This is a repository copy of Examining fault architecture and strain distribution using geospatial and geomechanical modelling: An example from the Qaidam basin, NE Tibet.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/114132/

Version: Accepted Version

Article:
Pei, Y, Paton, DA, Knipe, RJ et al. (1 more author) (2017) Examining fault architecture and strain distribution using geospatial and geomechanical modelling: An example from the Qaidam basin, NE Tibet. Marine and Petroleum Geology, 84. pp. 1-17. ISSN 0264-8172

https://doi.org/10.1016/j.marpetgeo.2017.03.023

© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Examining fault architecture and strain distribution using geospatial and geomechanical modelling: An example from the Qaidam basin, NE Tibet

Yangwen Pei, Douglas A. Paton, Rob J. Knipe, Kongyou Wu

PII: S0264-8172(17)30109-5
DOI: 10.1016/j.marpetgeo.2017.03.023
Reference: JMPG 2861

To appear in: Marine and Petroleum Geology

Received Date: 7 November 2016
Revised Date: 23 February 2017
Accepted Date: 22 March 2017

Please cite this article as: Pei, Y., Paton, D.A., Knipe, R.J., Wu, K., Examining fault architecture and strain distribution using geospatial and geomechanical modelling: An example from the Qaidam basin, NE Tibet, Marine and Petroleum Geology (2017), doi: 10.1016/j.marpetgeo.2017.03.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Examining Fault Architecture and Strain Distribution using Geospatial and Geomechanical Modelling: an example from the Qaidam Basin, NE Tibet

Yangwen Peia, b, *, Douglas A. Patonb, Rob J. Knipeb, Kongyou Wua

a School of Geosciences, China University of Petroleum, Qingdao, Shandong Province, 266580, China
b School of Earth & Environment, University of Leeds, Leeds, West Yorkshire, LS2 9JT, England

* Corresponding author. Email: peiyangwen@upc.edu.cn. Tel: +8618266225617.

Abstract

The investigation of complex geological setting is still dominated by traditional geo-data collection and analytical techniques, e.g., stratigraphic logging, dip data measurements, structural ground mapping, seismic interpretation, balance section restoration, forward modelling, etc. Despite the advantages of improving our understanding in structural geometry and fault architecture, the geospatial modelling, applying computer-aided three-dimensional geometric design, visualization and interpretation, has rarely been applied to such complex geological setting. This study used the Lenghu fold-and-thrust belt (in Qaidam basin, NE Tibetan Plateau) to demonstrate that the application of geospatial and geomechanical modelling could improve our understanding and provide an effective technique for investigating the fault architecture and strain distribution. The three-dimensional configuration of the Lenghu fold-and-thrust belt was initially derived from traditional analysis techniques, such as regional stratigraphic logging, cross section construction, meso-scale ground mapping and landsat image interpretation. The high-resolution field data and landsat image were integrated to construct the geospatial model, which was subsequently used to quantitatively investigate the fault throw changes along the Lenghu thrust fault zone and to understand its control on the lateral structural variation. The geospatial model was then restored in three dimensions to reveal the kinematic evolution of the Lenghu fold-and-thrust belt. Geomechanical modelling, using a
Mass-Spring algorithm, provided an effective three-dimensional tool for structural strain analysis, which was used to predict the strain distribution throughout the overall structure, e.g., normal faults with throws ranging from meters to tens of meters in the hanging-wall. The strain distribution predicted by geomechanical modelling was then validated by the natural normal faults in the hanging-wall. The high accordance between the strain prediction and statistics of natural normal faults demonstrates good applicability of geospatial and geomechanical modelling in the complex geological setting of the Lenghu fold-and-thrust belt. The geospatial models and geomechanical models, therefore, can provide a robust technique for analyzing and interpreting multi-source data within a three-dimensional environment. We anticipate that the application of three-dimensional geospatial modelling and geomechanical modelling, integrating both multi-source geologic data and three-dimensional analytical techniques, can provide an effective workflow for investigating the fault architecture and strain distribution at different scales (e.g., ranging from regional- to meso-scale).

