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Abstract This paper presents a numerical investigation on
the behavior of three dimensional granular materials during
continuous rotation of principal stress axes using the discrete
element method. A dense specimen has been prepared as a
representative element using the deposition method and sub-
jected to stress rotation at different deviatoric stress levels.
Significant plastic deformation has been observed despite
that the principal stresses are kept constant. This contradicts
the classical plasticity theory, but is in agreement with previ-
ous laboratory observations on sand and glass beads. Typical
deformation characteristics, including volume contraction,
deformation non-coaxiality, have been successfully repro-
duced. After a larger number of rotational cycles, the sample
approaches the ultimate state with constant void ratio and fol-
lows a periodic strain path. The internal structure anisotropy

This article is part of the Topical Collection on Micro origins for macro
behavior of granular matter.

Dunshun Yang—former student at Nottingham Centre for
Geomechanics.

B Xia Li
xia.li@nottingham.ac.uk

1 Room B20, Coates Building, Department of Chemical and
Environmental Engineering, Faculty of Engineering,
University of Nottingham, University Park, Nottingham
NG7 2RD, UK

2 Ove Arup, 13 Fitzroy Street, London W1T 4BQ, UK

3 Nottingham Centre for Geomechanics, Faculty of
Engineering, University of Nottingham, Nottingham, UK

4 State Key Laboratory of Hydraulics and Natural River
Engineering, College of Water Resource and Hydropower,
Sichuan University, Chengdu 610065,
People’s Republic of China

has been quantified in terms of the contact-based fabric ten-
sor. Rotation of principal stress axes densifies the packing,
and leads to the increase in coordination numbers. A cyclic
rotation in material anisotropy has been observed. The larger
the stress ratio, the structure becomes more anisotropic. A
larger fabric trajectory suggests more significant structure
re-organization when rotating and explains the occurrence
of more significant strain rate. The trajectory of the contact-
normal based fabric is not centered in the origin, due to
the anisotropy in particle orientation generated during sam-
ple generation which is persistent throughout the shearing
process. The sample sheared at a lower intermediate prin-
cipal stress ratio (b = 0.0) has been observed to approach
a smaller strain trajectory as compared to the case b = 0.5,
consistent with a smaller fabric trajectory and less significant
structural re-organisation. It also experiences less volume
contraction with the out-of plane strain component being
dilative.

Keywords Granular materials · Discrete-element-method ·
Rotational shear · Internal structure

1 Introduction

Soil laboratory testing and numerical simulations have
mostly been carried out to study proportional loading with a
stress history in which the deviatoric stress components are
kept in constant ratio to each other, and the soil, if it has an
anisotropic fabric, does not rotate with reference to the frame
of the principal stresses [1]. The stress path that soils experi-
ence in practical engineering however often deviates severely
from proportional loading. A typical example involving non-
proportional loading is earthquake engineering, which has
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motivated extensive experimental and modelling work since
1970s’.

Evidence of significance of stress rotation can be traced
back to Peacock and Seed [2] who showed that the resistance
to liquefaction under simple shear condition was about one
third of the resistance under the analogous conditions in the
triaxial apparatus. Ishihara and Li [3] devised the torsional
shear apparatus and demonstrated the sensitivity of material
behaviour to strain-controlled cyclic torsional shear on initial
K0 and lateral confinement. Arthur et al. [4] applied con-
trolled changes of principal stress axes with the Directional
Shear Cell and studied sample behaviour to shearing after
a pre-loading to a high stress ratio and a rotation of princi-
pal stress axes. Extensive experimental observations on sand
responses to principal stress rotation have been published
since the 1980s’ [5–10] using the hollow cylindrical device
which offers independent control of the magnitudes and
directions of principal stresses. Non-coaxial deformation and
volume contraction are typical deformation characteristics
observed when rotating the principal stress axes [6,7,11–15].

For constitutive theories developed for proportional load-
ing, the strains can be expressed in terms of the final state
of stresses, while for general loading paths involving stress
rotation, the incremental theory of plasticity [16] relating
increments of plastic strain to stress increments and stress
history has general validity [17]. The introduction of an
additional deformation mechanism associated with loading
orthogonal to the current stress state is often the practice
[1,18,19]. This however implies a large number of model
parameters which are often difficult to calibrate.

Micromechanics and multi-scale investigation have been
proven powerful during the last few decades. Calvetti et al.
[20] presented the evolution of material anisotropy under
complex loading condition including principal axes rotations
based on laboratory tests on wooden roller stacks. Numer-
ically, discrete element method (DEM) [21] has been used
in numerous studies on material responses to biaxial/triaxial
shearing and direct/simple tests [22–26]. Responses of two
dimensional granular materials to rotation of principal stress
axes have been investigated [27,28]. The trend of non-
coaxial deformation and contractive volume changes have
been qualitatively reproduced and explained based on struc-
tural evolution.

Broadly speaking, when studying the elementary material
behaviour, the specimen can be modeled as a periodic or non-
periodic cell. External loading is applied on the boundary
consisting of a string of boundary particles [26,28–31] or a
set of rigid mass-less surfaces [21,27,32]. For particle-based
boundaries, the boundary particles are often chosen accord-
ing to their positions as the out-most particles. External forces
can be applied directly. However, due to the highly hetero-
geneous nature of particle displacements, attention should
be placed on the deformation calculation. The relative posi-

tions of the particles continuously evolve as the specimen
is deformed. A boundary particle at the current computa-
tion step may become a non-boundary particle at the next
time step based on the updated location, and vice versa.
The list of boundary particles needs to be regularly updated,
in particular at large strain levels. This requires additional
computational power, and may also cause local force re-
distribution. Alternatively, the rigid surface boundaries can
be used to define the geometries of the representative ele-
ment. The external surrounding interacts with the granular
assembly through interacting forces arising from the overlap-
ping between the boundary walls and the boundary particles.
It is convenient to impose a perfectly-uniform strain field and
a servo-control mechanism has been developed to achieve
general loading paths. In the authors’ previous work [27],
the latter has been used.

This paper aims at extending the previous work into three
dimensional granulate systems, a closer analogy to real soil.
Section 2 presents details of numerical implementation. The
macro-scale deformation characteristics are to be presented
in Sect. 3 and the observations on fabric evolution in Sect. 4.
Section 5 extends the discussion to the effect of the inter-
mediate principal stress ratio. And Sect. 6 draws concluding
remarks from this study. In this paper, the summation con-
vention over tensor indices is followed.

