
Superluminescent diode with a broadband gain based on self-assembled InAs quantum
dots and segmented contacts for an optical coherence tomography light source
Nobuhiko Ozaki, David T. D. Childs, Jayanta Sarma, Timothy S. Roberts, Takuma Yasuda, Hiroshi Shibata,
Hirotaka Ohsato, Eiichiro Watanabe, Naoki Ikeda, Yoshimasa Sugimoto, and Richard A. Hogg 
 
Citation: Journal of Applied Physics 119, 083107 (2016); doi: 10.1063/1.4942640 
View online: http://dx.doi.org/10.1063/1.4942640 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/119/8?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Broadband InGaAs tapered diode laser sources for optical coherence radar and coherence tomography 
Appl. Phys. Lett. 86, 191101 (2005); 10.1063/1.1925313 
 
Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures 
Appl. Phys. Lett. 85, 5911 (2004); 10.1063/1.1831558 
 
Low frequency noise of GaAs Schottky diodes with embedded InAs quantum layer and self-assembled quantum
dots 
J. Appl. Phys. 93, 3990 (2003); 10.1063/1.1559412 
 
Short-wavelength laser diodes based on AlInAs/AlGaAs self-assembled quantum dots 
J. Appl. Phys. 87, 1496 (2000); 10.1063/1.372040 
 
Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Effect of
homogeneous broadening of the optical gain on lasing characteristics 
Appl. Phys. Lett. 74, 1561 (1999); 10.1063/1.123616 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  143.167.210.167 On: Tue, 01 Mar 2016 09:06:16

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/296339739/x01/AIP-PT/JAP_ArticleDL_021716/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Nobuhiko+Ozaki&option1=author
http://scitation.aip.org/search?value1=David+T.+D.+Childs&option1=author
http://scitation.aip.org/search?value1=Jayanta+Sarma&option1=author
http://scitation.aip.org/search?value1=Timothy+S.+Roberts&option1=author
http://scitation.aip.org/search?value1=Takuma+Yasuda&option1=author
http://scitation.aip.org/search?value1=Hiroshi+Shibata&option1=author
http://scitation.aip.org/search?value1=Hirotaka+Ohsato&option1=author
http://scitation.aip.org/search?value1=Eiichiro+Watanabe&option1=author
http://scitation.aip.org/search?value1=Naoki+Ikeda&option1=author
http://scitation.aip.org/search?value1=Yoshimasa+Sugimoto&option1=author
http://scitation.aip.org/search?value1=Richard+A.+Hogg&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4942640
http://scitation.aip.org/content/aip/journal/jap/119/8?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/86/19/10.1063/1.1925313?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/85/24/10.1063/1.1831558?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/93/7/10.1063/1.1559412?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/93/7/10.1063/1.1559412?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/87/3/10.1063/1.372040?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/74/11/10.1063/1.123616?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/74/11/10.1063/1.123616?ver=pdfcov


Superluminescent diode with a broadband gain based on self-assembled
InAs quantum dots and segmented contacts for an optical coherence
tomography light source

Nobuhiko Ozaki,1,2,a) David T. D. Childs,1 Jayanta Sarma,1,b) Timothy S. Roberts,1

Takuma Yasuda,2 Hiroshi Shibata,2 Hirotaka Ohsato,3 Eiichiro Watanabe,3 Naoki Ikeda,3

Yoshimasa Sugimoto,3 and Richard A. Hogg1

1Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S3 7HQ,
United Kingdom
2Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan
3National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan

(Received 7 November 2015; accepted 26 January 2016; published online 29 February 2016)

We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum

dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source.

Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thick-

ness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n hetero-

junction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was

formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The seg-

mented contacts were effective in applying a high injection current density to the QDs and obtaining

emission from excited states of the QDs, resulting in an extension of the bandwidth of the electrolumi-

nescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broad-

band smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated

QD-SLD was performed, and OCT images with an axial resolution of �4 lm in air were obtained.

