An Experimental and Master Equation Study of the Kinetics of
OH/OD + SO$_2$: the Limiting High Pressure Rate Coefficients

Mark A. Blitz, a,b,* Robert J. Salter, a,c Dwayne E. Heard a,b and Paul W. Seakins a,b

a School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
c Now at Deloitte MCS, 3 Rivergate, Temple Quay, Bristol, BR1 6GD, UK

*E-mail: m.blitz@leeds.ac.uk
Abstract

The kinetics of the reaction OH/OD + SO$_2$ have been studied using a laser flash photolysis / laser induced fluorescence technique. Evidence for two-photon photolysis of SO$_2$ at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient, k_1, that are too large. The kinetics of the reaction OH(v=0) + SO$_2$ (T = 295 K, p = 25 – 300 Torr) were measured under conditions where SO$_2$ photolysis was taken into account. These results, together with literature data, were modelled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient, k_{1}^{∞}, was obtained from selected data and gives a value of $(7.8 \pm 2.2) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$, which is lower than that recommended in the literature. A parameterized form of $k_{1}([N_2],T)$ is provided. The OD(v=0) + SO$_2$ (T = 295 K, p = 25 – 300 Torr) data are reported for the first time and master equation analysis reinforces our assignment of k_{1}^{∞}.
1. Introduction

In our companion paper the limiting high-pressure rate coefficient, k_1^∞ for the reaction:

$$\text{OH} + \text{SO}_2 (+ \text{M}) \rightarrow \text{HOSO}_2 (+ \text{M})$$ \hspace{1cm} R1

was investigated by measuring the removal rate coefficient of vibrationally excited OH/OD in the presence of SO$_2$ as a function of temperature. This study revealed that the removal rate coefficient increased with vibrational level, which implies that the OH/OD($v = 1$) + SO$_2$ removal rate coefficient, previously used as an estimate of the high pressure limit, k_1^∞ via the proxy method, is an overestimation. Further analysis of these data was able to identify k_1^∞, albeit with significant error, $(7.2 \pm 3.3) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$. This value for k_1^∞ is smaller than the recommended literature values from IUPAC and JPL, $(2.0^{+0.2}_{-0.1} \pm 0.4) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$, respectively.

In this paper we report data on k_1 as a function of pressure, coupled with an extrapolation to the high pressure limit using a master equation analysis, which reinforces our lower value for k_1^∞ and highlights the problems in the literature data.

Reaction R1 is pressure dependent and is in its falloff regime at atmospheric pressure and below. The kinetics of R1 in this pressure regime have been extensively studied and Rice-Ramsperger-Kassel-Markus (RRKM) modelling of these data has been used to recommend the limiting high-pressure rate coefficient: Wine et al. recommended a value for k_1^∞ between 260 and 420 K equal to 1.3×10^{-12} (T/300 K)$^{-0.7}$ cm3 molecule$^{-1}$ s$^{-1}$ and Cobos and Troe recommended $k_1^\infty = 2.7 \times 10^{-12} \exp(-80K/T)$ cm3 molecule$^{-1}$ s$^{-1}$ ($k_1^\infty(300 \text{ K}) = 2.1 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$). More recently Fulle et al. measured k_1 over an extended pressure range up to 96 bar and their estimate of k_1^∞ was significantly larger than the above recommendations, and a significant positive
activation energy was observed, contrary to the recommendations. The evaluations by IUPAC\(^3\) and JPL\(^4\) recommended the values: \(k_1^\infty (250-300 \text{ K}) = 2.0 \) and \(1.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) and \(k_1(1 \text{ bar N}_2, 298 \text{ K}) = 8.9 \) and \(9.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), respectively.

In this study the two-photon 248 nm photolysis of SO\(_2\) is quantified, and it is suggested that previous studies have overestimated \(k_1^\infty\) as details of this effect (single or two-photon photolysis) were not taken into account. OH(v =0) + SO\(_2\) rate coefficients were determined under conditions that took two-photon SO\(_2\) photolysis into account, and then master equation analysis (using the Master Equation Solver for Multi Energy-well Reactions (MESMER) code\(^1^1\)) was used to fit these data and selected literature data in order to determine \(k_1^\infty\). OD(v =0) + SO\(_2\) rate coefficients were also determined and these represent the first such measurements, but no MESMER analysis has been performed with this data. Both the current and the companion paper returned a consistent value for \(k_1^\infty\), which is significantly lower than the currently recommended value.

2. Experimental

Photolysis / Laser Induced Fluorescence

The experimental methods are similar to those described previously\(^1^, ^1^2\) thus only the salient features are highlighted. The apparatus used to perform the OH/OD(v = 0) + SO\(_2\) study was similar to that used in the vibrationally excited state OH/OD(v = 1,2,3) kinetics study in the companion paper. An excimer laser (Lambda Physik, LPX 210) was used as the photolysis laser, with the pulse energy controlled using a combination of the high voltage power supply and metal gauze attenuation filters. An energy meter
(JMAX11, Molecron) was used to measure the output of the excimer laser. The ground state hydroxyl (OH/OD) radical was monitored by on-resonant laser induced fluorescence (LIF) at ~ 308 nm using the doubled output from an excimer laser (Lambda Physik, LPX 100) pumped dye laser (Lambda Physik, FL2002), which operated with the dye Rhodamine B. The subsequent fluorescence \((A^2\Sigma^+ \rightarrow X^2\Pi_i) \) was passed through a 308 nm interference filter and was detected using a photomultiplier (Electron Tubes 9813); the resultant signal was integrated and digitized on a LeCroy (Waverunner LT372) oscilloscope before being transferred for storage on a PC. Over the region 280-290 nm, the laser excitation wavelength conventionally used for off-resonant OH detection, fluorescence from other species was detected. Hence, ground-state OH/OD was detected resonantly at 308 nm; although there was significant scattered probe laser light, it did not significantly affect the later time hydroxyl fluorescence signal. A LabVIEW program controlled the delay generator which scanned the time delay between the photolysis and probe laser, and recorded the OH/OD signal via the oscilloscope. Typically, the time delays were scanned over 200 - 400 points, with each point being the average of up to ten samples. The lasers were fired at a pulse repetition frequency of 5 Hz.

