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Purpose: To assess the magnitude of regional response to respira-
tory therapeutic agents in the lungs by using treatment 
response mapping (TRM) with hyperpolarized gas mag-
netic resonance (MR) imaging. TRM was used to quantify 
regional physiologic response in adults with asthma who 
underwent a bronchodilator challenge.

Materials and 

Methods:

This study was approved by the national research ethics 
committee and was performed with informed consent. 
Imaging was performed in 20 adult patients with asthma 
by using hyperpolarized helium 3 (3He) ventilation MR im-
aging. Two sets of baseline images were acquired before 
inhalation of a bronchodilating agent (salbutamol 400 mg), 
and one set was acquired after. All images were registered 
for voxelwise comparison. Regional treatment response, 
DR(r), was calculated as the difference in regional gas 
distribution (R[r] = ratio of inhaled gas to total volume of 
a voxel when normalized for lung inflation volume) before 
and after intervention. A voxelwise activation threshold 
from the variability of the baseline images was applied to 
DR(r) maps. The summed global treatment response map 
(DR

net
) was then used as a global lung index for compari-

son with metrics of bronchodilator response measured by 
using spirometry and the global imaging metric percent-
age ventilated volume (%VV).

Results: DR
net

 showed significant correlation (P , .01) with changes 
in forced expiratory volume in 1 second (r = 0.70), forced 
vital capacity (r = 0.84), and %VV (r = 0.56). A signifi-
cant (P , .01) positive treatment effect was detected with 
all metrics; however, DR

net
 showed a lower intersubject 

coefficient of variation (64%) than all of the other tests 
(coefficient of variation, 99%).

Conclusion: TRM provides regional quantitative information on changes 
in inhaled gas ventilation in response to therapy. This 
method could be used as a sensitive regional outcome 
metric for novel respiratory interventions.

q RSNA, 2017
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technique to provide regional quantita-
tive information on changes in lung ven-
tilation in response to therapy and is 
demonstrated in an asthma cohort by 
measuring bronchodilator response.

Materials and Methods

The study was approved by the national 
research ethics committee, and writ-
ten patient consent was obtained. All 
data were acquired between February 
2012 and June 2013, and the study was 
funded in parts by Novartis. One author 
(R.K.) was an employee of Novartis. 
The authors not employed by Novartis 
had full control of the data and of the 
information submitted for publication.

Study Population and Design

Twenty patients (10 women, 10 men) 
with a diagnosis of moderate-to-severe 
asthma (Global Initiative for Asthma 
step 2–5 [16]) were examined in this 
retrospective analysis. Patient age 
range was 21–73 years. Patients were 
tested for response to a bronchodilator 
(400 mg salbutamol) with hyperpolar-
ized gas ventilation MR imaging and 
with spirometry. Patient demographic 
data and results of pulmonary function 
tests are shown in Table 1.

different levels of inspiration and the re-
peated use of ionizing radiation, which 
could be detrimental, particularly in pe-
diatric cohorts.

Functional lung imaging with hy-
perpolarized gas magnetic resonance 
(MR) imaging provides three-dimen-
sional (3D) images of lung ventilation 
in a short breath hold. Hyperpolarized 
helium 3 (3He) MR imaging has been 
shown to be a sensitive measure of ven-
tilation heterogeneity in asthma (7,8). 
Although numerous metrics have been 
derived to describe ventilation hetero-
geneity from both hyperpolarized xe-
non 129 (129Xe) and 3He images by us-
ing texture-based methods like feature 
analysis or clustering methods such as 
k-means clustering (9–12), efforts have 
been focused on cross-sectional assess-
ment of cohorts. Longitudinal studies 
and therapy assessment have focused on 
global outcome measures from hyperpo-
larized 3He imaging, in particular per-
centage ventilated volume (%VV) or its 
counterpart, percentage defect volume 
(7,13). Although %VV has been shown 
to correlate with spirometric findings in 
asthma (14,15), the method is limited 
by the binary classification of ventilated 
versus nonventilated lung regions, sac-
rificing much of the richness of the re-
gional information on lung ventilation 
heterogeneity present in the images. 
There is therefore a need for imaging 
metrics that fully explore the regional 
sensitivity of these high-resolution im-
ages of lung function to assess the suc-
cess of intervention.