These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-

resolution OCT light source. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942640]

I. INTRODUCTION

Near-infrared (NIR) broadband (low-coherence) light

has been utilized as a useful probe for non-invasive cross-

sectional biological and medical imaging system: optical

coherence tomography (OCT).1 OCT relies upon low-

coherence interferometry, and the axial resolution of OCT is

governed by the coherence length of the light source,2 which

is given by the formula 0.44� k0
2/Dk for a low-coherence

light with a Gaussian spectral shape. Where the peak in

emission is centered at k0 with a bandwidth of Dk. As the

application is in medical imaging, the center wavelength, k0,

is preferably in the NIR wavelength range as NIR light offers

deep penetration into biological samples, and a large imag-

ing depth can be obtained.3 Thus, a large bandwidth NIR

light source is required to obtain an OCT image with high

axial resolution and large penetration depth. As a specific

criterion, a resolution of 3–5 lm is necessary to distinguish

single cells.4 In commercial OCT systems, a semiconductor-

based superluminescent diode (SLD) is often used as a

broadband light source. A SLD exhibits amplified spontane-

ous emission providing a broader spectral emission range

than a laser diode and higher emission power and brightness

than a light-emitting diode. However, it is difficult to

broaden the emission bandwidth of a NIR SLD beyond

�100 nm, which is one of the reasons for the limitation of

the axial resolution in an OCT image to around �10 lm.

Although alternative light sources have been developed for

realizing high-resolution OCT, such as the use of a short-

pulsed femtosecond laser5 or supercontinuum generation in a

photonic crystal fiber,6 a SLD still offers the advantages of

being a compact, robust, and inexpensive device compared

with alternative light sources.

To overcome the difficulty of obtaining a broadband-gain

SLD, self-assembled quantum dots (QDs)7 have been recently

recognized as an ideal light-emitting material instead of a con-

ventional quantum well (QW) or bulk semiconductor. A QD is

a three-dimensionally quantum confined structure and has a

unique configuration of electron states and discrete delta-

function-like density of states (DOS).8 The states can be easily

filled with supplied carriers, and the emission bandwidth of the

QD should be extended in accordance with their discrete

bandgap energies: the ground state (GS), 1st excited state

(ES1), and 2nd excited state (ES2). In addition, self-assembled

InAs QDs on a GaAs substrate, which are grown via the strain

induced by a lattice mismatch between InAs and GaAs

(Stranski-Krastanov growth mode),9,10 are particularly suitable

to emit a broadband spectrum in the NIR region because of

their size and compositional distributions in the ensemble. A

SLD based on InAs QDs (QD-SLD) was first proposed by

Wang et al.11 and has been intensively studied.12–21 We have

fabricated a QD-SLD based on InAs QDs with controlled

emission wavelengths21 and demonstrated OCT imaging using

a)This research was partly performed while N. Ozaki was at The University

of Sheffield as a Visiting Academic. Electronic mail: ozaki@

sys.wakayama-u.ac.jp
b)Visiting Scholar with Department of Electronic and Electrical

Engineering, University of Sheffield, Sheffield S3 7HQ, United Kingdom.

0021-8979/2016/119(8)/083107/7/$30.00 VC 2016 AIP Publishing LLC119, 083107-1

JOURNAL OF APPLIED PHYSICS 119, 083107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  143.167.210.167 On: Tue, 01 Mar 2016 09:06:16

http://dx.doi.org/10.1063/1.4942640
http://dx.doi.org/10.1063/1.4942640
http://dx.doi.org/10.1063/1.4942640
http://dx.doi.org/10.1063/1.4942640
mailto:ozaki@sys.wakayama-u.ac.jp
mailto:ozaki@sys.wakayama-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4942640&domain=pdf&date_stamp=2016-02-29


the developed QD-SLD.22 However, the bandwidth of the elec-

troluminescence (EL) was limited because the emission was

limited to that from GS and ES1 due to a limited injection cur-

rent density (J) through the use of a single contact electrode.

In this work, we thus developed a QD-based SLD,

which includes multiple QD layers with deliberately shifted

emission wavelengths, with segmented contacts to allow an

increase in J locally within the device and to exploit emis-

sions from higher energy states of the QDs, i.e., ES2. The

objective of this work was to realize a further broadened and

dipless EL spectrum suitable for a high-resolution OCT light

source. In addition, we measured gain spectra from the fabri-

cated SLD using the segmented contact method23 to examine

the gain bandwidth. Furthermore, OCT imaging with the fab-

ricated QD-SLD was performed to evaluate its potential use

in an OCT light source.