Keywords
geospatial modelling, geomechanical modelling, fault architecture, strain distribution prediction

1. Introduction

Seismic reflection surveying has been an effective technique for revealing subsurface structural geometry for decades. However, the limited resolution (e.g., 15-50 m) of seismic reflection apparently inhibits its effectiveness of interpreting structural features that are under seismic resolution. Given the important control of these structural features on hydrocarbon exploration, geologists realized the importance of investigating detailed stratigraphy, fold geometry, and fault architecture at meso- or
even smaller scales. However, the investigation of geologically complex setting is still dominated by traditional data collection and analytical techniques, e.g., stratigraphic logging, dip data measurements, stratigraphic correlation, seismic interpretation, balance section restoration, and forward modelling. Because of the uncertainty in projection and positioning of multi-scale geo-data within a three-dimensional environment, these traditional techniques can only be used in an illustrative way. Geospatial modelling, employing computer-aided three-dimensional model construction, visualization and quantitative analysis, is rarely applied to these complex geologic settings, despite its significant advantages in improving our understanding in structural geometry and fault architecture. The application of geospatial models can provide both new insights into our understanding of such a geological setting and a robust technique for analyzing and interpreting geo-data within a three-dimensional environment. This contribution uses the Lenghu fold-and-thrust belt, an example from the Qaidam basin, NE Tibetan Plateau (Fig.1) (e.g., Mao et al., 2016; Métivier et al., 1998; Wei et al., 2016; Wu et al., 2011; Yin et al., 2008b; Yin and Harrison, 2000), to demonstrate the benefits of three-dimensional geospatial models in providing new insights into our understanding, including fold geometry, fault zone architecture, and fault throw distribution. Geomechanical modelling upon the three-dimensional geospatial models, using a Mass-Spring algorithm (e.g., Baraff and Witkin, 1998; Bourguignon and Cani, 2000; Provot, 1995; Terzopoulos et al., 1987), can also provide an effective three-dimensional tool for advanced structural strain analysis.

As an important oil-bearing fold-and-thrust belt, many previous studies have investigated the structural geometry of the Lenghu fold-and-thrust belt (e.g., Mao et al., 2016; Pei et al., 2014; Yin et al., 2008a). Using traditional data collection and
analytical techniques (e.g., dip measurements, section construction, and section restoration), these studies revealed the first-order geometry of the Lenghu fold-and-thrust belt and fit this regional structure into the basin-scale geological setting. However, constrained by the limitations of these traditional data collection and analytical methods, it is difficult to evaluate the structural deformation at meso-scale. In this paper, we present a case study of applying three-dimensional geospatial modelling and geomechanical modelling to the Lenghu fold-and-thrust belt, to reveal its detailed fault architecture and strain distribution. High-resolution field data and landsat images were integrated to construct the geospatial model, which was subsequently used to quantitatively investigate the fault throw changes along the fault zone and understand its control on the lateral variation of the Lenghu fold-and-thrust belt. The geospatial model was then restored in three dimensions to reveal the structural evolution. Geomechanical modelling upon three-dimensional geospatial models allows for advanced structural strain analysis, which can be used to predict the strain distribution throughout the overall structure (e.g., normal faults with throws ranging from meters to tens of meters). The strain distribution predicted by geomechanical modelling was then validated by the natural normal faults in the hanging-wall of the Lenghu fold-and-thrust belt. High accordance between the strain prediction and statistics of natural normal faults indicates good applicability of geomechanical modelling in this complex geologic setting. With appropriate validation of field data, the reliability of the geomechanical models can be effectively tested. We anticipate that the application of three-dimensional geospatial modelling and geomechanical modelling in the Lenghu fold-and-thrust belt can provide an effective workflow for investigating both the fault architecture and strain distribution at different scales (e.g., ranging from regional- to meso-scale). This approach is
particularly useful in geological setting where the traditional geo-data collection and analytical techniques are insufficient to understand the structural complexity and its geological history. The application of geospatial and geomechanical modelling can significantly improve our understanding in the complexity of structural lateral variation as well as its control on the strain distribution within a three-dimensional environment.