In this study, treatment response 
mapping (TRM) is introduced as a novel 

https://doi.org/10.1148/radiol.2017160532
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Advances in Knowledge

 n Treatment response mapping 
(TRM) is a novel technique for 
quantitative assessment of re-
gional lung ventilation changes in 
response to treatment.

 n The net treatment response map 
integrated over the whole lungs 
(DR

net
) correlates with changes in 

spirometry (Pearson correlation: 
r = 0.70 for change in forced ex-
piratory volume in 1 second; r = 
0.84 for change in forced vital 
capacity; P , .01).

 n Compared with standard clinical 
outcome measures based on lung 
function, TRM adds information 
about the size and direction of 
the regional physiologic response 
of the lungs.

Implications for Patient Care

 n TRM has potential for the assess-
ment of regional lung interven-
tions such as anti-inflammatory 
therapies or targeted therapies 
such as thermoplasty, endobron-
chial valve therapy, and lung 
volume reduction surgery.

 n Potential clinical applications for 
TRM are pediatric and longitudi-
nal studies of lung disease pro-
gression because patients are not 
exposed to ionizing radiation.

L
ung function tests such as spirom-
etry are widely used to clinically 
assess airflow obstruction and 

its reversibility, and indexes such as 
forced expiratory volume in 1 second 
(FEV

1
) are commonly accepted out-

come measures in the assessment of 
therapies for obstructive lung disease. 
These techniques, while established in 
respiratory medicine, assess the lungs 
as one unit, with limited sensitivity to 
regional ventilation changes (1). Im-
aging as a diagnostic tool can provide 
regional insight into alterations of both 
the structure and the function of the 
lungs and is increasingly being used as 
an outcome measure in the early-phase 
evaluation of respiratory therapeutic 
agents (2). In particular, regionally 
specific therapies, such as bronchial 
thermoplasty in asthma (3), endobron-
chial valve therapy (4), and lung volume 
reduction surgery in chronic obstruc-
tive pulmonary disease (5), require 
that regional information be obtained 
so that the efficacy of the intervention 
can be assessed. Previous studies have 
used computed tomography (CT)- and 
computational fluid dynamics–derived 
markers of airflow to assess functional 
changes after bronchodilator ther-
apy (6). However, those methods rely 
solely on models of ventilation inferred 
from structural CT images acquired at 
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was applied to the same breath-hold 
3He ventilation images (21). This 
avoided the registration of the 3He 
ventilation images being influenced by 
regional changes in gas distribution be-
tween acquisitions (Appendix E1 [on-
line]). Then, images were segmented 
to extract the ventilated lung volume 
by using ScanIP (Simpleware, Exeter, 
England).

Regional ventilation was then cal-
culated from the image intensity for 
each data set. Ventilation as regional 
gas distribution in the lung is quantified 
by conversion of image intensity to the 
volume fraction occupied by the inhaled 
tracer gas in each voxel. This requires 
knowledge of voxel volume (V

voxel
) and 

inhaled gas volume (V
bag

), as described 
by Tzeng et al (10):

 ′ = ⋅
bag

voxel tot

(r)
VI(r)

R
V I

, (1)

where I(r) is the regional image inten-
sity at position r(x,y,z), I

tot
 is the inte-

grated image intensity of all ventilated 
areas in the image, and R′(r) is the 
resulting regional gas volume fraction 
in each voxel. For example, in the tra-
chea directly after inhalation, the gas 
composition is usually the same as that 
inhaled from the bag, and hence R′ = 1.

To compare R′(r) between data 
sets, the differences in gas dilution 
of the tracer gas in the ventilated air-
spaces have to be taken into account. 

supine position with a clinical 1.5-T MR 
imaging unit (HDx; GE Healthcare, Mil-
waukee, Wis) with a dedicated MR 3He 
RF coil. Hydrogen 1 MR imaging was 
performed with the system’s body coil. 
Each image was acquired on inhalation 
of 1 L of gas from a Tedlar bag (350 mL 
hyperpolarized 3He mixed with 650 mL 
N

2
) from functional residual capacity. 