2 Numerical implementation

Li et al. [33] proposed a numerical technique to achieve
general loading path by imposing translational and rota-
tional motion of rigid frictional boundaries. In this paper,
we implement it in the commercial DEM package—Particle
Flow Code in Three Dimensions (PFC3D) [34] to repro-
duce the material deformation characteristics to rotation of
principal stress axes. For better sample uniformity, it is sug-
gested that the rigid massless boundary surfaces are to be
generated forming a polyhedron with obtuse angles between
any two neighbouring boundaries. The boundary control
algorithm detailed in [33] has been used to control the
displacements of boundary walls synchronously to impose
the strain-controlled boundary, and to monitor the stress-
controlled boundary with a servo-controlled mechanism.

A material point can be identified by its spatial position,
denoted by the position vectors x and X in the deformed
(current) and undeformed (reference) configurations, respec-
tively. With respect to rectangular Cartesian coordinate
systems x = xiei and X = XIeI , where ei (i = 1, 2, 3)

and eI (I = 1, 2, 3) are the unit base vectors of the respective
reference frames. In this study, they are fixed in space and
coincide with each other, i.e., ei = eI . Because of the high
sensitivity of material behaviour to volume change, finite
strain definition is necessary for accurately describing and
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controlling material strain state. The knowledge of sample
strain can be obtained from the deformation gradient tensor

F = ∂x/∂X or Fi J = ∂xi/∂X J . (1)

The Biot strain definition is used to describe the specimen
deformation [33]. For simplicity, in this study, we impose
zero rigid body rotation, and fix the position of specimen
origin O throughout the simulation. With the absence of rigid
body rotation, the Biot strain becomes:

ε = 1 − F (2)

This is consistent with the common sign convention in soil
mechanics that the positive normal strain indicates compres-
sion and the negative value extension. The Cauchy stress
definition is used to describe material stress state and defined
based on the boundary traction acting on current boundary
configuration.

Considering the heterogeneity nature of granular materi-
als, the continuum concepts, stress/strain tensors, are to be
defined and calculated from the forces/displacements of the
boundaries.

2.1 Strain

2.1.1 Strain evaluation

With the uniformity assumption and using Gauss’ theorem,
the deformation gradient tensor Fi J can be evaluated as its
volumetric average, i.e.,

Fi J = 1

V

∮
V
xi,J dV = − 1

V

∮
S
xi NJ dS (3)

in which V and S are the volume and boundary surface in
the undeformed configuration. NI is the unit vector normal
to the boundary surface increment dS in the undeformed
configuration, pointing inward and the minus sign is needed
here when applying the divergence theorem. For polyhedral
specimens, the specimen boundary can be discretized into a
number of polygonal surfaces and the deformation gradient
tensor Fi J becomes

Fi J = − 1

V

∑
xci NJ�S (4)

where xci is the area centre of surface element �S in the cur-
rent deformed configuration. Once the deformation gradient
tensor is obtained, the Biot strain tensor can be calculated
based on Eq. (2).

2.1.2 Applying a strain increment

Sample deformation can be imposed by specifying syn-
chronically the movements of boundary surfaces. This is
intrinsically the strain-controlled loading mode. Denote the
center and normal direction of boundary surface element w

as Xw
o ,Nw

o in the initial configuration and xw
o ,nw

o in the
deformed configuration, respectively. With the position of
specimen origin O being fixed, the coordinate of the wall
centre in the current configuration can be found as:

xw
oi = Fi J X

w
oJ . (5)

Points in the same plane in the undeformed configuration
remain in the same plane after deformation. Following Eq.
(5), a vector T in the undeformed configuration becomes

ti = Fi J TJ . (6)

in the deformed configuration.
To determine the boundary wall normal direction nw

o after
deformation, information of two in-plane vectors Tw

1 and Tw
2

is required. The surface normal direction in the undeformed

configuration can be written as Nw
o = Tw

1 ×Tw
2‖Tw

1 ×Tw
2 ‖ , where ‖∗‖

represents the Euclidean normal of vector *. The two in-
plane vectors tw1 and tw2 in the deformed configuration can
be calculated from Eq. (6), and used to determine the wall
normal direction in the deformed configuration nw

o as

nw
o = tw1 × tw2∥∥tw1 × tw2

∥∥ . (7)

Hence, to achieve a strain increment �εI J in one time step
�t , the translational velocities of the boundary surface cen-
tres are to be set as:

vw
oi = �xw

oi/�t = �Fi J X
w
oJ /�t = −�εi J X

w
oJ /�t . (8)

To set the boundary wall rotation, we calculate the wall nor-
mal direction at the current strain levelnw

o and the target strain
level nwt

o based on two in-plane vectors first. The boundary
wall rotational velocities are hence to be set as:

ww = nw × nwt/�t . (9)

2.1.3 Hydro-shear decomposition

Knowing the three principal values and their respective direc-
tions, the Biot strain tensor can be uniquely defined as
in “Appendix 1”. A strain controlled loading path can be
expressed in terms of principal strain values and directions.

Due to the high sensitivity of granular material behavior
on volume, the material volume must be precisely controlled
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and quantified. It is worthy pointing out that the summation of
the principal strains J1(ε) is not a proper measure of volumet-
ric strain. Although it provides a reasonable estimation in the
case of infinitesimal deformation, the error becomes signifi-
cant when the deformation is finite. The Jacobian determinant
J = det (F) relates the exact specimen volume as:

v = det (F) V = JV (10)

where v and V are the volumes in the deformed and
undeformed configurations. The volumetric strain is hence
expressed as:

εv = dV − dv

dV
= 1 − J (11)

In three dimensional spaces, the deformation gradient F can
be expressed as the product of a volumetric term and a devi-
atoric term as:

F = (J 1/31)︸ ︷︷ ︸
Fv

· (J−1/3F)︸ ︷︷ ︸
Fd

= Fv · Fd (12)

Note that J (Fd) = det Fd = det(J−1/3F) = J−1 det F =
J−1 J = 1, i.e., the deviatoric part is totally independent of
any volume change, and J (Fv) = det Fv = det(J 1/31) = J ,
i.e., the volumetric part contains only the information of vol-
ume change [27]. Therefore, the material state of deformation
can be uniquely defined by the three invariants, i.e., the vol-
umetric strain εv = dV−dv

dV = 1 − J , the deviatoric strain
εq = 2

√
J2D (Fd)/3 and the intermediate principal strain

ratio bε = (
ε2 − ε3

)
/
(
ε1 − ε3

)
alongside the three principal

directions nI
ε (I = 1, 2, 3). Note that bε = bF = F2−F3

F1−F3 =
bFd = F2

d −F3
d

F1
d −F3

d
.

Should the loading path be specified in terms of εv, εq , bε

and the three principal directions, the volumetric defor-
mation gradient tensor Fv can be determined from εv as
Fv = J 1/31 = (1 − εv)

1/3 1, and the deviatoric deforma-
tion gradient tensorFd can be determined from εq , bε and the
three principal directions as introduced in “Appendix 2”. The
deformation gradient tensor F can be hence calculated from
Eq. (12) and used to determine the translations and rotations
of boundary surfaces to impose the specific strain-controlled
loading path.