The gases were introduced into the reaction cell through a mixing manifold. Control of the gas flow was regulated by calibrated mass flow controllers. After the mixing manifold, the gases entered a ten-way cross stainless steel reaction cell. The pressure in the cell was regulated by throttling the exit valve of the cell and monitored via a capacitance manometer. The total flow was greater than 10 sccm per Torr total pressure, ensuring that the gases were swept through the cell between laser pulses.
SO₂ and (CH₃)₃COOH (Sigma Aldrich, 99.9% and 70%, respectively) were purified by first degassing and then diluted in He. H₂/D₂ (Air Products, 99.999%) and He (BOC, CP grade 99.999%) were used directly from the cylinder.

Master Equation Analysis

Master equation calculations have been carried out using the program MESMER (Master Equation Solver for Multi Energy-well Reactions) where the required input parameters for the stationary points were obtained from a recent high level ab initio calculation on HOSO. The application of the master equation to reactions in the gas phase has been extensively discussed elsewhere. Here, the main points are summarized and the manipulations required to accommodate second order systems are discussed.

The system is set up by dividing the energy of HOSO into grains, and the time evolution of the system is then obtained by solving the energy grained master equation:

$$\frac{d}{dt} \mathbf{p} = \mathbf{Mp}$$ \hspace{1cm} (E1)

where \(\mathbf{p} \) is the population vector containing the population, \(n(E) \), of energy grains from HOSO and \(\mathbf{M} \) is the matrix that describes collisional energy transfer between grains and reaction from grains, and also includes a bimolecular source term in order to describe formation of HOSO via bimolecular reaction. Eqn (E1) represents a set of coupled differential equations and was solved to yield:
\[\mathbf{p} = \mathbf{U}\lambda^{-1}\mathbf{p}(0) \]

(E2)

where \(\mathbf{p}(0) \) contains the initial conditions for each grain, \(\mathbf{U} \) is an eigenvector matrix obtained from the diagonalization of \(\mathbf{M} \), and \(\lambda \) is the diagonal matrix of corresponding eigenvalues, where the smallest eigenvalues are the chemically significant eigenvalues. Time-dependent concentrations of different species were obtained by summing the normalized populations from Eqn (E2) over the appropriate grains. The phenomenological rate coefficients were extracted from the chemically significant eigenvalues.

In the MESMER calculation for the \(\text{OH} + \text{SO}_2 \) association reaction, the microcanonical rate coefficients for dissociation of the \(\text{HOSO}_2 \) adduct, \(k(E) \), have been calculated using the pragmatic approach of taking the Inverse Laplace Transform (ILT) of the pressure limiting rate coefficient, \(k_1^\infty(T) \). This has an exact solution when \(k^\infty(T) \) can be represented by the form

\[k^\infty(T) = A \left(\frac{T}{T_0} \right)^n \exp(-E_a / RT) \]

(E3)

In the present work, \(T_0 \) was set to 298 K and \(E_a \) set to 0 kJ mol\(^{-1}\), so the temperature dependence is wholly controlled via \(n \). A value of \(n \) equal to 0.1 was determined over the temperature range 295 – 800 K in the companion paper. This approach has the advantage that the parameters defining the high pressure limiting rate coefficient, a principal target of the present two papers, are determined directly from the MESMER fit to the experimental data. The vibrational and rotational constants together with the \(\text{HOSO}_2 \) adduct zero point energy were fixed to the literature and systematic Lennard-Jones parameters were chosen. In the SI the input parameters for this MESMER calculation are given.
The rates of reaction from OH + SO\textsubscript{2} into a particular grain of HOSO\textsubscript{2} were determined by detailed balance19. An exponential down model, coupled with detailed balance, was used for the probabilities of collisional energy transfer between the grains, based on the parameterization $<\Delta E>_{\text{down}} = <\Delta E>_{\text{down,298}}(T/298 \text{ K})^m$, where $<\Delta E>_{\text{down}}$ is the average transferred in a downward direction20. All of the available data were fitted to the master equation model, using the minimization of χ^2:

$$\chi^2 = \sum_{i=1}^{N} \frac{(k_{i,\text{exp}} - k_{i,\text{model}})^2}{\sigma_i^2}$$

(E4)

as the criterion of best fit. Here $k_{i,\text{exp}}$ is the ith experimental rate coefficient, $k_{i,\text{model}}$ is the model result under the same conditions of T and p, σ_i is the standard deviation of the experimental rate coefficient and N is the total number of experimental measurements. The analysis was conducted, as were the experiments, under pseudo first order conditions ([OH] $<<$ [SO\textsubscript{2}]). The bimolecular forward rate coefficient, k_{bim} was used in the fits and [SO\textsubscript{2}] was given a fixed value of 10^{15} molecule cm-3. The variable parameters in the fitting process were A, n, $<\Delta E>_{\text{down,298}}$. The best available experimental data (literature values and the values determined here) were all simultaneously used in a global fit.