2. Geological Setting

The Qaidam basin, an oil/gas-bearing Mesozoic-Cenozoic sedimentary basin, is located in the northern edge of the Tibetan Plateau (Fig.1, modified after Yin et al., 2008a)(Fig.1). The Qaidam basin covers an area of ~120,000 km2 and has an average elevation of ~3 km (Fielding, 1996). In map view, the Qaidam basin is a rhombic shaped basin, and its N-S width changes from ~150 km in the east to ~300 km in the west (e.g., Cheng et al., 2015; Cheng et al., 2014; Mao et al., 2016; Métivier et al., 1998; Wu et al., 2011; Yin et al., 2007; Yin et al., 2008a; Yin et al., 2008b). Tectonically, the Qaidam basin is bounded by the Qilian Shan-Nan Shan thrust belt to the northeast (e.g. Burchfiel et al., 1989; Gaudemer et al., 1995; Meng et al., 2001; Meyer et al., 2010; Tapponnier et al., 1990; Yin et al., 2008a; Zuza et al., 2016), the left-lateral strike-slip Altyn Tagh Fault to the northwest (e.g. Bendick et al., 2000; Cowgill, 2007; Cowgill et al., 2004a; Cowgill et al., 2004b; Meyer et al., 1998; Wittlinger et al., 1998; Yin et al., 2007; Yue et al., 2001; Yue et al., 2004), and the Qimen Tagh-Eastern Kunlun thrust belt to the southwest (e.g. Chen et al., 1999; Cheng et al., 2015; Cheng et al., 2014; Craddock et al., 2012; Jolivet et al., 2003; Meng et al., 2001; Roger et al., 2008; Yin et al., 2007). The stratigraphy of the Qaidam basin is divided into three main tectonic units, which are metamorphic basement, late Palaeozoic-Mesozoic sediments, and Cenozoic sediments (e.g., Cui
et al., 1995; Deng et al., 1995; Gao et al., 1995; Xia et al., 2001). Based on outcrop observations, seismic sections, boreholes, terrestrial fossils, basin-scale stratigraphic correlation, fission-track and \(^{40}\text{Ar}/^{39}\text{Ar}\) dating of detrital micas (Qiu, 2002; Rieser et al., 2006a; Rieser et al., 2006b; Song and Wang, 1993; Sun et al., 2005; Xia et al., 2001; Yang et al., 1992), the division and time assignments of Mesozoic to Cenozoic sediments were proposed, which are, in younging direction, (i) the Jurassic and locally distributed Cretaceous sediments (Jr; 206-65 Ma); (ii) the Palaeocene to early Eocene Lulehe Formation (E\(_1\); 65-49 Ma); (iii) the middle and late Eocene Lower Xiagancaigou Formation (E\(_3\)-1; 49-37 Ma); (iv) the early Oligocene Upper Xiagancaigou Formation (E\(_3\); 37-28.5 Ma); (v) the late Oligocene Shanggancaigou Formation (N\(_1\); 28.5-23.8 Ma); (vi) the early to middle Miocene Xiayoushashan Formation (N\(_2\)-1; 23.5-11.2 Ma); (vii) the late Miocene Shangyoushashan Formation (N\(_2\)-2; 11.2-5.3 Ma); (viii) the Pliocene Shizigou Formation (N\(_2\)-3; 5.3-1.8 Ma); (ix) the Pleistocene Qigequan Formation (Q\(_1\); 1.8-0.01 Ma); and (x) the Holocene Dabuxun Yanqiao Formation (Q\(_2\)).

The Lenghu fold-and-thrust belt, located along the northern margin of the Qaidam basin, is an ~10 km wide asymmetric anticline controlled by the Lenghu thrust fault (Fig.1), corresponding to the regional NE-SW-trending contraction (e.g., Chen et al., 2005; Mao et al., 2016; Wang et al., 2006a). The Lenghu fold-and-thrust belt is well imaged in an ~15 km long seismic section (Fig.2) with stratigraphic constraints by the Lengke1 well. The Lengke1 well provides lithological boundaries T\(_6\) to T\(_3\) upward, and T\(_3\) is duplicated by a high-angle thrust fault (~50°). The basement is a continental crust consisting of Precambrian metamorphic and granitic rocks based on the magnetotelluric sounding and deep seismic refraction data (Xia et al., 2001). Overlying the basement, six main stratigraphic units have been interpreted based on
well-log data, which includes Jurassic through middle Miocene stratigraphic units. Three faults (i.e., f_1, f_2 and f_3) are interpreted based on discontinuous and truncated reflectors. The surface geology shows a broad fold (i.e., the Lenghu anticline) cut by a high-angle thrust fault through the fold axis, and the seismic reflection section suggests shallow of the Lenghu thrust fault (f_i) with increasing depth into a decollement above a sequence interpreted as the late Eocene sediments (E_3). The hanging-wall anticline extends throughout the section continuing below the Lenghu thrust fault.

In the seismic section (Fig.2), the E_{1+2} to N_{2-1} units maintain constant thickness, whereas the hanging-wall Jr is approximately four times thicker compared to the footwall, suggesting growth strata relationships. Growth strata are also observed in unit N_{2-2}. Based on the truncational relationship between the horizons and faults, the geometry of the anticline is controlled by the lower SW-directing reverse faults (f_2 and f_3 in Fig.2) and upper younger NE-directing Lenghu thrust fault (f_1 in Fig.2). The two main faults, f_1 and f_2, account for majority of the fault throw, ~800 m in the unit Jr along f_2 and ~800 m in the unit N$_1$ along f_1. The fault throws of f_1 and f_2 all decrease upward along the fault planes. Previous studies proposed that the Qaidam basin experienced an earlier extension stage (i.e., Mesozoic extension) and a later contraction stage (i.e., Cenozoic contraction) (e.g., Chen et al., 2003; Pang et al., 2004; Vincent and Allen, 1999; Wang et al., 2006b; Zhu et al., 2006). The lower SW-directed reverse fault f_2 formed as a normal fault initially and then was inverted to be a reverse fault in the later contraction stage, leading to a Jr thickness difference between the hanging-wall and footwall. The constant thickness of E_{1+2}-N_{2-1} in both the hanging-wall and footwall indicates the contraction started no earlier than the deposition of N_{2-1}. The growth strata developed in N_{2-2} indicate the initiation of the
anticline development. In summary, the geological history can be inferred as occurring in three main stages: (i) the initial Jurassic normal faulting related to the NE-SW oriented extension, (ii) the inverted SW-directed reverse faulting reacting to the NE-SW-trending contraction in the early Eocene (E₁+₂), and (iii) the NE-directing reverse faulting reacting to the NE-SW-trending contraction from the late Eocene (E₃) to the Neocene (N).