II. EXPERIMENTAL DETAILS

A. Sample preparation

Four stacked InAs QD layers capped with In0.2Ga0.8As

layers of various thickness were grown by molecular beam

epitaxy on an nþ-GaAs (001) substrate, as illustrated in

Fig. 1(a). All the QD layers were grown with a supply of InAs

of 2.0 monolayers, where the density of the grown QDs was

2–4� 1010 cm�2. The In0.2Ga0.8As layer deposited on each

QD layer was used as a strain-reducing layer (SRL)24 to con-

trol the emission center wavelength of the QDs by varying its

thickness:25 0, 1, 2, and 4 nm. A 240-nm-thick GaAs wave-

guide layer including the QD layers was optically and elec-

tronically confined within 1.5-lm-thick p-/n-Al0.35Ga0.65As

cladding layers. The p-/n-cladding layers were doped at

approximately 2.0� 1017cm�3 by Be and Si, respectively. A

300-nm-thick pþ-GaAs (doped: �1� 1019cm�3) layer was

grown on the upper p-cladding layer as a contact layer to the

electrode.

A ridge waveguide (RWG) was fabricated normal to

cleaved facets with a height of 1.4 lm and width of 5 lm on

the p-side surface of the grown wafer using photolithography

and inductively coupled plasma reactive ion etching techni-

ques. An insulation film of 200-nm-thick SiO2 was deposited

on the surface using plasma-enhanced chemical vapor depo-

sition, followed by wet-etching of selective areas (segments)

on the RWG with buffered hydrofluoric acid solution.

Subsequently, electrodes were formed by depositing Ti/Au

(p-contact) and Ni/AuGe/Ni/Au (n-contact), and rapid ther-

mal annealing was performed. To form segmented contacts,

the electrode of the p-contact was divided into four 1-mm-

long electrically isolated segments via the lift-off process, as

shown in Fig. 1(b). The contact gap lengths between the seg-

ments were approximately 40 lm. Both edges of the RWG

were cleaved to form a 4-mm-long chip, and no anti-

reflective (AR) coating was applied to the cleaved edges.

B. EL and gain spectra measurement

EL emission spectra from an edge of the fabricated

RWG were measured at room temperature. Various injection

currents (Is) were applied to the contact nearest to the edge

(segment 1). The emission light was collected with an optical

lensed fiber and was detected with an optical spectrum ana-

lyzer, which performs spectrum measurements through tuna-

ble bandpass filtering with a monochromator. The coupling

loss into the optical lensed fiber was approximately 10 dB.

The gain spectrum was obtained using the segmented

contact method. Based on the following formula,23

G ¼ 1

L
ln

P J; 2Lð Þ
P J; Lð Þ � 1

� �
; (1)

the gain and absorption spectra as a function of wavelength

were determined. P(J, L) and P(J, 2L) indicate the EL inten-

sities obtained from the RWG lengths of L and 2L, respec-

tively, under the same J. Figures 2(a) and 2(b) present

schematic diagrams of the device drive geometries; the cur-

rent was injected into segment 1 only to measure P(J, L),

and both segments 1 and 2 were injected with identical J to

measure P(J, 2L).

The un-pumped segments are expected to act as

absorber elements during the EL measurements and prevent

lasing in the device. This feature of the segmented contact

can be effective in obtaining a broadband SLD emission
FIG. 1. (a) Profile of a fabricated sample. (b) Schematic image and photo-

graph of the segmented contacts fabricated on the QD-SLD chip.
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even though the RWG has a simple straight structure and no

AR coating is formed on the facets.

C. Spectral-domain OCT imaging

A spectral-domain OCT (SD-OCT)26 system was uti-

lized to evaluate the fabricated chip as an OCT light source.

The SD-OCT, which is categorized as a Fourier-domain

OCT,27,28 enables a spatial reflectivity distribution to be

obtained against the depth of a sample along with the optical

axis through an inverse Fourier-transformed (IFT) spectrum of

interference between reflections from the sample and a refer-

ence mirror. As schematically illustrated in Fig. 3, the OCT

setup consisted of the QD-SLD as a light source, a reference

arm, a sample arm, and a spectrometer. Light from the QD-

SLD was split by a 50:50 coupler and introduced into the refer-

ence and sample arms. Then, the reflected light from the two

arms was recombined by the 50:50 coupler, and the interfer-

ence signal was measured by the spectrometer. The interfer-

ence signal sampled as a function of the wavelength was

rescaled to the wavenumber, I(k), by the linear interpolation

method. The zero-filling method was also used to increase the

number of data points on both sides of the spectrum, I(k).29

Subsequently, the IFT spectrum and depth profile of the reflec-

tivity in the sample along with the optical axis was obtained.