Prior to imaging, patients were trained 
in the breathing maneuver. Three ven-
tilation MR imaging acquisitions were 
performed in separate breath holds; 
two at baseline within 5 minutes of 
each other, then an additional acqui-
sition 20 minutes after bronchodilator 
administration to assess short-term air-
way responsiveness (19) (Fig 1). Each 
breath-hold acquisition consisted of 
(a) functional images (hyperpolarized 
3He ventilation; resolution, 3 3 3 3 
10 mm; duration, 9 seconds) and (b) 
structural images (1H anatomy; resolu-
tion, 3 3 6 3 10 mm; duration, 4 sec-
onds). To switch between 3He and 1H 
MR imaging, the imaging unit required 
approximately 3–5 seconds, leading 
to a total breath-hold duration of less 
than 18 seconds in all cases. Because 
both functional and structural images 
are acquired back-to-back during a sin-
gle breath hold, they are intrinsically 
coregistered (20).

Image Processing Algorithm for TRM

Structural proton images were first 
registered between the different time 
points, and the resulting transformation 

MR Imaging Data Acquisition

Prior to the imaging acquisition visit, 
participants refrained from using any 
short-acting bronchodilators for at least 
6 hours. Patients were then imaged in a 

Table 1

Overview of Demographics and 

Results of Pulmonary Function Tests 

in 20 Patients with Asthma

Characteristic Value

Age (y) 51 6 12

Female:male ratio 10:10

Height (m) 1.66 6 0.07

Weight (kg) 82 6 15

BMI (kg/m2) 30 6 5

GINA classification 4.10 6 0.68

No. of pack-years 0.62 6 1.91

RV (L) 2.78 6 1.18

TLC (L) 6.23 6 1.54

FEV
1
 (percentage  

predicted)

71 6 28 (27–122)

FVC (percentage  

predicted)

92 6 22 (54–138)

FEV
1
/FVC (percentage  

predicted)

75 6 17 (31–83)

Note.—Unless otherwise specified, all data are means 

6 standard deviations, with ranges in parentheses. All 

measurements were obtained before application of the 

bronchodilator. Spirometry was performed with a rolling 

seal Vitalograph spirometer (Vitalograph, Buckingham, 

England) according to guidelines (17). BMI = body mass 

index, FVC = forced vital capacity, GINA = Global 

Initiative for Asthma (16), pack-years = lifetime tobacco 

exposure (1 pack-year was defined as 20 cigarettes a 

day for a year), RV = residual volume, TLC = total lung 

capacity. Predicted values were calculated by using 

equations (18).

Figure 1

Figure 1: Image processing workflow from left to right: 3D image sets (proton and hyperpolarized gas ventilation image within a single breath hold) are acquired 

twice at baseline to calculate baseline variability. Twenty minutes after bronchodilator application, another 3D set is acquired. The differences between pre- and post-

bronchodilator images are plotted as treatment response DR(r) maps and are compared with a regional treatment activation threshold from baseline variability, DR
B
(r). 

This data set was obtained in a 54-year-old man (patient 2).
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the bronchodilator; instead, it is the 
amount of the tracer gas (from a 1-L 
total inhaled dose), that reaches newly 
ventilated lungs. For an inhaled gas mix 
of 1 L, a theoretical redistribution of 
DR

net
 = 100% or +1 liter would there-

fore mean a complete redistribution of 
all inhaled gas in previously non- or lit-
tle-ventilated regions. The metric quan-
tifies the sum of regional gas redistribu-
tion as result of the same dose inhaled 
before and after an intervention.

Accordingly, the global positive and 
negative change can be calculated by 
taking only positive or negative DR(r) 
into account. An analysis of error prop-
agation related to these steps of per-
forming TRM is presented in Appendix 
E1 (online).

Percentage Ventilated Volume

Percentage ventilated volume was cal-
culated as the ratio of lung ventilated 
volume (from segmented 3He ventila-
tion images) to the total volume of the 
lung in the thorax (from segmentation 
of the 1H image), as described previ-
ously (20).

