDA (thereby the binary code length) is set to 9.

improve performance.

7. Conclusion

We have presented a novel normalized Gaussian kernel function and a
kernel reconstructive hashing framework KRH which can reconstruct the
kernel between data points using binary code. By considering the local dis-
tribution around the data points, the proposed kernel function is consistent
with k-NN search. The proposed adaptive kernel is more suitable for various
datasets. By incorporating this kernel into KRH, the performance of approx-
imate nearest neighbor search can be improved under the k-NN protocol. We
also modify our objective formulation from using multi-dimensional scaling
to using the Laplacian Eigenmap for supervised ground truth. We also ex-
tend KRH to be a supervised hashing scheme using preprocessing based on
linear discriminant analysis and have good performance with supervised in-
formation.

Though the adaptive kernel can handle the nonlinear data better, there is
loss in the hash process, which limits the final accuracy. We will try to reduce
the loss of embedding process to improve the performance in the future.
We will also try more kernel based models with the proposed normalized
Gaussian kernel. Since our method can reconstruct the pairwise similarities
required by a kernel function using binary codes, we believe its usage is not
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constrained on ANN search. For example, it can also be useful in scenarios
where fast kernel computation is an imperative.
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