3. Data and Methods

To analyze the Lenghu fold-and-thrust belt, we integrated both remote sensing data (landsat images), and field observations, which are outlined below, to derive three-dimensional geospatial models and geomechanical models using 2D/3D Move (Midland Valley, version 2013.1.1). We applied the following data collection and analysis techniques:

1) Stratigraphy logging: three well-exposed traverses (~2150 m total stratigraphic thickness) were logged to constrain the detailed stratigraphy across the Lenghu fold-and-thrust belt (Fig.3); this corresponds to HW₁, HW₂ and FW, representing hanging-wall traverse 1, hanging-wall traverse 2 and footwall traverse, respectively (Fig.4).

2) Cross section construction: to investigate the spatial distribution of fault throw along the fault zone and the anticline geometry in the hanging-wall, ten parallel sections were created using 2D/3D Move (Midland Valley) based on detailed structural measurements and ground-truthed landsat image interpretation (Fig.5). The growth strata were only observed in N₂₂ unit in the further hanging-wall and footwall in the seismic section (Fig.2). Therefore, for the cross section covering the vicinity of the Lenghu thrust fault, it was assumed that layer stratigraphy with
constant thickness was appropriate based on the continuous stratigraphic units (i.e., N2-1) that were mapped out on the Landsat image and the stratigraphic logs.

3) Geospatial modelling and three-dimensional restoration: The geospatial models were constructed by integrating the field-scale observation and cross sections. The stratigraphic boundaries were extrapolated above the present topography to predict the thrust fault cut-off positions, which were subsequently used to estimate the minimal throw of the fault zone (Fig.6). The spatial distribution of fault throws and lateral variation of hanging-wall anticline were then quantitatively analyzed to understand the three-dimensional fault architecture of the Lenghu fold-and-thrust belt. The geospatial model was then restored in three dimensions (using 3D Move, Midland Valley) to reveal the structural evolution of the Lenghu fold-and-thrust belt (Fig.7).

4) Geomechanical modelling and Strain analysis: Geomechanical modelling, using a Mass-Spring algorithm, provides an effective three-dimensional tool for model validation and advanced structural strain analysis (Fig.8). After Mass-Spring restoration upon the geospatial model, using 3D Move of Midland Valley, the resultant strain distribution in the Lenghu fold-and-thrust belt was investigated to predict the distribution of minor structures. Statistics of natural normal faults in the Lenghu fold-and-thrust belt were then used to validate the effectiveness of strain prediction (Fig.9 and Fig.10).

4. High-resolution Fieldwork and Geospatial Model

A seismic section, high-resolution fault system maps and detailed regional sections were integrated to study the structural geometry and fault architecture of the Lenghu fold-and-thrust belt (Fig.3, see position in Fig.1). The regional stratigraphy, fault zone geometry and minor faults distribution of the hanging-wall were all traced and logged.
in the high-resolution fieldwork. A NE-directing thrust fault zone was interpreted based on the truncated layers in the landsat image, which corresponds to the Lenghu thrust fault f_1 in the aforementioned seismic section (Fig.2). In the hanging-wall, a NW-SE-trending anticline forms as a result of the Lenghu thrust fault (yellow dash line in Fig.3). However, based on the landsat image interpretation and high-resolution ground mapping, the hanging-wall anticline does not present universal geometry along its trend, with two local culminations in the hanging-wall (green triangles in Fig.3). Based on field mapping, minor structures, such as normal faults with smaller throws in the hanging-wall and folds with smaller amplitudes in the footwall, were also identified and interpreted in the landsat image. To constrain the construction of the three-dimensional geospatial model, detailed stratigraphy was logged and high-resolution parallel sections were created to quantitatively delineate the fault architecture as well as the lateral structural variation of the Lenghu fold-and-thrust belt, particularly the fault throw distribution along the Lenghu thrust fault zone.