3. Results

SO\textsubscript{2} + 2hv \rightarrow O(1D) + SO

The two photon dissociation of SO\textsubscript{2} (P1) involves initial promotion of the SO\textsubscript{2}(X) ground state to the long-lived B-state (τ=10-100 μs); the second photon further excites
SO\textsubscript{2} from this B-state to a dissociative state, which rapidly leads to products. Effenhauser et al.21 studied this process at 248 nm using photofragment translational spectroscopy and observed 9 distinct processes:

\[
\text{SO}_2 + 2\ h\nu_{248\ \text{nm}} \rightarrow \text{SO} (X^3\Sigma^-), (a^1\Delta), (b^1\Sigma^+) + \text{O} (^1\text{D}), (^3\text{P}) \quad (\text{P1a})
\]

\[
\rightarrow \text{O}_2 (X^3\Sigma_g^-) + \text{S} (^3\text{P}) \quad (\text{P1b})
\]

\[
\rightarrow \text{O}_2 (X^3\Sigma_g^-) + \text{S} (^1\text{D}) \quad (\text{P1c})
\]

\[
\rightarrow \text{O}_2 (a^1\Delta_g) + \text{S} (^1\text{D}) \quad (\text{P1d})
\]

but were unable to quantify the contributions from each channel.

\textbf{Figure 1.} OH production from P1 and R2 as a function of excimer laser intensity. The duration of the excimer laser pulse was 20 ns. The red line is a quadratic function fitted to the data.

The cross-section for P1a to produce O(^1\text{D}) was determined by measuring the OH signal as a function of laser energy:

\[
\text{O} (^1\text{D}) + \text{H}_2 \rightarrow \text{OH} (v = 0\text{--}4) + \text{H} \quad (\text{R2})
\]

where [H\textsubscript{2}] >> [SO\textsubscript{2}] to ensure O(^1\text{D}) is converted to OH, i.e \([\text{OH}]_0 = [\text{OH}]_{22}^\text{OH}(v = 1,2,3)\) in the presence of SO\textsubscript{2} rapidly cascade down to OH(v = 0), which is slowly lost.
primarily via reaction with SO$_2$ at ~25 Torr total pressure. Hence, the total amount of OH in the system is readily determined from the OH(v = 0) time trace. Figure 1 shows that the [OH] concentration increases with a quadratic dependence on laser fluence, consistent with a two photon process. In our previous paper on two photon dissociation of benzene we showed this quadratic dependence can be used to assign the second photon absorption cross-section, if the first photon absorption cross-section and the absolute radical concentration are known. The first absorption cross-section in SO$_2$ at 248 nm, σ_1, is 6×10^{-20} cm2 molecule$^{-1}$ and allows the concentration of excited state SO$_2$, SO$_2^*$, to be calculated:

$$[SO_2^*]_0 = [SO_2]_0 \sigma_1 F$$ \hspace{1cm} (E5)

where F is the laser fluence. The second photon absorption from the SO$_2^*$ state leads to OH via, P1a and R2, with a concentration given by:

$$[OH]_0 = [SO_2^*]_0 \sigma_2 F$$ \hspace{1cm} (E6)

where σ_2 is the second photon absorption cross-section leading to the formation of O(1D), P1a. Equations 5 and 6 lead to the OH concentration given by:

$$[OH]_0 = [SO_2]_0 \sigma_1 \sigma_2 F^2$$ \hspace{1cm} (E7)

The OH concentration (= [O(1D)]) can be assigned by comparison to a known OH precursor. In the present study the absolute OH concentration was assigned by comparison to the OH signal from 248 nm photolysis of known concentrations of t-(CH$_3$)$_3$COOH:

$$t-(CH_3)_3COOH + h\nu_{248\text{ nm}} \rightarrow OH(v=0) + \text{co-products} \hspace{1cm} (P2)$$

Fitting equation E7 to the data in Figure 1 gives $\sigma_2 = (5.5 \pm 2.0) \times 10^{-18}$ cm2 molecule$^{-1}$. This cross-section is smaller than the total absorption cross-section as it is only for the channel that produces O(1D). As $\sigma_2 > \sigma_1$, absorption of the second photon occurs much
more readily than the first, and consequently a significant fraction of \(\text{SO}_2 \) absorption results in photodissociation. In fact, probing \(\text{OH}(v = 0) \) at 282 nm was not possible as the \(\text{OH} \) fluorescence signal was overwhelmed by signal from other species, presumably from \(\text{SO} \). In addition, a small signal, \(\approx 100 \mu \text{s} \) lifetime, was observed from photolysis of \(\text{SO}_2 \) alone and was assigned to emission from excited \(\text{SO} \). This background signal was accounted for by recording a kinetic trace without the probe.