2.2 Cauchy stress

2.2.1 Stress evaluation

Cauchy stress describes the boundary forces acting over cur-
rent configuration. When the representative element being

subjected to the distributed forces pi (x) applied on the cur-
rent assembly boundary s and the body forces gi (x) acting
within the volume v, the average stress tensor expressed as
σ̄i j = 1

v

∮
v
σi jdv can be evaluated as:

σ̄i j = −1

v

(∮
s
xi p jds +

∮
v

ρxi g jdv

)
(13)

Note a minus is necessary when applying the divergence
theorem with the inward normal direction being positive.
On the local scale, the boundary traction can be viewed
as discrete forces exerted at different boundary points, i.e.,∮
s xi p jds = ∑

β∈s x
β
i F

β
j , in which Fβ

i is the external force
exerted at discrete boundary points β with the coordinates
of xβ

i . The body and internal forces could be estimated as∮
v
ρxi g jdv = ∑

P∈v x
P
i GP

j , in which GP
i is the volumetric

force of granular particle P acting at the centre of gravity
x Pi . Hence, Eq. (13) can be discretized as:

σ̄i j = −1

v

⎛
⎝∑

β∈s
xβ
i F

β
j +

∑
P∈v

x Pi GP
j

⎞
⎠ . (14)

This expression has be used in DEM simulate to estimate the
element stress.

2.2.2 Applying a stress increment

To achieve the target stress state σ t
i j , the stress increment

�σi j = σ t
i j −σi j is to be imposed on the specimen boundary

using the following servo-control mechanism. Expressing the
stress increment �σi j in terms of its invariants (�σ)I , (I =
1, 2, 3) and the principal directions (α�σ )I , (I = 1, 2, 3),
the strain increment can be determined by taking analogy of
an isotropic elastic constitutive relationship as:

{
(�ε)I = 1+ν

E (�σ)I − ν
E �σkk

(α�ε)
I = (α�σ )I

(15)

where E and ν are the nominal Young’s modulus and Pois-
son’s ratio and (α�ε)

I denotes the principal directions of the
strain increment �εI J . The principal values and directions
are to be used to determine the strain increment in the com-
ponent form as introduced in “Appendix 1”, which is then
applied on the simulated sample by specifying the boundary
translational and rotational velocities as introduced in Sec-
tion 2.1.2.

In this study, it is set ν = 0.5 and E is estimated as follows.
Denote A as the influential area of one particle, r as the aver-
age particle radius. The influential area is a rough estimation
of the projection area that one granular particle may have on
a plane. A = (2r)2 has been used here for three-dimensional
simulations. To impose the normal surface traction increment
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�σ , the boundary force increment over the influential area
A is to be �F = �σ · A, and results in the change in the
boundary-particle overlapping �D = �F/kn , where kn is
the particle stiffness. Estimated over the sample dimension
L , this is equivalent to the strain increment �ε = �D/L . To
prevent overshooting of the target stress state, only a portion
of the above strain increment ς�ε is imposed in one time
step, in which ς is a relaxation factor, and ς < 1. The nom-
inal Young’s modulus used in the simulation can hence be
determined as:

E = �σ/ς�ε = knL/ς A. (16)

In this study, it is set as default that ς = 0.8 and L = 2Re,
where Re is the radius of the circumscribed sphere of initial
sample geometry used in this study.

For a given specimen with pre-set particle properties,
the nominal Young’s modulus estimated from Eq. (16) is
a constant throughout the loading process. Granular material
usually behaves differently from the above nominal isotropic
elastic constitutive relationship. The induced change in the
specimen stress state is hence expected to be different from
the desired stress increment �σi j , meaning that the target
stress σ t

i j has not been realized. In the next calculation cycle,
the stress increment �σi j = σ t

i j − σi j is then calculated
based on the updated stress state σi j , and hence the new
strain increment. By repeating doing so, the specimen stress
gradually approaches the target stress state. When the dif-
ference between the current stress state and the target stress
state is smaller than the preset tolerance, the stress boundary
condition is considered to be satisfied.

2.2.3 Hydro-shear decomposition

A three dimensional Cauchy stress tensor σ = σi jei ⊗ e j
can be decomposed as σi j = σkkδi j/3 + si j = pδi j + si j ,
in which the mean normal stress p = σi i/3 = J1 (σ)/3
denotes the hydrostatic pressure and si j = σi j − pδi j is
a deviatoric tensor denoting the shear stress components.
While p itself is an invariant, the deviatoric stress tensor s =
si jei ⊗ e j has two non-trivial invariants J2 (s) = J2D (σ) =
J2 (σ) − J1 (σ)2/6 and J3 (s) = J3D (σ) = J3(σ) −
2J1(σ)J2(σ)/3 + 2J1(σ)3/27. As functions of the invari-
ants are still invariants, the shear stress q = √

3J2D (σ) =√(
σ 1 − σ 2

)2 + (
σ 2 − σ 3

)2 + (
σ 1 − σ 3

)2
/2 and the devi-

atoric stress ratio η = q/p are also non-trivial invariants,
where σ 1, σ 2 and σ 3 denote the major, intermediate and
minor principal values respectively

(
σ 1 ≥ σ 2 ≥ σ 3

)
. In the

sequel, the mean normal stress p, the deviatoric stress ratio
η and the intermediate principal stress ratio bσ = (σ 2 −
σ 3)/(σ 1 − σ 3) which describes the relative magnitudes of
the three principal stresses, together with the three princi-

pal directions nI
σ can uniquely define the sample stress state.

They are used in this study to describe the loading path with
rotational principal stress axes for convenience.

For a given stress state with the invariants p, η, bσ and
the principal directions nI

σ , the stress Lode angle can be
determined from bσ as tan θσ = √

3bσ /(2 − bσ ). With
J1 (σ) = 3p and

√
J2D (σ) = ηp/

√
3, the three principal

stresses can be expressed as

⎧⎪⎨
⎪⎩

σ 1 = p
[
1 + 2

3η cos θσ

]
σ 2 = p

[
1 + 2

3η cos
( 2π

3 − θσ

)]
σ 3 = p

[
1 + 2

3η cos
( 2π

3 + θσ

)] (17)

Together with the information on the principal directions,
the stress tensor in component form can be determined as in
“Appendix 1”.