4.1. Stratigraphy

The detailed stratigraphy of the hanging-wall and footwall was logged on the ground along three traverses that were sub-perpendicular to strike of the Lenghu fold-and-thrust belt (Fig.3), two traverses in the hanging-wall (HW_1: ~3 km long through the northern culmination and HW_2: ~1.5 km long through the southern culmination), and one traverse in the footwall (FW: ~3 km long through northern end of the footwall). The stratigraphic columns of HW_1, HW_2 and FW represent thicknesses of ~1200 m, ~350 m and ~650 m, respectively. The stratigraphy of HW_1 and HW_2 is similar to each other and the stratigraphic correlation between the hanging-wall and footwall suggests the division into the following five main packages (Fig.3), (i) S_a comprises fine sandstones and red/grey/mottled shales/mudstones, with a minimum thickness
of ~170 m in HW1; (ii) S_b includes fine-medium sandstones interbedded with very few thin red/grey mudstones and its thickness is ~350 m; (iii) S_c represents medium sandstones with inconstant thickness ranging from 10 m to 30 m; (iv) S_d, ~400 m thick, shows a similar lithology as S_b, but with thin medium-coarse sandstones interbedded; (v) S_e becomes coarse-very coarse sandstones with a thickness exceeding 250 m.

The stratigraphic correlation between the hanging-wall and footwall is used to estimate the fault displacement of the Lenghu anticline. According to the stratigraphic correlation, the fault throw is inferred to be ~500 m in the northern anticline. Therefore, the main reverse fault has a throw that is large enough to be imaged on seismic reflection data, which corresponds to the Lenghu thrust fault (f_1) in the seismic section (Fig.2). Given the northern culmination exposes less stratigraphy than the southern culmination and the exposure of the footwall stratigraphy decreases southward, it is assumed that the fault displacement increases from the northern culmination to the southern culmination. The lithology of the Lenghu anticline changes from coarse/very coarse sandstones in the two walls to clay-rich fine sandstones towards the central fault zone.

4.2. Regional transects

Based on the field observation, the southern anticline shows a higher elevation change from the hanging-wall to footwall than the northern anticline (Fig.3). The southern anticline exposes more stratigraphy in the core than the northern anticline. The larger displacement in the southern anticline leads to higher uplift of the hanging-wall and more exposure of older stratigraphy in the surface. To investigate the fault architecture and its lateral variation along the Lenghu fold-and-thrust belt, ten parallel sections (i.e., S1-S10), each with a length of ~6 km and depth of ~1.25 km, were
constructed by integrating both the landsat image interpretation and field geological data (e.g., stratigraphic boundaries, ground mapping of fault traces, and dip measurements) (Fig.5, see section traces in Fig.3). The stratigraphic boundaries and fault traces are well constrained by the surface dip measurements in the interpretation and construction of the sub-surface sections. The landsat image interpretation also provides good constraints for the section construction. The ten parallel sections are evenly spaced, with an interval of ~600 m, to present both surface and sub-surface geology of the Lenghu5 fold-and-thrust belt. The ten parallel sections cover a total distance of ~5.4 km along the trend of the Lenghu thrust zone, which allows us to evaluate the fault throw distribution and its lateral variation.

The main thrust fault (F1, in translucent yellow) and two splay faults (F2 in cyan and F3 in red) were interpreted in the sections after necessary simplifications of minor structures that are presented in the plan view structural interpretation (Fig.3). The stratigraphic columns were aligned to the section surface to assist the construction of the stratigraphic boundaries in the ten parallel sections. The ten parallel sections reveal the non-uniform fault zone geometry of the Lenghu fold-and-thrust belt, with a high level of lateral structural variation along the trend of the structure. The sections through the northernanticline (e.g., sections S3 and S4) represent a fault zone comprising a main reverse fault F1 and a splay fault F2 in the footwall. Using S0 as the reference unit, the main reverse fault F1 shows a maximum throw of ~450 m that occupies ~90% of the total fault throw, whereas the ~50 m throw of the splay fault F2 is negligible compared with that of the main reverse fault F1 (Fig.5). In sections through the southern anticline (e.g., sections S8 and S9), the fault zone still comprises a main reverse fault F1 and a splay fault F3. However, the splay fault F3 changes to be blind rather than exposed in the surface. An ~850 m cumulative fault throw is
present in the fault zone and the main thrust fault F_1 keeps accounting for the majority of the fault throw (Fig.5). The differences between the northern and southern anticlines, with respect to both the cumulative fault throw and fault zone geometry, may be accounted for by the uneven contraction perpendicular to the Lenghu fold-and-thrust belt. Therefore, a geospatial model is essential because it allows quantitative evaluation of fault throw distribution along the Lenghu fold-and-thrust belt.