\(\text{OH/OD}(v=0) + \text{SO}_2 \)

Some \(\text{OH} (v =0) + \text{SO}_2 \) experiments were carried out using the precursor \(\text{t-} \)(CH\(_3\))\(_3\)COOH\(^{25}\). The \(\text{OH} \) from this precursor was observed to depend linearly on laser photolysis energy, and via its 248 nm absorption cross-section, was used to calibrate the \(\text{OH} \) concentration in the \(\text{SO}_2 \) two photon photolysis experiments. To counteract the problem of reaction between \(\text{OH} \) and photoproducts from \(\text{SO}_2 \) photolysis while studying \(\text{OH}(v=0) + \text{SO}_2 \), it was arranged that the photolysis laser energy was adjusted, via wire mesh attenuators, so that the amount of \(\text{SO}_2 \) photolysis products were constant as the \(\text{SO}_2 \) concentration was varied. Hence, the reaction between \(\text{OH} \) and photoproducts was present in the intercept of the bimolecular plots and not in the slope.

A few \(\text{OH}(v=0) \) experiments and all the \(\text{OD} (v=0) \) were carried out using the same methods used to generate the vibrationally excited state, i.e. photolysis of \(\text{SO}_2/\text{H}_2/\text{D}_2 \), where the photolysis energy was again suitably adjusted to ensure that the photolysis products were constant as the \(\text{SO}_2 \) concentration was varied. It is acknowledged that this photolysis laser adjustment, see Figure 1, was only crudely achieved by mesh filters. It is estimated the contribution from \(\text{OH} + \text{SO}_2 \) photo-products was kept constant to within 30 \%.
Figure 2. OH(v=0) + SO$_2$ (2.35 \times 1016 molecule cm$^{-3}$) at 50 Torr total pressure, helium. t-(CH$_3$)$_3$COOH was used to generate ground-state hydroxyl radical. Analysis of these data (E8) yields $k_{obs} = (3643 \pm 63)$ s$^{-1}$, where the error is statistical at the 1 σ level. The red line is the best fit to the data.

The pressure and temperature dependence of the reaction OH/OD(v=0) + SO$_2$ was studied via experiments using helium buffer gas. Photolysis of t-(CH$_3$)$_3$COOH only produced OH in its ground vibrational state, so that the decay of [OH(v=0)] in the presence of SO$_2$ was observed to obey single exponential behaviour (see Figure 2):

$$[\text{OH}(v = 0)] = [\text{OH}(v = 0)]_0 \exp(-k_{obs}t) + B \quad (E8)$$

where k_{obs} is the pseudo-first-order rate coefficient and is equal to $k_1[\text{SO}_2] + k'_{\text{other}}$; k'_{other} should be reasonably constant for all experiments as the photolysis energy was suitably adjusted to ensure that the amount of SO$_2$ photolysis products were constant. B is a
Figure 3. OD(v=0) from the photolysis of SO$_2$ (6.05 \times 1015 cm$^{-3}$) / D$_2$ at a total pressure of 100 Torr, helium buffer. At early times there is growth due to relaxation from higher vibrational states, OD(v >0). Soon after the maximum in the OD signal the decay is described by a single exponential (blue curve), which via Eqn (E8) gives $k_{obs} = (2107 \pm 60)$ s$^{-1}$. The red line is a biexponential fit to the data and gives $k_{obs} = (2232 \pm 69)$ s$^{-1}$.

parameter that accounts for the small amount of background fluorescence from non-OH species, see Figure 2. The reaction OD(v=0) + SO$_2$ was studied using the photolysis of SO$_2$/D$_2$ as the radical source. While this method produced vibrationally excited OD radicals, the analysis of OD(v=0) data was straightforward as the vibrationally excited radicals relax much faster than OD(v=0) is removed, see companion paper. This can be seen in Figure 3, where, after only a short time, relaxation is complete and then the data are described by a single exponential, (E8), yielding k_{obs}. In Figure 3, a biexponential fit is also shown – see companion paper for this equation and how it accounts for vibrational relaxation – in order to show that soon after the maximum in the OD signal
the biexponential and exponential fits converge. A few experiments on OH(v=0) were also carried out using photolysis of SO2/H2 as the radical source, and produced similar results to using t-butylhydroperoxide photolysis. Plots of k_{obs} versus [SO2] were fitted to a straight-line where the slope is equal to the bimolecular rate coefficient, k_1. An example of such a plot is given in Figure 4. The bimolecular rate coefficients were then determined over a range of pressures: 25 - 400 Torr and 295 K, see Figure 5. All the results are summarized in Tables 1 (OH) and 2 (OD).

![Figure 4](image-url)

Figure 4 Bimolecular plot of k_{obs} vs [SO2] for OH(v=0) + SO2 at 50 Torr total pressure, helium buffer; $k_1 = (1.28 \pm 0.03) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$.
Figure 5. Literature rate coefficients, k_1, for the reaction $\text{OH} + \text{SO}_2$, at room temperature, where helium is the bath gas. Our results for OD + SO$_2$ are also included. The solid line is a master equation simulation for OH + SO$_2$ using helium and the parameters from the fit to the $k_1[M]$ data in Figure 7, the most reliable data set, see text for details.