2.3 Polyhedral specimen geometry

For non-proportional loading paths, the tangential surface
traction is required. The boundary surfaces must be fric-
tional. This however increases the possibility for arching to
develop between neighboring surfaces. For better uniformity,
the near-spherical sample dimensions are desired. There are
infinite ways to define such geometries. In 2D spaces, the
convenient choice is convex regular n-sided polygons. An
increasing number in sides brings the sequence of regular
polygons into a circle. In 3D spaces, there are however only
5 finite convex regular polyhedron. We propose the protocol
detailed in “Appendix 3” to generate a tangential polyhedron
characterized by the inscribed sphere of radius Re, control-
ling sample sizes, and the side number n, defining sample
shape. n is an even number and n ≥ 4. The angle between
every two neighbouring walls is obtuse when n ≥ 6. If
n is sufficiently large, the shape of polyhedron boundary
approaches a sphere. Figure 1 gives examples of such defined
polyhedrons with n = 6, n = 8 and n = 10, respectively.

2.4 Numerical implementations

Non-spherical particles are used in this study. They are
formed by two overlapping spheres as shown in Fig. 2 using
the clump logic in PFC3D [34]. The distance between the
centres of two constitutive spheres is 1.4r and all the particles
are attributed with the same solid density ρ of 2700 kg/m3.
The constitutive spheres making up of a clump possess the
same motion. They are rigid bodies without any internal
forces arising in between. No crushing mechanism has been
considered. The samples have been generated using the gravi-
tational deposition method with the particle radius uniformly
distributed within [0.3, 0.5] mm.
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Fig. 1 Examples of polyhedral sample geometries. a n = 6; b n = 8; c n = 10

R

1.4R

Fig. 2 Geometry of non-spherical particle

The linear contact model has been used with constant nor-
mal and tangential stiffnesses kn = ks = 1 × 105 N/m.
The critical time step �t used in the simulation is auto-
matically determined by the minimum particle size and the
contact stiffness within PFC3D. The magnitude of contact
stiffness has been reduced for computational efficiency. At
the maximal confining pressure, the particle overlapping is
around 0.4 % of the average particle diameter and is believed
small enough to satisfy the point contact assumption. The
time step used in the numerical simulation is 1.02 × 10−6 s.
Sliding occurs when the tangential contact force exceeds the
maximum allowable tangential force Ft

max = μFn with the
frictional coefficient set as μ = 0.5. No contact cohesion has
been used. The boundaries surfaces are rigid walls with the
same mechanical properties as the granular particles.

Sample preparation starts with generating spheres within
the cuboidal region whose horizontal cross section is
0.0192 m × 0.0192 m and height 0.133 m. 18,876 spheres
have been generated. The horizontal cross section is larger
than the target sample diameter to mitigate the boundary
effect on packing uniformity. The cuboid is high enough
to ensure no overlapping between any two of the gener-
ated spheres. After generation, the spheres are replaced with
clumps of equal volume and random orientations. They
then deposit under the vertical gravitational acceleration
g = −100 m/s2. Local damping mechanism of PFC3D [34]
has been used for energy dissipation and the magnitude is
controlled by the damping coefficient ξ . During deposition,
the local damping has been set as ξ = 0.2 for dynamic sim-
ulation, the particle and boundary frictions have been set as

μg = 0.01 to form a dense packing. The deposition process
terminates when the ratio between the unbalanced force and
the average contact force ftol = funb/ fav is no larger than
0.01 %. After deposition, the gravity field is removed. The
local damping is set as ξ = 0.7, and the particle and bound-
ary friction coefficients are set to be μ = 0.5 for the following
static simulations. The specimens prepared by gravitational
deposition method are anisotropic.

The boundary walls were generated inside the deposited
packing to form a representative element with n = 8, R =
0.0066 m. The sample size is chosen as a compromise to
make meaningful observations and to achieve the large num-
ber of rotation cycles required in this study. Particles with
the centre of any constitutive spheres falling outside of the
boundary walls are deleted. The remaining 5,188 particles
form the representative element for simulation. The sam-
ple is re-equilibrated by cycling with fixed boundaries until
ftol ≤ 0.01 %, and then consolidated to the isotropic stress
state of p = 500 kPa. The sample has been monotonically
sheared in triaxial model by loading in the z axis direction.
The intermediate principal stress has been fixed in the y axis
direction with constant intermediate stress ratio bσ = 0.5.
The stress–strain responses are plotted in Fig. 3. It exhibits
dense material behavior, dilative and softening after the peak
stress ratio ηp = 1.2. At large strain level, the specimen
approaches the critical stress ratio ηcs = 0.96 and the criti-
cal void ratio ecs = 0.70.

A series of numerical experiments have been carried out
to simulate the granulate system responses to rotation of
principal stress axes at different stress ratios. Information
is summarized in Table 1. The specimen sheared up to the
preset stress ratios (η = 0.5, η = 0.6, η = 0.7, η = 0.9)
have been saved and then subjected to stress rotation. The
mean normal stress p = 500 kPa, the preset stress ratio and
the intermediate stress ratio bσ = 0.5 have been maintained
constant throughout. The intermediate principal stress has
been fixed in the y axis direction. The major principal stress
axis rotates in the (x, z) plane for 3×10−4 degrees per load-
ing increment. This is a completely stress controlled loading
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Fig. 3 Stress–strain responses
in triaxial shearing with b = 0.5

Table 1 Numerical test programme

Simulation number Stress state Void ratio e0

DEB05Y05 True triaxial
(b = 0.5)

η = 0.5 0.645

DEB05Y06 η = 0.6 0.645

DEB05Y07 η = 0.7 0.645

DEB05Y09 η = 0.9 0.645

path achieved using the servo-control mechanism described
in Sect. 2.2.3. Loading is applied only when the sample is
considered equilibrium ( ftol ≤ 0.01 %) and the boundary
stress condition is closely monitored.

The stress paths for the simulation DEB05Y05 are plot-
ted in Fig. 4, confirming that the mean normal stress, the
deviatoric stress and the b value have been kept constant.
The deviation of the major principal stress axis to the z axis
is denoted as angle α. Figure 5 plots the six stress compo-
nents and its trajectory in the (x, z) plane, which is a circle
as expected.

3 Deformation to rotation of principal stress axes

3.1 Strain components

The strain developed during rotation of principal stress axes is
plotted in Fig. 6. The strain components εyx , εyz are observed
to be nearly zero, indicating the y axis coincides one of
the principal strain directions. εyy continuously accumulates
during rotation even though the stress component σyy has
been maintained constant. εyy has been observed to be posi-
tive indicating volume contraction. A higher value of εyy is
observed at a larger stress ratio. The rate of change flattens
when rotation of principal stress axes continues.

The three strain components in the (x, z)plane εxx , εxz, εzz
vary cyclically. There are un-recoverable strains developed
in each cycle, more significant during the first few cycles
than later. These are clear evidences of plastic deformation
caused by rotation of principal stress axes. Similar observa-
tions have been reported in experimental hollow cylinder test
results on sand [9,35].