5. Geospatial Model and three-dimensional Structural Evolution

5.1. Geospatial model and fault throw distribution

The spatial distribution of the fault throw is vital to understand its control on the geometry of hanging-wall anticline and lateral variation of fault zone architecture. By integrating landsat image interpretation, regional stratigraphy, fault system maps and parallel cross sections, the three-dimensional structural geometry of the Lenghu fold-and-thrust belt is visualized in the geospatial model (Fig.6a). In this geospatial model, the main thrust fault (i.e., F_1) and two large splay faults (e.g., F_2 and F_3) in the footwall are constructed, whereas the other minor faults in the hanging-wall are simplified. Horizons representing the stratigraphic boundaries between the main stratigraphic packages are generated in the hanging-wall (e.g., $hb0$-$hb5$), footwall (e.g., $hb0$-$fb5$) and central compartments between the main thrust fault F_1 and splay faults F_2 and F_3. In order to define the throws of each fault plane, the horizons are also extrapolated above the present topography until they are against the thrust faults.

The Lenghu fold-and-thrust belt is controlled by the thrust fault zone beneath the northern and southern culminations (purple peaks in Fig.6a). The hanging-wall anticline presents a relatively flat crest adjacent to the main thrust fault (F_1). The fault zone is composed of a single-plane thrust fault (F_1) and multiple splay faults (e.g., F_2...
and F3 in the footwall), but it presents non-uniform combinations of them along the Lenghu fold-and-thrust belt. The splay fault F2 is exposed in the surface, whereas the splay fault F3 is a blind splay that accounts for the development of a pair of tight syncline and open anticline in the southern footwall. These splay faults generate some lenses, which might affect the hydrocarbon sealing properties as compartments are formed within the fault zone. Moreover, a pair of structures, a small-scale tight syncline and open anticline, are developed in the footwall due to the propagation of splay fault F3. The geospatial model demonstrates that both the hanging-wall anticline and fault zone present high level of lateral variability from NW to SE along the structure.

The plan view perspective of the thrust fault zone presents the spatial distribution of the main thrust fault and splay faults in the footwall (Fig.6b). The main thrust fault (F1) is set translucent to visualize the splay faults (F2 and F3) beneath it. The main fault F1 extends from the northern end to the southern end of the Lenghu fold-and-thrust belt, whereas the splay faults F2 and F3 occur in limited portions along the strike of F1. Integrating the three-dimensional geospatial model (Fig.6a) and three-dimensional plain view perspective (Fig.6b), the spatial distribution of fault throw is evaluated in a throw versus distance diagram along the section A-B (Fig.6b, c). In the fault throw distribution diagram, the vertical and horizontal axes represent the fault throw and distance along the fault zone. The fault throw of the main fault (F1) and splay faults (F2 and F3) are all measured as well as the cumulative fault throw (F_{cum}). The uneven fault throw distribution apparently demonstrates non-uniform faulting deformation along the Lenghu fold-and-thrust belt. The cumulative fault throw (F_{cum}) along the Lenghu thrust fault zone, ranging from ~300 m to ~850 m, presents the maximum throw in sections S3 and S9, which correspond to the positions of northern
and southern culminations in the hanging-wall (Fig. 6a). The main thrust fault F_1 presents the fault throw ranging from ~250 m (in section S_5) to ~650 m (in section S_9), which occupies 75-85% of the cumulative fault throw. The splay faults F_2 and F_3 present the maximum fault throw of ~80 m (in section S_6) and ~180 m (in section S_9), respectively. The cumulative fault throw (F_{cum}) shows positions of highs and lows that are similar to the main thrust fault F_1, and there are similar trends for the transition between the highs and lows. This indicates that the main thrust fault F_1 determines the primary structural geometry of the Lenghu fold-and-thrust belt, whereas the splay faults (e.g., F_2 and F_3) only generate the second-order structures (e.g., minor normal faults in the hanging-wall and small folds in the footwall).