In general our values for k_1 are within a factor of ~2 of Wine et al.8, but as can be seen from Figure 5 (note that this is log-log plot), the low pressure flow tube data from Lee et al., Leu and Martin et al.5-6,26 are in serious disagreement based on extrapolation from the high-pressure flash photolysis data. It is noted that all the low-pressure flow tube data are in good internal agreement.5,26-29 This discrepancy between the low and high pressure results is further discussed below when full master equation calculations are applied to the data to determine the best estimate for $k_1^{\infty}(T)$. Also from Figure 5, it can be seen that the rate coefficients from Fulle et al.10 increase almost linearly all the way up to 96 bar and from these data a value $k_1^{\infty} = 3.6 \times 10^{-12}$ cm3...
molecule$^{-1}$ s$^{-1}$ was assigned. This result is wholly incompatible with the master equation analysis - see below - where a much lower k_1^∞ is determined from the experimental data. It is possible that Fulle et al. had not considered SO$_2$ photolysis - see above - and hence did not account for additional OH removal by radical-radical reactions and therefore overestimated k_1.

5. Discussion

Interpretation of the results for OH(v=0) via master equation analysis

As discussed in the introduction, there is an inconsistency in the experimental values for k_1 for OH(v=0) + SO$_2$ as a function of pressure and temperature, which means there is a substantial uncertainty in the value of k_1 used to model gas-phase SO$_2$ oxidation in the atmosphere. The analysis of the v = 1, 2, 3 kinetics in the companion paper indicate a lower value for k_1^v(k_1^∞=(7.2 ± 3.3) \times 10$^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$) than is currently recommended in the literature, ((2.0$^{+2.0}_{-1.0}$)3 or (1.6 \pm 0.4)4 \times 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$). To examine k_1 in more detail, the measured rate coefficient for OH(v=0) + SO$_2$ from this study, together with those from the literature, have been used in a master equation analysis to determine the most consistent values for the system, which should, in turn, be consistent with the vibrationally excited state data reported in the companion paper.

Using the in-built Marquardt algorithm in MESMER, data fitting to the present dataset and the literature has been performed, where the adjustable parameters are A, n ($E_a = 0$) and the collisional energy transfer parameter, $<\Delta E_{\text{down}}>$. MESMER can fit to
multiple gases, with differing values of $\langle \Delta E_{\text{down}} \rangle$ so that kinetic data with different buffer gases (helium, argon, nitrogen and SF$_6$) have been simultaneously fitted. Figure 5 shows a master equation simulation for helium using the parameters from the fit to the $k_1[M]$ data in Figure 7, the most reliable data, see below. This simulation indicates the experimental data are within a factor of two of each other, except for the high pressure values from Fulle et al. and the low-pressure flow tube data. From this analysis alone it is evident that the low-pressure flow tube data and the high-pressure flash photolysis data are incompatible with the master equation model of $k_1[M]$. Various subsets of kinetic data have been analysed using MESMER in order to check for consistency and to quantify the discrepancy between the data subsets. In the SI the MESMER input file, which contains all the kinetic data considered in this analysis, is provided.

The high-pressure flash photolysis experiments can, potentially, result in photolysis of SO$_2$ to form radicals – see above – which are reactive towards OH and hence enhance the measured rate coefficients. The low-pressure flow tube experiments do not have any SO$_2$ photolysis problems, but do generate OH from titration reactions, either H + NO$_2$/O$_3$, so that there is the possibility that NO$_2$/O$_3$ can re-generate OH, which leads to lower rate coefficients.

To examine potential problems with the higher pressure (5 – 700 Torr) flash photolysis data, the literature and the present results were analysed and a plot of the measured and calculated k_1 is shown in Figure 6. From this figure it is evident that the fit to the data is scattered (a good example of such analysis, where from many studies the slope is close to 1.0, i.e. good agreement between measured and calculated, can be
found in reference 30), especially the SF\textsubscript{6} data from Wine et al8 that indicate the measured rate coefficients are significantly larger than the calculated. In this calculation A, n and \(<\Delta E>_{\text{down}} \) were floated freely, where each buffer gas had its own independent \(<\Delta E>_{\text{down}} \). The result from this fitting indicates that over this pressure range \(k_1^\infty \) is defined but fits for each buffer gas lead to different values for \(k_1^\infty \), hence the different slopes for each gas in Figure 6. If \(k_1^\infty \) were not defined then \(<\Delta E>_{\text{down}} \) for each gas could be adjusted to obtain a near perfect fit, but \(k_1^\infty \) is defined and no better fit to the data in Figure 6 is possible.

Figure 6. A plot of \(k_1 \) (calculated) from the master equation analysis of flash photolysis data versus \(k_1 \) (experimental). It can be seen that the literature \(k_1 \) experimental data are generally higher than the calculated value, i.e. below the line with a slope equal to one. The fitted energy transfer parameters, \(<\Delta E>_{\text{down}} \), are given in brackets after the bath gas.

Removal of the SF\textsubscript{6}, N\textsubscript{2} and He data from Wine et al8 together with the data from Paraskevopoulos et al7 yields a good fit as evidenced in Figure 7. The reason why the SF\textsubscript{6} data from Wine et al8 returns \(k_1 \) that are significantly larger might be related to the
fact that SF$_6$ has small, but significant, absorption cross-sections in the VUV region30 where H$_2$O was photolysed to produce OH, which leads to additional OH chemistry.

However, the reason why only the Ar data from Wine et al.8 can be fitted well is unclear. Also included in Figure 7 are the data from Cox31 where k_1 was determined from the continuous lamp photolysis of HNO$_2$ in the presence of SO$_2$. The low intensity of the lamp ensures that there is no SO$_2$ photolysis in the system, which is not the case in all the laser flash photolysis experiments. The fit to the data in Figure 7 returned $k_1^\infty (295 \text{ K}) = (7.8 \pm 2.2) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, where the temperature dependence was fixed and equal to $(T/298)^{0.1}$; this value of n is from our OH/OD($v=1,2,3$)+SO$_2$ data, see the companion paper, and is required as most of the temperature-dependent data have been removed from the analysis. This is our best determination of k_1^∞.