Fig. 4 Stress invariants and
principal stress directions. a
stress invariants, b principal
stress directions
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Fig. 5 Stress paths during
rotation of principal stress
directions. a stress components,
b stress trajectory

3.2 Strain trajectories

The three cyclic strain components εxx , εxz, εzz are plotted in
Fig. 7 in the (x, z) plane. Only data from cycle 1, 10, 30 and
50 are extracted and plotted for clarity. Different from the
circular stress trajectory, the strain trajectories are initially
spiral. The vector from the start to finishing point of each
cycle indicates the amount of plastic deformation, which are
significant during the first few cycles. The strain trajectories
gradually approaches circular and become closed as rotation
continues. A larger strain trajectory is observed at a greater
stress ratio, similar to previous numerical and experimental
observations [8,9,27,35]. However experimental observa-
tions report elliptical strain trajectories [35]. The difference
may be due to the idealization in DEM simulation or the
non-uniformity in developed hollow cylindrical testing, and
is subject to more investigation.

The normalized strain increment defined as �εRI J =
lim�α→0 (�εI J /�α) has been proposed to quantify the
amount of strain increment per unit amount of stress rota-
tion. With the y axis being the principal strain direction and
εRyy plotted in Fig. 6, what of interest is the deformation in

the (x, z) plane, which can be presented in terms of (�ε)Rv =
�εRxx + �εRzz, (�ε)Rq =

√(
�εRxx − �εRzz

)2
/4 + �εRxz�εRzx

andαR
�ε = atan

[
2�εRxz/

(
�εRzz − �εRxx

)]
/2, in which (�ε)Rq

equals the diameter of the osculating circle for the strain
trajectories in the (x, z) plane. (�ε)Rq in the 50th cycle is
plotted in Fig. 8 showing that much more significant strain
increments at higher stress ratios.

3.3 Volume contraction

The volumetric strain εv has been plotted in Fig. 9. Although
the specimen is categorized as dense, and excess volume
dilation occurs in monotonic shearing as shown in Fig. 3,
the sample contracts when subjected to rotation of princi-
pal stress axes. The rate of volume contraction becomes

smaller with the number of cycles increases. Although 50
cycles are not sufficient to bring the sample into the ultimate
void ratio, it is anticipated that the volume strain reaches
the limit should the stress rotation continue. The specimen
hence reaches the ultimate state. As previously reported, the
specimen approaches a denser state at the higher stress ratio.
This is similar to the experimental observation reported on
the drained response of sand under rotational shear [9,35];
and shares the same mechanism with the larger pore pres-
sure build-up at higher stress ratio in the undrained rotational
shear [36,37].

The volumetric strain might be contributed by compres-
sion in the y direction or contraction in the (x, z) plane. As
observed in Fig. 6, εyy is always compressive, more signifi-
cant at a higher stress ratio. Comparing the volumetric strain
in Fig. 9 and εyy in Fig. 6, it is seen that the sample contracts
in the (x, z) plane at η = 0.5, η = 0.6, η = 0.7, while in the
case of η = 0.9, the sample experiences significant dilation
in the (x, z) planes.

3.4 Deformation non-coaxiality

Deformation non-coaxiality is an interesting feature of gran-
ular materials. The degree of non-coaxiality, defined as the
difference between the normalized strain increment direction
αR

�ε and the principal stress direction α has been plotted in
Fig. 10. The elastic strain increment is believed to be small in
comparison with the plastic strain increment, the total strain
increment can be used to determine approximately the plas-
tic strain increment direction, as suggested by Gutierrez et
al. [38]. Such an approximation is followed here for data
analyzing.

The strain increments �εI J occurred during stress rota-
tion of �α ≈ 3◦ have been extracted to calculate the
normalized strain increment �εRI J and hence the principal
direction αR

�ε. It varies between 30◦ and 40◦. The degree of
non-coaxiality is smaller, i.e., the deformation is more coax-
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Fig. 6 Deformation due to
rotation of principal stress
direction

ial when the stress ratio gets higher, consistent with previous
numerical and experimental observations [7–9,27,35].

4 Charactersation and observation of internal
structure

Discrete element simulation provides not only macro infor-
mation of the representative element but also detailed data

on internal structure and particle interactions. In this section,
we present the evolution of internal structure during rotation
of principal stress axes in terms of contact normal-based fab-
ric tensor. In this study, we differentiate the contact CAB ,
denoting the point on particle A from the contact point CBA,
denoting the point on particle B between a particle pair in
contact. Each contact has a unique normal direction, point-
ing from the contact point towards particle interior.
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Fig. 7 Strain trajectories at
different stress ratios

Fig. 8 (�ε)Rq at different stress ratios

4.1 Contact normal-based fabric tensor

It is of interest to characterize the directional distribution of
contact normal density. Kanatani [39] established a math-

Fig. 9 Volumetric strain

ematical theory to describe the directional distributions of
orientations. The 2nd order polynomial approximation of the
probability density function E(n) takes the form:

123



Macro deformation and micro structure of 3D granular assemblies subjected to rotation of. . . Page 11 of 20 53

Fig. 10 Effect of stress ratios
on deformation non-coaxiality

E(n) = 1

E0

(
1 + Di jni n j

)
(18)

where E0 = 4π, Di j is deviatoric and symmetric, referred to
as the anisotropy tensor. We can further propose a function

C p(n) = ω

E0

(
1 + Di jni n j

)
(19)

describing the likelihood of one particle having a contact
in the direction n, where ω = Nc/Np is the ratio of contact
number over particle number, known as particle coordination
number.

In this expression, two parameters are necessary to charac-
terize the material internal structure. ω is an index on particle
packing density and Di j characterizes the anisotropy in con-
tact normal density distribution. They can be determined by
calculating the following moment tensor:

Mi j = 1

Np

Nc∑
k=1

nki n
k
j (20)

where nki is the k-th contact normal vector. The coordination
number can be found as ω = Mii , while the anisotropy tensor
Di j can be found as

Di j = 15

2

(
Mi j

ω
− 1

3
δi j

)
(21)

where δi j is the Kronecker delta [40,41].

Figure 11 plots the evolution of particle coordination num-
ber and anisotropic fabric during monotonic shearing with
b = 0.5. Upon shearing, the sample coordination number
reduces while the fabric anisotropy develops. The points
where stress rotation has been subsequently applied are
marked with the stars.

4.2 Fabric evolution during rotation of principal stress
axes

The particle coordination number during stress rotation has
been plotted in Fig. 12. The particle coordination number
sees a trend of decreasing during the first few cycles, and
then rebounding slightly while keeping cycling.