5.2. Three-dimensional structural evolution

The progressive faulting deformation is vital to understand the control of the fault system on the development of the Lenghu fold-and-thrust belt. To reveal the kinematic evolution of the Lenghu thrust fault zone, we restored the geospatial model using the modules of ‘3D Move-on-Fault’ and ‘3D Unfolding’ in the three-dimensional Kinematic Modelling of Midland Valley. The 3D Move-on-Fault tool allows geologists to restore the hanging-wall back to its original position before faulting deformation by eliminating the fault throw between the fault blocks, with the input of the spatial distribution of the fault throw along the fault strike. The 3D Unfolding tool enables geologists to restore a geological horizon to its pre-deformation datum or target surface, with the definition of a pin line in a proper position. Although several different calculating algorithms are available, the calculating algorithms employed in the ‘3D Move-on-Fault’ and ‘3D Unfolding’ are ‘Fault Parallel Flow’ and ‘Flexural Slip Unfolding’, respectively (e.g., Egan et al., 1997; Kane et al., 1997). The 3D Move-on-Fault along faults are quantitatively constrained by the spatial distribution of the fault
throw measured in the geospatial model of the Lenghu fold-and-thrust belt (Fig.6). As F_2 and F_3 are splay faults branching off from the main thrust fault F_1, they were restored prior to the restoration of F_1. Here we unfolded the layers after restoration of F_1, F_2 and F_3, although the hanging-wall anticline could be simultaneously developed during the faulting deformation. The geospatial model of the Lenghu thrust-fold belt was restored by the following steps: (i) erosion restored: by extrapolating the layers until against the faults (Fig.7f\rightarrowe), (ii) splay fault F_3 restored: by Move on Fault along F_3 (Fig.7e\rightarrowd), (iii) splay fault F_2 restored: by Move on Fault along F_2 (Fig.7d\rightarrowc), (iv) main fault F_1 restored: by Move on Fault along F_1 (Fig.7c\rightarrowb), and (v) folding restored: by Unfolding the layers (Fig.7b\rightarrowa).

As the above restoration procedures are reversible, the kinematic evolution of the Lenghu fold-and-thrust belt is reconstructed, in both plain view and three-dimensional perspectives (Fig.7). Based on the progressive faulting/folding deformation, the kinematic evolution of the Lenghu fold-and-thrust belt is drawn as below:

(i) sedimentation of stratigraphic packages S_a-S_e (Fig.7a);

(ii) folding of the layers and initiation of thrust fault F_1 reacting to the NE-SW regional contraction (Fig.7b);

(iii) development of the thrust fault F_1 that is perpendicular to the NE-SW contraction (Fig.7c);

(iv) development of splay faults F_2 and F_3, branching off from the main thrust fault F_1 to accommodate the overall strain happened in the footwall (Fig.7d, e);

(v) uplift and erosion to present (Fig.7f).
6. Prediction of strain distribution and field data validation

Apart from the main faults (i.e., F1, F2 and F3) and primary fold geometry, minor structures such as small faults and folds are also observed in the Lenghu fold-and-thrust belt (e.g., in the white rectangle in Fig.3; see details in Fig.9 and related text). However, these minor structures are apparently simplified when we constructed the geospatial models of the Lenghu fold-and-thrust belt. Although these minor structures have smaller offsets or amplitudes/wavelengths, their development is vital to help understand the strain distribution within a certain structural domain, because the minor structures are normally developed to accommodate the overall strain in the primary structures. Therefore, we compiled geomechanical modelling upon the geospatial model of the Lenghu fold-and-thrust belt to examine the correlation between the predicted strain distribution and the distribution of minor structures observed in the fieldwork.

1) Geomechanical modelling and strain prediction

Here, we used the “Geomechanical Modelling” module within 3D Move of Midland Valley, which provides a workflow-managed three-dimensional restoration tool. The geomechanical modelling, using a Mass-Spring algorithm (e.g., Baraff and Witkin, 1998; Bourguignon and Cani, 2000; Provot, 1995; Terzopoulos et al., 1987), provides an effective three-dimensional tool for model validation and advanced structural strain analysis. The Mass-Spring approach is an established and extensively used technique in the discipline of computer graphics, and it is typically used for modelling real-time deformation of rigid and non-rigid bodies. The Mass Spring algorithm is an iterative numerical technique designed to minimize the strain within a solid body while attempting to retain its original shape. The Mass Spring solver is well suited to modelling geological structures because it mimics natural forces using the physical
laws of motion. The implementation of the Mass-Spring algorithm in the geomechanical modelling workflow (3D Move, Midland Valley) allows for the customization of spring properties to model isotropic or anisotropic rock deformation at the scale of each element. The Mass-Spring algorithm utilized in geomechanical modelling focuses on the movement of each vertex of the deformed surface and the principle extensional or contractional strain is calculated by evaluating the magnitude of relative movement between the neighboring vertices. After Mass-Spring restoration upon the geospatial model in geomechanical modelling, the resultant strain distribution in the Lenghu fold-and-thrust belt, particularly in the hanging-wall, was investigated to predict the distribution of minor structures.