The OD + SO$_2$ data, see Figure 5 and Table 2, were also fitted using MESMER. The input parameters are similar to OH + SO$_2$ except for three vibrations and the zero point energy adjustment of the well-depth; input parameters are given in the SI. An excellent fit was obtained, similar to Figure 7, and yielded the parameters: $k_{1,D}^\infty (295 \text{ K}) = (8.7 \pm 2.6) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $\langle \Delta E \rangle_{\text{down}} = 197 \pm 48 \text{ cm}^{-1}$. As the kinetic isotope in reaction R1 is reasonably expected to be close to zero, $k_{1,D}^\infty$ and k_1^∞ should be the same. Within error, this is the case and hence provides further evidence of our assignment of k_1^∞.

19
Figure 7. A plot of \(k_1(\text{calculated}) \) versus \(k_1(\text{experimental}) \) from the MESMER fit to selected flash photolysis data, see text. The slope is equal to 0.97 and the returned value \(k_1^\infty(295 \text{ K}) = (7.8 \pm 2.2) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \), 2\(\sigma \). The fitted energy transfer parameters, \(\Delta E_{\text{down}} \), are given in brackets after the bath gas.

The low-pressure flow tube data have been examined by combining our dataset from Figure 7, with the flow tube data (helium bath gas) from Leu and Lee et al.\(^5\)\(^6\) and fitted by MESMER, where \(k_1^\infty \) was fixed to \((7.8 \pm 2.2) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and the helium energy transfer parameter is also fixed, \(\Delta E_{\text{down}} = 165 \text{ cm}^{-1} \).
Figure 8. A log-log plot of k_1 (calculated) versus k_1 (experimental) from the MESMER analysis of the data in Figure 7 and the flow tube data from 5, 26, 29 where helium is the buffer gas and its $<\Delta E>_{\text{down}}$ parameter is fixed to 165 cm$^{-1}$. The black line is a slope of 1.0.

The quality of the fit is seen in Figure 8 via a log-log plot, where it can be seen that the low pressure data are poorly fitted with experimental values up to a factor of 3 below the calculated values. A possible explanation of this observation is that the products of the reaction recycle back to OH and hence lower the observed k_1. Some evidence to support this explanation is the observation by Lee et al. 5 of a factor two lower rate coefficient when O$_2$ was the buffer gas compared to nitrogen. In general, the buffer gas efficiency of O$_2$ and N$_2$ are similar. In the study by Leu 26, attempts to observe products, HOSO$_2$, SO$_3$ and H$_2$SO$_4$, via mass spectrometry were unsuccessful, and it was suggested that “these molecules may condense and/or react with H$_2$O on the surface of the flow tube.”

Overall, it is concluded that the data shown in Figure 7 yield the best kinetic parameters on the OH + SO$_2$ reaction and $k_1^\infty(295 \text{ K}) = (7.8 \pm 2.2) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$. In general, k_1 from the flash photolysis studies are too large because SO$_2$ photolysis
has not been taken into account and the flow tube data yields k_1 that are too small, possibly arising from OH recycling. Therefore only a limited dataset has been used to determine $k_1(p,T)$. $k_1^\infty(295\ \text{K})$ is reasonably determined but its temperature dependence is much more uncertain. Hence the temperature dependence has been fixed to $(T/298)^{0.1}$, determined from our OH(v=1,2,3)+SO$_2$ data, which was studied between 295 – 810 K, see companion paper. The current IUPAC and JPL recommended values for k_1^∞ are $(2.0^{+2.0}_{-1.0})$ and $(1.6 \pm 0.4) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$, which are over a factor two larger than the current determination. But this recommendation is influenced by data that are affected by SO$_2$ photolysis, see above, and our previous rate coefficient determination for OH(v=1)+SO$_2$, which was assumed to be a proxy for k_1^∞ but is actually an overestimation as it did not account for direct energy transfer, see the companion paper.

Using our optimum parameterisation of $k_1^\infty(T)$ of $(7.8 \pm 2.2) \times 10^{-13}$ (T/298)$^{0.1}$ cm3 molecule$^{-1}$ s$^{-1}$, MESMER has been used to generate a dataset that has been parameterised using a Troe formalism32 using the same representation in a previous paper on CH$_3$O$_2$ + NO$_2$.32 This dataset has been produced using an estimated energy transfer parameter for nitrogen (N$_2$ and O$_2$ are usually similar) equal to $\langle \Delta E_{\text{down}}(\text{N}_2) \rangle$/cm$^{-1} = 600 \times (T/298)^{0.3}$; the value from data fitting to Figure 7 is based only on one nitrogen data point from Cox, so has a very large error bar. These MESMER simulations have been carried out over the temperature range 200 – 600 K and Table 3 gives the derived Troe parameters for nitrogen. The results are shown in Figure 9.
Figure 9. Troe fit (cross) to the dataset (symbols) generated from the MESMER simulation of $k_1^\infty(T) = (7.8 \pm 2.2) \times 10^{-13} (T/298)^{0.1} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ and $<\Delta E_{\downarrow}(\text{N}_2)/\text{cm}^3> = 600 \times (T/298)^{0.3}$ over the temperature and pressure range 200 – 600 K and 10^{15} - 10^{22} molecule cm3.