The internal structure shows a cyclic change during the
rotation of major principal stress axis. The y axis remains
a principal direction. During rotation of the major princi-
pal stress direction, the yaxis remains as the principal fabric
direction during rotation in the (x, z) plane, however there is
a clear change in Dyy as shown in Fig. 13. Dyy is larger at the
higher stress ratio, indicating a larger percentage of contact
orientates in the y axis direction at the higher stress ratio.

The anisotropy tensor components in the (x, z) plane
have been plotted in Fig. 14 in terms of Dxz against
(Dxx − Dzz)/2. It is clear that the anisotropy tensor follows
a periodic change. The fabric trajectories approach circles
quickly. Comparing the fabric trajectories under different
stress ratios, it is evident that the higher the stress ratio,
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Fig. 11 Fabric evolution during
monotonic shearing.
a Coordination number,
b anisotropy tensor

Fig. 12 Evolution of coordination number at different stress ratios

Fig. 13 Evolution of Dyy at different stress ratios

the larger the fabric trajectory is, indicating the higher level
of fabric re-organization. The centres of these fabric trajec-
tories are seen different from the origin. As a result, the
major principal fabric direction, defined as the angle between

the major principal fabric direction and the vertical z-axis,
αF , may deviate significantly the major principal stress
direction.

The deviation of the principal fabric direction from the
principal stress direction (α − αF ) has been plotted in
Fig. 15. At the low stress level (η = 0.5), the fabric trajectory
is of limited size and completely lies in the negative side of the
horizontal axis. The principal fabric direction is αF = 90◦
(vertical) when the principal stress direction is near α = 90◦
(vertical) as well as α = 0◦ (horizontal) when (α − αF ) goes
up nearly 90◦, as seen in Fig. 16a. Higher stress ratio pro-
motes more extensive structure re-organisation. The centre of
fabric trajectories approaches the origin and the size of the
fabric trajectories increases. The fabric anisotropy follows
more closely to the stress state. The principal fabric direc-
tion becomes more inclined to the principal stress direction.
(α − αF ) varies periodically but is of a very small magnitude,
as seen in Fig. 16b–d.

The centres of fabric trajectory lie on the negative side of
the horizontal axis, suggesting more contacts in the z axis
direction than those in the x axis direction. The centre coor-
dinates in the 50th cycle as well as the diameter of the fabric
trajectory have been plotted in Fig. 16. The centre of fabric
trajectories approaches the origin as the stress ratio increases.

4.3 Anisotropy in particle orientation

The previous 2D simulation however reports that the fab-
ric and stress principal directions mostly coincide with each
other, with the principal fabric direction lagging behind the
principal stress direction, although only a few degrees. The
difference is believed to be the closely associated with mate-
rial anisotropy developed during deposition. In this study,
the particles are non-spherical and the samples are prepared
using particle deposition method. Anisotropy in particle ori-
entation is expected. The anisotropy tensor Dp

i j is used to
quantify the anisotropy in particle orientations, defined such
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Fig. 14 Fabric trajectories at
different stress ratios

that the particle orientation density can be approximated by

the function E p(n) = 1
E0

(
1 + Dp

i j ni n j

)
. They can be deter-

mined using the similar methodology of calculating contact
anisotropy tensor. Anisotropy in particle orientation is plot-
ted in Fig. 17. Figure 17(a) plots the information during
monotonic shearing while Fig. 17(b) plots particle anisotropy
in stress rotation. Only data for the sample DEB05Y05 is pre-
sented to exemplify the fabric evolution .

It is seen that there are very few particles orientated in
the vertical z direction after deposition. In monotonic shear-
ing, there are more and more particles inclined to the x axis
direction as shear continues, while in stress rotation, the par-
ticle orientation is persistent and only decreases slights after
a larger number of cycles. With more particles lie in the
horizontal plane, there are larger surface areas orientated in
the vertical direction, and hence the stronger contact normal
anisotropy with the z axis as the principal fabric direction.

Furthermore, an isotropic specimen has been prepared
and simulated following the same loading path. The radius
expansion method has been used and the prepared sample is
expected to be isotropic. The void ratio prior to the rotation
of principal stresses is 0.6. The sample is subjected to stress

rotation at p = 500 kPa, η = 0.5 and b = 0.5 and labelled
as REB05Y05. Its fabric trajectories are presented in Fig. 18.
It is evident that the specimen with isotropic particle orienta-
tion has the fabric trajectory centred in the origin, confirming
the offset is the results of anisotropy in particle orientation.
Comparing the shape of the fabric trajectory in Fig. 18 and
that in Fig. 14, the particle orientation anisotropy seems to
have little effect on the shape of the ultimate fabric trajectory.

5 Discussion on the effect of b-value

5.1 Observation of macro deformation

It is known that the intermediate principal stress has a sig-
nificant effect on the material deformation to stress rotation
[15,28]. To investigate this effect, the specimen has been
sheared at different b values (b = 0.0, b = 0.5 and b = 1.0),
and then subjected to principal stress rotation with η = 0.9.
The specimen with b = 1.0 could sustain the level of
stress ratio and soon reached the failure upon stress rota-
tion. Figure 19 compares the strain trajectory of specimen
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Fig. 15 Non-coincidence
between the principal stress and
fabric axes

Fig. 16 Characteristics of
fabric trajectories at different
stress ratios. a Centre
coordinate, b diameter

Fig. 17 Anisotropy in particle
orientation. a monotonic
loading, b rotational shear
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Fig. 18 Fabric trajectories of initially isotropic sample prepared by
radius expansion

sheared at b = 0.0, η = 0.9, labelled as DEB00Y09 and
DEB05Y09. The pattern is observed to be similar while
sample DEB00Y09 experiences less irrecoverable plastic
deformation, and also approach a circular strain trajectory.
The size of strain trajectory for b = 0.5 is generally larger
than that with b = 0, indicating a larger strain increment
rate at a greater b value during rotational shear. And the
principal direction of strain increment aligns more in the
stress increment direction, as shown in Fig. 20, consistent
with experimental study [15,28].

The volumetric strain of the two specimens is compared
in Fig. 21a while the out-of-plane strain εyy is plotted in
Fig. 21b. Sample DEB00Y09 is less contractive than sam-
ple DEB00Y09, consistent with the experimental observation
[15,28]. It is interesting to note that the sample sheared at low
b value (b = 0.0) experience a dilative strain in the out-of
the plain with εyy being negative while sheared at a higher b
value (b = 0.5), εyy is highly contractive. In the (x,z) plane,
DEB00Y09 behaves highly contractive, while DEB05Y09
behaves slightly dilative.