Spirometry

Spirometry was performed with a 
rolling seal spirometer (Vitalograph, 
Buckingham, England) before and 20 
minutes after bronchodilator inhala-
tion according to American Thoracic 

can be expected to be fully ventilated in 
each breath. To account for ventilation 
changes related to physiologic baseline 
variability from acquisition to acquisi-
tion, a voxelwise baseline variability 
map, DR

B
(r), was calculated as the stan-

dard deviation of the differences in gas 
volume fraction R(r) between the two 
(filtered) baseline acquisitions. DR(r) is 
set to zero (no effect) for voxels whose 
⁄  DR(r) ⁄  ⁄ DR

B
(r) ⁄ and is displayed 

as white voxels. For remaining voxels, 
a positive DR(r) (improvement in local 
ventilation) is shown with a green color 
scale, and a negative DR(r) (reduction 
in local ventilation) is shown with a red 
color scale. In addition, a global value 
for net treatment response over the 
whole lungs, DR

net
, was calculated as 

follows:

 net voxel
r

(r)R R V∆ = ∆ ⋅∑ . (3)

DR
net

 is summed over the lung volume 
and can be expressed as the percentage 
of the inhaled gas mix (1 L) or, alter-
natively, in milliliters, as the volume of 
the gas dose that is delivered to newly 
ventilated regions of the lung after in-
halation of a l-L dose. We emphasize 
that expression of DR

net
 in milliliters is 

not to be confused with the volume of 
the lungs that opens up in response to 

After intervention, airway opening and 
closure will likely result in differences 
in ventilated lung volume. These vari-
ations can cause dilution of the tracer 
gas concentration when it is inhaled in 
the same dose from breath to breath. 
The ventilated lung volume after treat-
ment (V

LTx
) was chosen as the reference 

point, and the normalized gas volume 
fraction R was computed as follows:

 ′ L

LTx

(r) (r)
V

R R
V

= ⋅ , (2)

where V
L
 is the ventilated lung volume 

calculated from the image of interest. 
Equation (2) assumes that regional gas 
concentration scales uniformly with 
lung volume changes across all voxels 
in the lungs.

The difference in gas volume frac-
tion, DR(r), before and after interven-
tion is then calculated for all positions 
(r) to quantify the treatment response 
map. DR(r) is, in effect, the region-
ally measured redistribution of the 
gas mixture when inhaling identical 
doses before and after intervention. 
Like R(r), the treatment response map 
DR(r) is a gas volume fraction, which 
measures the size and direction of ven-
tilation change due to intervention. The 
major airways were excluded, as they 
do not contribute to gas exchange and 

Table 2

Summary of Outcome Measures Used to Assess Treatment Response, Including DR
net

A: Absolute Measurements

Measurement Before Bronchodilator After Bronchodilator P Value

Difference (before vs  

after Bronchodilator) 95% CI of Median CV (%)*

FEV
1
 (percentage predicted) 72 (44–96) 79 (58–100) .0002 6.3 (4.5–13) 5.1, 12 99

FVC (percentage predicted) 85 (76–110) 93 (85–120) .004 5.2 (1.9–8.3) 2.8, 8.0 137

FEV
1
/FVC (%) 68 (48–73) 88 (65–91) ,.0001 3.6 (2.4–5.5) 2.7, 5.2 143

%VV at imaging 88 (83–94) 93 (90–97) .0009† 3.5 (0.2–5.7) 0.41, 5.4 109

B: Differential Measurements

Outcome Metric Positive DR
net

Negative DR
net

P Value DR
net

95% CI CV (%)

DR
net

 (%) 20 (16–26) 9 (7–11) ,.0001† 11 (6.6–14) 8.8, 12.4 64

DR
net

 (mL) 210 (160–260) 92 (71–110) ,.0001† 110 (66–140) 88.2, 123.9 64

Note.—All data are medians, with interquartile ranges (25th–75th quartile) in parentheses. Unless otherwise specified, P values were calculated with the paired t test. CI = confidence interval. Patient-

specific values are shown in Tables E2 and E3 (online) alongside scatterplots in Figure E1 (online).

* CV = coefficient of variation (ratio of standard deviation to mean of treatment effect).

† Non–normally distributed data, so the Wilcoxon signed rank test was used.
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Society/European Respiratory Society 
guidelines (17). A minimum of three 
acceptable FVC maneuvers were per-
formed, and the highest FEV

1
 and FVC 

of the acceptable curves were record-
ed. Percentage predicted values were 
calculated as previously described (18). 
All pre-bronchodilator tests were per-
formed after all bronchodilators had 
been withheld for at least 6 hours.