From Figure 9 it can be seen that these Troe fits are an adequate description of the master equation output. Currently, the IUPAC3 and JPL4 recommended rate coefficient at 298 K and 1 bar N$_2$ are 8.9 and $9.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively, while the present study recommends a rate coefficient of $5.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. This difference translates itself in both the low and high-pressure limiting rate coefficients: $k_1^\infty = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (present) versus $k_1^\infty = 2.0$ and $1.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (IUPAC and JPL); $k_1^0(\text{N}_2,T) = 1.10 \times 10^{-30} \times (T/298)^{-3.62} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$ (present) versus $k_1^0(\text{N}_2,T) = 2.5 \times (T/300)^{-2.6}$ and $3.3 \times 10^{-31} \times (T/298)^{-4.3} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$ (IUPAC and JPL). Both k_1^∞ and $k_1^0(\text{N}_2)$ from the current study are markedly different to the recommended IUPAC and JPL values. The temperature dependence of $k_1^0(\text{N}_2)$ is distinctly negative and while the present value, $(T/300)^{-3.6}$, is
based on a tuned master equation model the IUPAC and JPL values are based on fits to the literature.

6. Conclusions and summary

(i) The rate coefficients for the removal OH(ν=0) by SO₂, k₁, has been studied using laser flash photolysis coupled with laser induced fluorescence. It is evident that the 248 nm excimer laser fluences used induced two photon dissociation of SO₂ to O(^1D). The second photon absorption to give O(^1D), σ₂, has been determined (σ₂ = (5.5 ± 2.0) × 10⁻¹⁸ cm² molecule⁻¹). Other photoproducts from this two photon photolysis contributed to the decay of OH; this interference was minimised by reducing the laser energy as [SO₂] was increased to generate a constant photolysis yield of all species.

(ii) Experiments were carried out where the photolysis energy of the laser was adjusted to keep the amount of SO₂ photolysis constant and hence determine a more accurate value of k₁.

(iii) Master equation analysis using MESMER has been used to fit the current dataset and that from the literature. From this it is apparent that much of the flash photolysis data are contaminated from SO₂ photolysis, and results in k₁ values that are too large. A much reduced dataset was used in the determination k₁°. This k₁° value was reinforced from the MESMER analysis of the OD + SO₂ data.

(iv) The master equation model of k₁(p,T) was used to fit to the low pressure flow tube data and a poor fit was observed. At low pressures the experimental data were
much smaller than the predicted. It is speculated that this results from an uncharacterised OH recycling mechanism.

(v) Comparison of k_1 from this study and the currently recommended values from IUPAC and JPL shows poor agreement: our value for $k_{1\infty}$ is over a factor of two smaller and our value for k_1^0 is over a factor of three larger.

(vi) Using parameters from fitting to our refined dataset, the output from a master equation simulation for nitrogen buffer gas has been parameterized using a Troe-formalism to provide an analytical description of k_1 over the range $T = 200 – 600$ K and $[N_2] = 10^{15} – 10^{21}$ molecule cm$^{-3}$. At 298 K our current estimate and the recommended values from IUPAC and JPL for $k_1(1$ Bar $N_2)$ is equal to 5.8 and $(8.9$ and $9.5) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$, respectively.

Acknowledgements

We thank Mike Pilling for providing helpful discussions and proof reading this manuscript, and Diogo Medeiros for performing calculations on OD + SO$_2$. Also, we are grateful to NERC (NE/K005820/1) and EPSRC (GR/T28560/01) for funding.

Supporting Information Available

The supporting information contains the input file for the MESMER master equation analysis.
References

30. Pradayrol, C.; Casanovas, A. M.; Deharo, I.; Guelfucci, J. P.; Casanovas, J. Absorption Coefficients of \(\text{SF}_6, \text{SF}_4, \text{SOF}_2 \) and \(\text{SO}_2\text{F}_2 \) in the Vacuum Ultraviolet. J. De Physique Iii 1996, 6, 603-612.
32. McKee, K.; Blitz, M. A.; Pilling, M. J. Temperature and Pressure Studies of the Reactions of \(\text{CH}_3\text{O}_2, \text{HO}_2, \) and \(1,2-\text{C}_3\text{H}_6\text{O}_2 \) with \(\text{NO}_2 \). J. Phys. Chem. A 2016, 120, 1408-1420.
Table 1. Rate coefficients for OH \((\nu = 0) + \text{SO}_2\) at various pressures in He. The uncertainties are 1σ standard deviations.

<table>
<thead>
<tr>
<th>T / K</th>
<th>[He] / Torr</th>
<th>(10^{13} k_1) / (cm(^3) molecule(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td>24.9</td>
<td>0.83 ± 0.08</td>
</tr>
<tr>
<td>295</td>
<td>52.2</td>
<td>1.71 ± 0.17</td>
</tr>
<tr>
<td>295</td>
<td>52.5</td>
<td>1.28 ± 0.13</td>
</tr>
<tr>
<td>295</td>
<td>100.3</td>
<td>1.68 ± 0.17</td>
</tr>
<tr>
<td>295</td>
<td>104</td>
<td>2.11 ± 0.23</td>
</tr>
<tr>
<td>295</td>
<td>154</td>
<td>2.31 ± 0.21</td>
</tr>
<tr>
<td>295</td>
<td>202.2</td>
<td>2.77 ± 0.28</td>
</tr>
<tr>
<td>295</td>
<td>209.9</td>
<td>3.13 ± 0.31</td>
</tr>
<tr>
<td>295</td>
<td>301.2</td>
<td>3.22 ± 0.63</td>
</tr>
</tbody>
</table>

Table 2. Rate coefficients for OD \((\nu = 0) + \text{SO}_2\) at various pressures in He. The uncertainties are 1σ standard deviations.