Fig. 20 The effect of b value: degree of non-coaxiality

5.2 Observation on fabric evolution

As shown in Sect. 4, the contact-based fabric tensor has
a close correlation with stress rotation. The fabric compo-
nents Dxx , Dxz, Dzz of the two specimens, DEB00Y09 and
DEB05Y09, are plotted in the deviatoric space, as shown
in Fig. 22. The centres of the fabric trajectory locate in the
negative side of the horizontal axis due to effects. As dis-
cussed in Sect. 4.3, this is the result of particle orientation
anisotropy formed during deposition, as a result, there are
contacts being more likely formed in the vertical direction.
The fact that the two centres are in a similar position further
confirms the hypothesis.

The fabric trajectory of DEB00Y09 approaches a circle,
which is smaller than that of DEB05Y09. Viewing the change
in the contact normal anisotropy as a measure of internal

Fig. 19 The effect of b value
on strain trajectory
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Fig. 21 The effect of b value
on volumetric strain. a
Volumetric strain, b εyy

Fig. 22 Effect of b value:
fabric trajectory

structural re-organisation, a smaller fabric trajectory suggests
less significant deformation, as observed in Fig. 19.

The evolution of the coordination number and the out-
of the plane fabric component during rotational shear are
shown in Fig. 23. After monotonically sheared up to stress
ratio η = 0.9, the coordination number of DEB00Y09 is
higher than that of DEB00Y09, and remains larger during
stress rotation. The evolution of the out-of plane fabric com-
ponent Dyy is however opposite. The stress rotation causes a
gradually increase in Dyy for the sample with a higher b value
b = 0.5 but a continuous reduction in sample DEB00Y09.

6 Concluding remarks

The virtual experiment procedure proposed by Li et al. [33]
has been implemented in the commercial software PFC3D to
reproduce the behavior of three dimensional granular mate-
rials subjected to continuous rotation of principal stress axes.
The samples are considered as the representative elements.
The sample deformation is described using the Biot strain
and quantified via boundary surface movements. The stress
state is described in terms of the Cauchy stress tensor and

quantified with the boundary-wall interactions. The samples
are initially tangential polyhedron.

Numerical simulations have been carried out. A dense
specimen has been prepared using the deposition method
and sheared up to different stress ratios and then subjected
to continuous rotation of principal stress axes. Significant
plastic deformation has been observed despite that the prin-
cipal stresses are kept constant. This contradicts the classical
plasticity theory, but is in agreement with previous labora-
tory observations on sand and glass beads. It confirms the
capability of the developed numerical technique as a useful
tool to facilitate multi-scale investigation on the constitu-
tive theories of granular material. The specimen shows a
more contractive behavior at the higher stress ratio, which is
partially contributed by the compressive out-of-plane strain
component εyy . The strain rate direction fells between the
principal directions of stress and stress rate. After a larger
number of rotational cycles, the sample approaches the ulti-
mate state with constant void ratio and periodic strain path.

The internal structure anisotropy has been quantified using
contact-based fabric tensor. Rotation of principal stress axes
leads to a denser packing, evidenced by larger coordination
numbers, and a cyclic variation in material anisotropy. After
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Fig. 23 The effect of b value:
coordination number. a
Coordination number, b
anisotropy fabric component
Dyy

a large number of cycles, they approach the periodic tra-
jectories in the (x, z) plane, associated with the observed
strain trajectories. The larger the stress ratio, the structure
becomes more anisotropic. The fabric trajectory become
larger, suggesting more significant structure re-organization
and explaining the larger strain rate.

Since the samples have been preparing by depositing
non-spherical particles, a significant anisotropy in particle
orientation has been observed. The likelihood to form con-
tact in the vertical direction is increased. The contact normal
anisotropy is hence inclined in the z axis direction. This
causes the shift of the fabric trajectory towards the minus
(Dxx − Dzz) side. Upon continuous rotation, the particle
anisotropy weakens, but very slowly.

Simulation has also been conducted to study the effect of
the intermediate principal stress ratio. The sample sheared at
a lower intermediate principal stress ratio (b = 0.0) has been
observed to approach a smaller strain trajectory as compared
to the case b = 0.5, consistent with a smaller fabric trajectory
and less significant structural re-organisation. It also expe-
riences less volume contraction with the out-of plane strain
component being dilative. Observations on micro-structure
and macro-behaviour provide valuable insights for develop-
ing the micro-mechanics based constitutive models in order
to realistically capture the behavior of granular materials
under general loading paths.

Appendix 1: Tensor invariants

A three-dimensional symmetric second order tensor A =
Ai jei ⊗ e j possesses three such invariants, J1 (A) =
tr (A) = Aii , J2 (A) = Ai j A ji/2, J3 (A) = Ai j A jk Aki/3,
and three mutually orthogonal principal directions. Ai j can
be decomposed as Ai j = Akkδi j/3 + ai j = mδi j + ai j ,

in which m = Aii/3 = J1 (A)/3 denotes the hydrostatic
mean, mδi j is the isotropic part, and ai j = Ai j − mδi j is a
trace-less term. While m itself is an invariant, the deviatoric
stress tensor a = ai j ei ⊗ e j has two non-trivial invari-
ants J2 (a) = J2D (A) = J2 (A) − J1 (A)2/6 and J3 (a) =
J3D (A) = J3(A) − 2J1(A)J2(A)/3 + 2J1(A)3/27.

A three-dimensional symmetric second order tensor A =
Ai jei ⊗ e j can also be written in the spectral form as
A = ∑3

I=1 AInI
A ⊗ nI

A with AI (I = 1, 2, 3) being the prin-
cipal values and nI

A (I = 1, 2, 3) being the corresponding
principal directions, which are mutually orthogonal. Follow-
ing the convention in mechanics, the superscripts 1, 2 and
3 are assigned to the major, intermediate and minor prin-
cipal values, respectively

(
A1 ≥ A2 ≥ A3

)
. Knowing the

principal values AI and the corresponding directions nI
A, the

tensor in component form Ai j can be determined from the

principal tensor B =
(

A1 0 0
0 A2 0
0 0 A3

)
and the rotation matrix

Ri j =
(
n1

1 n1
2 n1

3
n2

1 n2
2 n2

3
n3

1 n3
2 n3

3

)
, where nIj represents the j-th component

of the principal direction nI
A, using the following transfor-

mation:

Ai j = RT
ik Bkl Rl j (22)

Appendix 2: Calculating the deviatoric deformation
gradient tensor Fd

When the invariants εq , bε and the principal direction being
specified, we can determine the deviatoric deformation gradi-
ent tensor Fd . First, calculate the Lode angle (0◦ ≤ θ ≤ 60◦)
from
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tan θ = tan θFd = tan θε =
√

3bε

(2 − bε)
(23)