By collecting the depth profile with a lateral scanning of the

sample, a 2D OCT image was obtained.

III. RESULTS AND DISCUSSION

A. EL measurements

Figure 4 presents the EL spectra obtained from the fabri-

cated chip under various Is¼ 1–150 mA, corresponding to

FIG. 2. Schematic images of device driven with different lengths.

FIG. 3. Schematic illustration of SD-OCT setup including the fabricated

QD-SLD chip.

FIG. 4. (a)–(c) EL spectra obtained from the fabricated QD-SLD chip under

various Is applied to segment 1. (d) Plotted peak wavelength (closed square)

and span (solid bar) of the EL emissions.
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current densities of J¼ 20–3000 A/cm2, which were applied

to segment 1. As clearly observed in the series of spectra

with injected currents (Figs. 4(a)–4(c)), the spectral shape

and center wavelength varied with the increased current.

Initially, 1230-nm-centered emission spanning approxi-

mately 1100–1300 nm (the bandwidth was below 100 nm)

was exhibited at lower Is (�3 mA), as observed in Fig. 4(a).

Subsequently, 1180-nm-centered emission spanning approxi-

mately 1050–1300 nm was exhibited from I¼ 5–10 mA

(Fig. 4(b)). Finally, the center wavelength blue-shifted up to

1100 nm and the emission span extended to �1000 nm for

I¼ 150 mA (Fig. 4(c)). As summarized in Fig. 4(d), the peak

wavelength (closed square) and emission band (solid bar)

were blue-shifted, and the bandwidth was increased from

approximately 70 to 120 nm with increased I. These behav-

iors can be attributed to state-filling effect, where supplied

carriers fill the discrete states in the QD in a stepwise man-

ner, from lower to higher energy states. Although the

observed emission spectra cannot be certainly assigned to

specific emission lines from each energy state of the four

stacked QDs, the emission spanning 1200–1250 nm is attrib-

uted to electron/hole (e/h) recombination between GSs,

and the emissions at approximately 1150–1200 nm and

1050–1150 nm is attributed to ES1 and ES2 recombinations,

respectively. The number of states in the GS is lower than

that in the ES1 and ES2, and thus, GS emissions can be

obtained, even though a low injection current (�3 mA) is

applied. Then, the injection current was increased, and the

contribution of ES1 emissions began. When their intensity

was almost equal to the GS intensity under the injection cur-

rent of approximately 12.5 mA, the bandwidth was increased

to 120 nm. On further increasing the injection current, the

ES1 emissions were increased while the GS emissions were

saturated; then, ES2 emissions were sequentially increased,

while the ES1 and GS emissions were saturated.

In order to clarify the state-filling effect, EL intensities

at several wavelengths in the spectra are plotted as functions

of I, as shown in Fig. 5. Ideally, the integral EL intensities of

each QD energy state in each layer should be plotted; how-

ever, it is difficult to distinguish the emission spectra because

of the broad and overlapping nature of emissions from QD

ensembles, as described above. We thus utilized the plotted

EL intensities as an approximate investigation. The EL

intensities at 1200 and 1250 nm, which should be dominantly

contributed from the GS emissions, were increased for lower

I (�30 mA) and then became gradually saturated for

I � 30 mA. On the other hand, the EL intensities at 1150 and

1100 nm increased sequentially after the increment of EL

intensities at longer wavelength were decreased. These incre-

ments of EL intensities in order of wavelength (state energy)

indicate the state-filling in the discrete states, which indicates

QD-originated emission. Furthermore, the ratio of the satura-

tion currents of the EL intensities can be explained by vary-

ing the number of carriers filling the QD states. The ratio of

the number of states for GS:ES1:ES2 in a parabolic potential

is 2:4:6 (including spin degeneracy),30 and thus, the ratio of

the injection currents necessary for filling the QD states

should be 2:6:12 for GS, GSþES1, and GSþES1þES2. In

addition, when the carrier density increases, the Auger pro-

cess will occur, and the actual current to saturate these states

will increase. The saturation currents of the EL intensities

shown in Fig. 5 vary with respect to the increase in current

for filling the states, e.g., approximately 20 mA for the lon-

gest wavelength in contrast to above 140 mA for the shortest

wavelength.