Statistical Analysis

Statistical analysis was performed 
by using Prism (GraphPad Software, 
San Diego, Calif). All data sets were 
first tested for normality by using a 
D’Agostino-Pearson omnibus normality 
test. Significance of treatment effect 
was tested by using a paired t test or, 
in the case of a nonnormal distribution, 
the Wilcoxon signed-rank test. The 

probability that the null hypothesis (H
0
 

= no treatment effect is found) can be 
rejected was tested (for P , .05 H

0
 re-

jected). Values are reported as medians 
6 interquartile ranges (25th–75th quar-
tiles). Correlations were calculated by 
using the Pearson r correlation (Spear-
man correlation in the case of nonnor-
mality), and the correlation coefficient 
and P value of correlation are reported. 
P , .05 was considered to indicate a 
significant difference.

Results

An overview of results from the global 
MR imaging metrics (DR

net
, %VV) and 

lung function test measurements (FEV
1
, 

FVC) is presented in Table 2 (details 
for each patient are presented in Tables 
E2 and E3 [online]). TRM indicated an 

overall positive effect of the broncho-
dilator, in agreement with other met-
rics; the P values from paired t test-
ing are shown in Table 2. An average 
intersubject baseline variability DR

B
 

of 4.74% 6 4.68 was found. Example 
3He ventilation images and the result-
ing DR maps in patient 2 are shown in 
Figure 2. Three-dimensional renderings 
of treatment response maps in four 
more patients are shown in Figure 3.  
Figure 4 shows correlation of DR

net
 with 

changes in the other metrics evaluated: 
%VV (r = 0.56; P = .01), FEV

1
 (r = 0.70;  

P , .01), and FVC (r = 0.84; P , .01). 
DR

net
 and FEV

1
/FVC did not correlate 

significantly. The intersubject coeffi-
cient of variation of DR

net
 was 64%, 

which is much lower than those of %VV 
and spirometry (both  99%). Figure 5  
shows the changes as assessed by all 

Figure 2

Figure 2: Examples of coronal treatment response maps (top row), MR ventilation images at baseline (middle row), and MR ventilation images after bronchodilator inhalation (bottom 

row). These images were obtained in patient 2, a 54-year-old man. The positive DR
net

 of 35.1% is compared with the negative DR
net

 of 5.5%, resulting in a total DR
net

 of +29.7%.
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Figure 3

Figure 3: Example 3D-rendered treatment response maps in four volunteers, along with corresponding histograms.

Figure 4

Figure 4: Graphs show (a) correlation of DR
net

 (as a percentage) with changes in %VV from before and after 

treatment (D%VV) (Spearman r = 0.56, P = .01), (b) correlation of DR
net

 with changes in FEV
1
 from treatment (DFEV

1
) 

(Pearson r = 0.70, P = .004), and (c) correlation of DR
net

 with FVC (Pearson r = 0.84, P , .001). Dotted lines = 95% confi-

dence intervals.
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methods for each patient and their col-
lective median (interquartile range).

Discussion

TRM of changes in lung ventilation in 
response to therapy is demonstrated 
here with pre- and post-bronchodila-
tor imaging in a cohort of patients with 
asthma. The effects of a bronchodila-
tor are typically clinically assessed with 
spirometry, airway resistance, or static 
lung volume measurement. Although 
these methods are quick and easy to 
repeat, regional changes in lung venti-
lation and airway opening and closing 
are not accessible with these methods. 
This is likely to reduce the sensitivity 
of these clinical tests to subtle but still 
clinically important changes in ventila-
tion, in particular when the treatment 
is focused on a small lung region (eg, 
with bronchothermoplasty or endo-
bronchial valves). Imaging as a diag-
nostic tool can provide regional insight 
into alterations of both the structure 
and the function of the lung. Airway 
wall measurements and models of 

lobar ventilation change from inspira-
tory and expiratory computed tomog-
raphy (CT) have both been proposed 
as image-based outcome measures in 
asthma (6), but the repeated exposure 
to ionizing radiation is an issue. Hy-
perpolarized gas MR imaging directly 
measures functional information from 
the lungs without ionizing radiation, 
and TRM is a potentially powerful tool 
for longitudinal and pediatric studies. 
Previously, oxygen-enhanced MR imag-
ing has been used to measure changes 
induced by bronchodilators and cor-
ticosteroids (22). However, it is un-
clear to what extent this method cap-
tures changes in ventilation, as signal 
changes are caused by the interaction 
of protons with O

2
 dissolved in tissue 

and blood (23).
Signal intensity from hyperpolarized 

gas MR images is proportional to the 
distribution of inhaled tracer gas in the 
lung and is therefore a direct measure 
of ventilation. The TRM method dem-
onstrated here uses this relationship 
to regionally quantify the magnitude of 
ventilation changes.