J2D (Fd) can be determined from εq as
√
J2D (Fd) =√

J2D (ε) = √
3εq/2. Denoting a = 2√

3

√
J2D (Fd) cos θ,

b = 2√
3

√
J2D (Fd) cos

( 2π
3 − θ

)
and c = 2√

3

√
J2D (Fd) cos( 2π

3 + θ
)
, we have the three principal values written as:

F1
d = J1 (Fd)

3
+ a, F2

d = J1 (Fd)

3
+ b, F3

d = J1 (Fd)

3
+ c

(24)

where a + b + c = 0, ab + bc + ca = −J2D (Fd) , abc =
J3D (Fd). Note that when the deformation is isotropic,√
J2D (Fd) = 0, and J1(Fd) = 3.
Since the determinant of Fd is equal to 1, i.e., J (Fd) =

1, J1(Fd) can be found by solving the cubic equation

J (Fd) = (x + a) (x + b) (x + c)

= x3 − J2D (Fd) x + J3D (Fd) = 1 (25)

where x = J1(Fd )
3 is denoted for convenience. The discrim-

inant of Eq. (25) is � = − J2D(Fd )3

27 + [J3D(Fd )−1]2

4 . For the
practical range of deformation in material stress–strain study,
� > 0. Hence Eq. (25) has only one real root, which is:

x =
(

− J3D (Fd) − 1

2
+ √

�

)1/3

+
(

− J3D (Fd) − 1

2
− √

�

)1/3

(26)

Once x and equivalently J1(Fd) are determined, the three
principal values can be found from Eq. (24). Together with
information of principal directions, the deviatoric deforma-
tion gradient tensor Fd can be calculated as introduced in
“Appendix 1”.

Appendix 3: Polyhedral specimen

The specimen boundary is constructed such that:

(a) The polyhedron has a top face and a bottom face. They
both are parallel to the x–y plane, and referred to as the
end walls. The end walls are made to be regular n-sided
polygons. The vertices of the two end walls share the
same (x, y) coordinates. The projection of the polyhe-
dron in the (x, y) plane is shown as Fig. 24a, in which
the end walls are marked in shadow. In this example,
the coordinates are normalized by R and n = 10. The
distance between the two end walls is set as 2R. The

two end walls are centred at (0, 0, R) and (0, 0,−R),
respectively.

(b) Take a line passing through the mid-points of a pair of
parallel sides, as the dashed line in Fig. 24a. The plane
formed by this dashed line and the z axis is set as a
symmetric plane of the polyhedron boundary. It inter-
sects the specimen boundary and forms also a regular
n-sided polygon, whose radius can be also easily found
as R, shown in Fig. 24b. Denoting � = 180◦/n, the side
length of this vertical polygons is L = 2R tan � .

(c) In total, we can have n/2 such vertical symmetric planes
and n/2 vertical polygons. Due to symmetry, the vertices
of these vertical polygons, such as point A, A’, B, B’, C
and C ′, lie on n/2 horizontal planes, as seen in Fig. 24b.
Also the set of vertices on the same horizontal plane lie
on the same circle, as in Fig. 24a. Since the two sides
of the vertical polygon lies in the end walls and are the
diameters of the inscribed circle of the two end wall
polygons, we can find the side length of the two end
wall polygons as l = 2R tan2 � .

(d) Using this circle as the inscribe circle, we can define a
n-sided regular polygon whose sides are parallel to those
of the end walls. As such we have in total n/2 n-sided
regular polygons, including the two defined in Step 1, as
shown in Fig. 24a. The total number of vertices of the
polyhedron is n2/2. For convenience, we label the vertex
sequentially as shown in Fig. 25.
The superscript indicates the vertex ID number. It starts
in the top layer and goes counter-clockwisely with the
ID assigned from 1 to n subsequently, and then continues
in the layer one level lower. The vertex in the i-th layer
can be denoted by v[(i−1)n+ j] where i ranges from 1 to
n/2 and jranges from 1 to n. Looking into the horizon-
tal projections, the vertices sharing the same j have the
equal angular coordinates.

(e) Using these n2/2 vertices, we construct a convex poly-
hedron, which is used in the simulations here as the
specimen initial boundary. The faces of the specimen
boundary, besides the two end walls, are referred to
as the side walls. There are (n/2 − 1) n side walls,
which are quadrangles of four vertices and are tangen-
tial to the inscribed sphere. For convenience, they are
labelled top-down and counter-clockwisely. As shown
in Fig. 25, the side wall formed by the four vertices
v1, vn, vn+1, v2n is given the ID 1. Following this con-
vention, the wall with ID [(i − 1) n + j], where i ranges
from 1 to (n/2 − 1) and j ranges from 1 to n, is the
side wall formed by the set of the four vertices with ID
[(i − 1) n + j] , [(i − 1) n + ( j − 1)] , [i · n + j] and
[i · n + ( j − 1)] when j = 1, or the set of fourpagnpagn
vertices with ID [(i − 1) n + j] , [(i − 1) n + n] , [i · n + j]
and [i · n + n] when j = 1. The top and bottom
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Fig. 24 The protocol to
generate a tangential convex
polyhedron. a The horizontal
projection, b the vertical
intersection
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Fig. 25 Labelling the vertex and the side walls with IDs

walls are labelled as ID [(n/2 − 1) n + 1] and ID
[(n/2 − 1) n + 2].

In 3D spaces, a plane can be generated by specifying the
coordinates of a point on the place and the normal direction.
In DEM softwares, a rigid wall boundary can be normally
defined by a point on the surface and a unit direction. Using
the spherical coordinate system, a unit direction tensor can be
represented by an inclination angle θ and an azimuth angle ϕ.
In respect to the symmetry of the polyhedral boundary, for the
side wall with ID [(i − 1) n + j], it can be easily determined
that θw = 2i · � and ϕw = 2 ( j − 1) · � . The tangent point
of the side wall on the sphere Xw

t can hence be represented
by its spherical coordinates (R, 2i · �, 2 ( j − 1) · �). Since
the polyhedron defined as above is a tangential polyhedron
inscribed by a sphere of radiusR and centred in the origin O ,
all the side walls are tangent planes to the inscribed sphere.
The out normal direction of the side wall can be found as
nw = Xw

t /
∥∥Xw

t

∥∥, where ‖∗‖ denotes the Euclidean norm,
representing the length of vector * . The side wall plane can
hence be determined as

(
x − Xw

t

)×nw = 0, or equivalently

(
x − Xw

t

) × Xw
t = 0. For the two end walls, the tangent

points are their centres, (0, 0, R) and (0, 0, − R), with the
normal direction being (0, 0, 1) and (0, 0,−1), respectively.
This hence allows the generation of the complete set of wall
boundaries. Loading is applied by imposing a translation
velocity to the wall centres and the rotational velocity to the
wall normal directions.
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