The wide extended emission wavelength implies the con-

tribution of emission from ES2 and not only ES1 and GS of

the QDs. In our previous work,21,22 the emission wavelength

was extended to approximately �1100 nm from a chip with

single contact under a current density of 400 A/cm2. By intro-

ducing the segmented contacts, it was possible to increase

the current density up to 3000 A/cm2 in a single segment,

which is approximately 8 times higher than that for the previ-

ous device, and emission from the higher energy state (ES2)

emerged.

B. Gain spectra

Figure 6 presents the deduced net modal gain spectra

under various Is (applied to a 1-mm-long segment of the

waveguide) in accordance with Equation (1). The positive or

negative values of the net modal gain indicate that the QDs

function as optical gain or absorption media at the given

wavelength, respectively. As clearly seen in the spectra,

positive gain regions occur from approximately 1240 nm,

where the GS emissions were mainly observed and extended

continuously to shorter wavelength with increasing I. The

FIG. 5. EL intensity plotted for each wavelength as a function of I. FIG. 6. Net-modal-gain spectra of the QD-SLD under various Is.
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positive gain region under I of 12.5 mA was �1183–1237 nm

and was extended to a range of �1076–1233 nm (bandwidth

of �160 nm) under I of 150 mA. The extension of the positive

gain region with the increase in I can also be attributed to the

sequential state-filling effect from GS to ES2, which is dem-

onstrated by the dependence of the EL intensities. These

results demonstrate that the fabricated chip operates as a gain

media because of the QDs. The maximum gain value at I of

150 mA was approximately 6 cm�1. The span of the gain

region and the maximum gain value were almost the same

under Is higher than 150 mA. This result might be due to the

influence of the heat caused by high Is. By introducing a ther-

moelectric cooler and a pulsed current source, the maximum

gain value can be further increased.

Because the emission center wavelength of each QD

layer was shifted continuously by the SRL, the broad gain

spectra appeared without apparent dips in the positive gain

regions of the spectra in contrast to the QD-SLD including

QD layers with identical emission center wavelengths of GS

and ES. This smooth gain feature is useful in obtaining a

broad emission spectrum with homogeneous intensities. The

gain values assigned at excited states (ES1 and ES2) were

higher than that from GS, which is probably due to the

higher state degeneracy in the ESs compared with the GS.

The possibility of amplified spontaneous emission, that is,

stimulated emissions from the states, is proportional to the

DOS for the transition of carriers (Fermi’s golden rule). The

results above indicate the effectiveness of the segmented

contacts for deriving higher ES emission and a broadband-

gain.

C. OCT imaging

A fabricated QD-SLD chip was evaluated as an OCT

light source. As described in the Introduction, the axial reso-

lution of OCT image is governed by the central wavelength

and the bandwidth of the EL spectrum. Figure 7(a) presents

normalized EL spectra of a QD-SLD under various Is
(10–100 mA). In order to estimate the axial resolution when

the chip was used in OCT, the IFT EL spectra were deduced,

as shown in Fig. 7(b). The IFT EL spectra provide more

accurate estimation of the OCT axial resolution than that

from the formula indicated in the Introduction: 0.44� k0
2/

Dk, because this formula is defined for a low-coherence light

source with a Gaussian spectrum in the frequency unit.

According to the Wiener–Khinchin theorem, a Fourier rela-

tionship exists between the autocorrelation function and the

power spectrum of the light source.31 The autocorrelation,

which corresponds to the point-spread function, governs the

axial resolution of the OCT image; the axial resolution can

be estimated using the full-width at half-maximum (FWHM)

of the IFT EL (power) spectra. As observed in the Fig. 7(b),

the FWHM decreased with increased I. In addition to the

increase in the bandwidth of the power spectrum, the blue-

shift of the peak wavelength resulted in a decrease of the

axial resolution to 3.8 lm (in air) with an increase of I to

100 mA. This estimated axial resolution is less than half of

that of typical commercial OCT: �10 lm. In addition, no

apparent side lobes appeared beside the main peak, which

indicates that the ghost images (noise) resulting from the

side lobe should be minimized in an OCT image when the

QD-SLD is used as a light source.

OCT imaging with the QD-SLD was performed for a

test sample: a cover-glass plate with a refractive index of 1.5

and a thickness of approximately 150 lm. To produce a two-

dimensional OCT image of the sample, depth profiles were

obtained by scanning the sample along the in-plane direc-

tion. Then, the depth profiles were displayed in two dimen-

sions with a gray scale of the signal intensity. Figure 8(a)

presents the obtained OCT image. Two white lines are

clearly seen in the image, which represent reflections at the

upper and lower surfaces of the sample. The distance

between the lines is approximately 220 lm, which is consist-

ent with the optical path length, that is, the thickness of

the cover-glass plate multiplied by its refractive index.