<table>
<thead>
<tr>
<th>T / K</th>
<th>[He] / Torr</th>
<th>(10^{13} k_1) / (cm(^3) molecule(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td>27.7</td>
<td>1.17 ± 0.12</td>
</tr>
<tr>
<td>295</td>
<td>49.7</td>
<td>1.80 ± 0.18</td>
</tr>
<tr>
<td>295</td>
<td>103.1</td>
<td>2.36 ± 0.24</td>
</tr>
<tr>
<td>295</td>
<td>154.9</td>
<td>3.13 ± 0.31</td>
</tr>
<tr>
<td>295</td>
<td>200.3</td>
<td>3.15 ± 0.32</td>
</tr>
<tr>
<td>295</td>
<td>303.4</td>
<td>4.07 ± 0.41</td>
</tr>
</tbody>
</table>

Table 3. OH + SO\(_2\) Troe parameters\(^{33}\) for nitrogen buffer gas.

\(k_1(p,T)\):

\[
k_1^\infty(T) = 7.55 \times 10^{-13} \times (T/298)^{0.041} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}
\]

\[
k_0(T) = 1.10 \times 10^{-30} \times (T/298)^{-3.62} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}
\]

\(x_0 = 0.30\)

\(b = 1.30\)

\(F_{\text{cent}} = 0.125 \times \exp(0.000221 \times T)\)
Figure Captions

Figure 1. OH production from P1 and R2 as a function of excimer laser intensity. The duration of the excimer laser pulse was 20 ns. The red line is a quadratic function fitted to the data.

Figure 2. OH(v=0) + SO₂ (2.35 × 10¹⁶ molecule cm⁻³) at 50 Torr total pressure, helium. t-(CH₃)₃COOH was used to generate ground-state hydroxyl radical. Analysis of these data (E8) yields \(k_{\text{obs}} = (3643 ± 63) \) s⁻¹, where the error is statistical at the 1 σ level. The red line is the best fit to the data.

Figure 3. OD(μ=0) from the photolysis of SO₂ (6.05 × 10¹⁵ cm⁻³) / D₂ at a total pressure of 100 Torr, helium buffer. At early times there is growth due to relaxation from higher vibrational states, OD(μ>0). Soon after the maximum in the OD signal the decay is described by a single exponential (blue curve), which via Eqn (E8) gives \(k_{\text{obs}} = 2107 ± 60 \) s⁻¹. The red line is a biexponential fit to the data and yields \(k_{\text{obs}} = 2232 ± 69 \) s⁻¹.

Figure 4. Bimolecular plot of \(k_{\text{obs}} \) vs [SO₂] for OH(v=0) + SO₂ at 50 Torr total pressure, helium buffer; \(k_1 = (1.28 ± 0.03) × 10^{-13} \) cm³ molecule⁻¹ s⁻¹.

Figure 5. Literature rate coefficients, \(k_1 \), for the reaction OH + SO₂, at room temperature, where helium is the bath gas. Our results for OD + SO₂ are also included. The solid line is a master equation simulation for OH + SO₂ using helium and the parameters from the fit to the \(k_1[M] \) data in Figure 7, the most reliable data set, see text for details.

Figure 6. A plot of \(k_1 \) (calculated) from the master equation analysis of flash photolysis data versus \(k_1 \) (experimental). It can be seen that the literature \(k_1 \) experimental data are generally lower than the calculated value, i.e. below the line with a slope equal to one. The fitted energy transfer parameters, \(<\Delta E>_{\text{down}}\), are given in brackets after the bath gas.

Figure 7. A plot of \(k_1 \) (calculated) versus \(k_1 \) (experimental) from the MESMER fit to selected flash photolysis data, see text. The slope is equal to 0.97 and the returned value \(k_1^\infty(295 \) K) = \((7.8 ± 2.2) × 10^{-13} \) cm³ molecule⁻¹ s⁻¹, 2σ. The fitted energy transfer parameters, \(<\Delta E>_{\text{down}}\), are given in brackets after the bath gas.
Figure 8. A log-log plot of k_1(calculated) versus k_1(experimental) from the MESMER analysis of the data in Figure 7 and the flow tube data from[5, 26, 29] where helium is the buffer gas and its $\langle\Delta E\rangle_{\text{down}}$ parameter is fixed to 165 cm$^{-1}$. The black line is a slope of 1.0.

Figure 9. Troe fit(cross) to the dataset(symbols) generated from the MESMER simulation of $k_1^\infty(T) = 7.8 \pm 2.2 \times 10^{-13} (T/298)^{0.1} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $\langle\Delta E_{\text{down}}\rangle(N_2) / \text{ cm}^{-1} = 600 \times (T/298)^{0.3}$ over the temperature and pressure range 200 – 600 K and $10^{15} - 10^{22} \text{ molecule cm}^{-3}$.