The inherent baseline variability of 
the images from acquisition to acqui-
sition without any intervention is also 
taken into account in the algorithm and 
defines a voxelwise threshold for "treat-
ment response." This is important as it 
has been previously shown that origi-
nally nonventilated regions of the lung 
can change size and position on the 
same day in patients with asthma with-
out intervention (13).

One of the most striking findings 
was the close correlation of FVC and 
FEV

1
 with the global TRM metric DR

net
. 

The fact that imaging and spirometry 
were not performed on the same day 
represents a limitation of this study and 
might explain why the correlations be-
tween spirometry and DR

net
 were not 

stronger. Although all of the tested met-
rics showed a significant effect from the 
bronchodilator (P , .01), the largest 
changes were found from DR

net
 (Fig 5). 

The intersubject coefficient of variation 
of DR

net
 was also smaller (64%) than for 

the other metrics (99%).
Some improvements in FVC were 

high (39% for patient 2) and might re-
flect recruitment of air spaces due to 
decreased gas trapping, an assumption 
that is supported by increases in %VV 
(5.8% for patient 2) in most patients. 
The weaker correlation (r = 0.56) of 
DR

net
 with changes in %VV supports the 

assumption that changes in ventilation 
are not only a result of a net increase 
in viable ventilated airspace volume but 
also reflect changes in heterogeneity of 
the magnitude of the ventilation that 
are regionally elucidated with the TRM 
method.

In patients with a limited spiromet-
ric response (,12%) to a bronchodi-
lator, TRM effectively distinguishes re-
gions of the lung with an increase in 
ventilation from regions demonstrating 
reduced ventilation. This lends some 
regional evidence to the possibility that 
bronchodilators are not always effective 
and can be potentially detrimental in 
selected regions of the lung in asthma. 
Similar observations have been report-
ed in other imaging biomarker studies 
(22). Nevertheless, negative DR(r) can 
result from two other mechanisms; 
while a degradation of ventilation is 

Figure 5

Figure 5: Graph shows comparison of changes from bronchodilator given 

the data in Table 2. Each plot shows median 6 interquartile range interval, 

including each data point. Changes are expressed as differences in percentage 

predicted value (FEV
1
/FVC, FVC, FEV

1
), difference in %VV before and after 

treatment, and percentage DR
net

. The plot shows that the treatment effect found 

from DR
net

 was greater on average and the standard deviation was smaller than 

those of the spirometric indexes.
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observed in practice in some lung re-
gions after treatment, other regions of 
negative DR(r) might result from ini-
tially hyperventilated regions of lung 
that were perhaps compensating for 
obstruction elsewhere, then returning 
to more-even levels after bronchodilator 
application. Understanding the physio-
logic mechanism and phenotyping these 
“red regions” of worsened ventilation 
warrants further investigation.

In conclusion, TRM is able to com-
plement the current techniques for 
regionally quantifying changes in ven-
tilation in the lungs. The future clinical 
potential of the method lies in determin-
ing the regional response of the lungs to 
new therapies where established lung 
function tests do not provide sensitive 
enough outcome measures. This sen-
sitivity to local changes in ventilation 
could also result in a reduction of patient 
cohort numbers required to confirm suc-
cess of a treatment in a clinical trial.

Current limitations of the technique 
include the requirement for hyperpolar-
ized gas MR imaging infrastructure for 
effective delivery in a clinical setting. 
Recent advances may help overcome 
this barrier in years to come, as the 
technique may also be directly appli-
cable to ventilation images acquired by 
using other gases to image lung func-
tion, such as hyperpolarized 129Xe or 
fluorine 19 fluorinated gases like per-
fluoropropane (24,25).
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