Figure 8(b) presents a depth profile along the red dashed line

in the image. Two peaks resulting from reflections from the

surfaces of the cover-glass plate appear in the depth profile.

The FWHM of each peak is approximately 4 lm, and no

apparent side lobes appeared beside the peak. These features

are consistent with those of the coherence function shown in

Fig. 7(b). The axial resolution of the OCT image was thus

determined to be approximately 4 lm, which is half of that

of our previous result using a QD-SLD with a single con-

tact.22 This improvement of the axial resolution results from

FIG. 7. (a) Normalized EL spectrum from a QD-SLD under Is of

10–100 mA. (b) Coherence function of the EL spectra shown in (a).
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the modification of the prepared contacts; the segmented

contacts enable an increase of J and extension of the emis-

sion wavelength range.

Based on the above results, we conclude that the QD-

SLD with segmented contacts is a promising light source for

high-resolution OCT imaging. In particular, the axial resolu-

tion below 4 lm in air is expected to distinguish single cells

in an OCT image, which is difficult to observe using a con-

ventional OCT system.

IV. SUMMARY

A SLD chip based on self-assembled InAs QDs with seg-

mented contacts was developed. EL spectra revealed the

extension of the emission band to shorter wavelength with

increasing I. This behavior is due to the contribution of higher

excited states of the QDs to the emission, which were derived

from the state-filling effect under higher Is. The measured op-

tical gain of the QDs using the segmented contact method

revealed a gain bandwidth beyond 160 nm under I of 150 mA.

The gain bandwidth was also extended to shorter wavelength,

corresponding to the contributions of the ESs of the QDs.

These results indicate the effectiveness of the segmented con-

tacts for deriving emissions of higher excited states of QDs

and broadband gain. Furthermore, OCT imaging was per-

formed using the QD-SLD, and the potential of the QD-SLD

as a light source for high-resolution OCT was demonstrated.

ACKNOWLEDGMENTS

N.O. would like to thank the members of Richard

Hogg’s group at the University of Sheffield for their support

and fruitful discussions about the experimental results. This

study was partly supported by Grants-in-Aid for Scientific

Research (KAKENHI) Grant No. 25286052 and the Canon

foundation. N.O. would like to acknowledge financial

support received from Wakayama University to visit the

University of Sheffield. The fabrication of the SLD chip was

supported by the NIMS Nanofabrication Platform in the

“Nanotechnology Platform Project” sponsored by the

Ministry of Education, Culture, Sports, Science, and

Technology, Japan (MEXT).

1D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W.

Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G.

Fujimoto, Science 254, 1178 (1991).
2M. E. Brezinski, Optical Coherence Tomography: Principles and
Applications (Academic Press, New York, 2006).

3M. S. Patterson, B. C. Wilson, and D. R. Wyman, Lasers Med. Sci. 6, 379

(1991).
4J. Welzel, Skin Res. Technol. 7, 1 (2001).
5W. Drexler, U. Morgner, F. X. K€artner, C. Pitris, S. A. Boppart, X. D. Li,

E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
6B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.

F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P.

St., J. Russell, M. Vetterlein, and E. Scherzer, Opt. Lett. 27, 1800

(2002).
7Self-Assembled Quantum Dots, Lecture Notes in Nanoscale Science and

Technology Series Vol. 1, edited by Z. M. Wang (Springer, New York,

2008).
8Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
9L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux,

Appl. Phys. Lett. 47, 1099 (1985).
10D. Leonardo, M. Krishnamurthy, C. M. Reaves, and P. Petroff, Appl.

Phys. Lett. 63, 3203 (1993).
11Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, Opt.

Quantum Electron. 31, 1235 (1999).
12Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, IEEE

Photonics Technol. Lett. 16, 27 (2004).
13M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, IEEE Photonics

Technol. Lett. 17, 540 (2005).
14S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R.

A. Hogg, IEEE Photonics Technol. Lett. 18, 58 (2006).
15P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M.

Hopkinson, and R. A. Hogg, IEEE J. Sel. Top. Quantum Electron. 15, 757

(2009).
16Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, Adv. Opt. Photonics

2, 201 (2010).
17X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang,

Nanoscale Res. Lett. 6, 625 (2011).
18N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka,

and H. Takai, Jpn. J. Appl. Phys., Part 1 51, 02BG08 (2012).
19S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I.

Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, ACS Photonics

1, 638 (2014).
20N. Ozaki, T. Yasuda, S. Ohkouchi, E. Watanabe, N. Ikeda, Y.

Sugimoto, and R. A. Hogg, Jpn. J. Appl. Phys., Part 1 53, 04EG10

(2014).
21T. Yasuda, N. Ozaki, H. Shibata, S. Ohkouchi, N. Ikeda, H. Ohsato, E.

Watanabe, Y. Sugimoto, and R. A. Hogg, IEICE Trans. Electron. E99-C,

381 (2016).
22H. Shibata, N. Ozaki, T. Yasuda, S. Ohkouchi, N. Ikeda, H. Ohsato, E.

Watanabe, Y. Sugimoto, K. Furuki, K. Miyaji, and R. A. Hogg, Jpn. J.

Appl. Phys., Part 1 54, 04DG07 (2015).
23P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J.

Lutti, IEEE J. Sel. Top. Quantum Electron. 9, 1275 (2003).
24K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111

(1999).
25N. Ozaki, K. Takeuchi, Y. Hino, Y. Nakatani, T. Yasuda, S. Ohkouchi, E.

Watanabe, H. Ohsato, N. Ikeda, Y. Sugimoto, E. Clarke, and R. A. Hogg,

Nanomater. Nanotechnol. 4, 26 (2014).

FIG. 8. (a) OCT image obtained from a cover-glass plate with a refractive

index and thickness of approximately 1.5 and 150 lm, respectively. Surfaces

of the cover-glass are indicated by black arrows. (b) Depth profile along the

red dashed line in the OCT image. The FWHM of the peaks indicated by

black arrows is �4 lm.

083107-6 Ozaki et al. J. Appl. Phys. 119, 083107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  143.167.210.167 On: Tue, 01 Mar 2016 09:06:16

http://dx.doi.org/10.1126/science.1957169
http://dx.doi.org/10.1007/BF02042460
http://dx.doi.org/10.1034/j.1600-0846.2001.007001001.x
http://dx.doi.org/10.1364/OL.24.001221
http://dx.doi.org/10.1364/OL.27.001800
http://dx.doi.org/10.1063/1.92959
http://dx.doi.org/10.1063/1.96342
http://dx.doi.org/10.1063/1.110199
http://dx.doi.org/10.1063/1.110199
http://dx.doi.org/10.1023/A:1007030119338
http://dx.doi.org/10.1023/A:1007030119338
http://dx.doi.org/10.1109/LPT.2003.820481
http://dx.doi.org/10.1109/LPT.2003.820481
http://dx.doi.org/10.1109/LPT.2004.840997
http://dx.doi.org/10.1109/LPT.2004.840997
http://dx.doi.org/10.1109/LPT.2005.860028
http://dx.doi.org/10.1109/JSTQE.2009.2013481
http://dx.doi.org/10.1364/AOP.2.000201
http://dx.doi.org/10.1186/1556-276X-6-625
http://dx.doi.org/10.7567/JJAP.51.02BG08
http://dx.doi.org/10.1021/ph500162a
http://dx.doi.org/10.7567/JJAP.53.04EG10
http://dx.doi.org/10.7567/JJAP.54.04DG07
http://dx.doi.org/10.7567/JJAP.54.04DG07
http://dx.doi.org/10.1109/JSTQE.2003.819472
http://dx.doi.org/10.1063/1.123459
http://dx.doi.org/10.5772/59315


26Optical Coherence Tomography: Technology and Applications, edited by

W. Drexler and J. G. Fujimoto (Springer, New York, 2008).
27A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat,

Opt. Commun. 117, 43 (1995).
28G. H€ausler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).

29C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, J. Opt. Soc. Am. B

17, 1795 (2000).
30A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B. 54, 5604

(1996).
31L. Cohen, IEEE Signal Proc. Lett. 5, 292 (1998).

083107-7 Ozaki et al. J. Appl. Phys. 119, 083107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  143.167.210.167 On: Tue, 01 Mar 2016 09:06:16

http://dx.doi.org/10.1016/0030-4018(95)00119-S
http://dx.doi.org/10.1117/1.429899
http://dx.doi.org/10.1364/JOSAB.17.001795
http://dx.doi.org/10.1103/PhysRevB.54.5604
http://dx.doi.org/10.1109/97.728471