As the main thrust fault \(F1 \) occupies 85-90% of the cumulative fault throw, we focused on the impact of \(F1 \) in the geomechanical modelling (Fig.8). In the geomechanical modelling, the geospatial model (top surface) was restored to its undeformed state (bottom surface) using the Mass-Spring algorithm. The colored surface (Fig.8a) presents the total movement of each vertex from the original plain surface to the deformed surface. The principle strains of the surface during deformation are tracked (tension positive convention), e.g., extensional principle strain \(e_1 \) (Fig.8b), contractional principle strain \(e_3 \) (Fig.8c) and strain ratio \((1+e_1)/(1+e_3) \) (Fig.8d). The uneven fault throws determine the non-uniform spatial movement of each vertex in the geomechanical models, e.g., two topographic culminations and a middle saddle in between (Fig.8a). The footwall presents a uniform high contractional strain, whereas the hanging-wall presents a complicated strain distribution due to the uneven fault throw along the thrust fault (Fig.8b, c). Apparently, the two culminations are dominated by extensional strain, whereas the middle saddle is dominated by contractional strain. The strain distribution pattern may generate extensional
structures such as normal faults with smaller offsets concentrating around the culminations, which agrees with the field observation that the minor normal faults are 90% concentrated within the hanging-wall anticlines (see the distribution of normal faults in the hanging-wall, in Fig.3). However, as the splay faults were simplified, the geomechanical modelling has not fully integrated the natural complexity of the Lenghu fold-and-thrust belt. Therefore, this strain prediction based on geomechanical modelling can be trusted only after it is validated by natural observations.

2) Field data validation

To validate the strain distribution predicted by the aforementioned geomechanical models, the minor structures in the Lenghu fold-and-thrust belt were mapped in detail to evaluate field strain distribution and its consistency with the strain prediction. A 1 km × 1 km rectangle was selected to map the normal fault arrays, with fault throws ranging from meters to tens of meters (Fig.9, see its position in Fig.3). The hanging-wall anticline is subparallel to the Lenghu thrust fault, presenting a high-angle forelimb and a shallow-angle backlimb. Normal faults are developed almost exclusively in the hanging-wall rather than the footwall, which agrees with the extensional strain dominated hanging-wall and contractional strain dominated footwall predicted by the geomechanical models in Fig.8. These mapped normal faults are mostly high angle faults, with throw ranging from meters to tens of meters. We measured throws for the majority of the mapped faults, except those of which the throw exceeds their own outcrop sizes. The mapped normal fault arrays apparently do not present an even distribution in the hanging-wall, but they primarily localize near the hanging-wall anticline. Normal faults with larger throws (> ~10 m) are mostly N-S-striking, whereas normal faults with smaller throws (< ~10m) are primarily NE-SW-striking.
We also generated strike rose diagrams and stereonets to evaluate the relationship between the normal fault arrays and Lenghu thrust fault (Fig.10). The strike rose diagrams and stereonets predict a mean principle plane for the Lenghu thrust fault and two mean principle planes for the normal fault arrays. The strike rose diagram and stereonet indicates that the Lenghu thrust fault presents a mean principle fault plane of 258° ± 60°-75° (Fig.10a, c). Although the normal faults show various strikes, two main sets of the normal faults can be identified in the strike rose diagram, a N-S trending set at ~002°/182° and a NE-SW trending set at ~053°/233°, respectively (Fig.10b). The N-S trending set is sub-parallel to the Lenghu thrust fault, whereas the NE-SW trending set is obliquely truncated by the Lenghu thrust fault (Fig.10c, d). Two sets of normal faults can be distinguished by integrating normal fault arrays map, strike rose diagrams, and stereonets (Fig.9 and Fig.10). The first set is the NE-SW-striking normal faults with throws that mostly do not exceed 10 m (thin red lines in the hanging-wall), and the second set is the N-S-striking normal faults with throws above 10 m (thick red lines in the hanging-wall). Although the NE-SW-striking normal fault arrays present lower fault throws, they have a higher density distribution than the N-S-striking normal fault arrays.

7. Discussion and Conclusions

In this study, we present a case study of applying three-dimensional structural restoration and geomechanical modelling to geospatial models of the Lenghu fold-and-thrust belt. High-resolution field data and landsat images were integrated to construct the geospatial model, which can be used to quantitatively investigate the fault throw changes along the Lenghu thrust fault zone and to understand its control on the lateral structural variation. The geospatial model was then restored in three dimensions to reveal the kinematic evolution of the Lenghu fold-and-thrust belt.
Geomechanical modelling, using a Mass-Spring algorithm (e.g., Baraff and Witkin, 1998; Bourguignon and Cani, 2000; Provot, 1995; Terzopoulos et al., 1987), provided an effective three-dimensional tool for structural strain analysis, which was used to predict the strain distribution throughout the overall structure (e.g., normal faults with throws ranging from meters to tens of meters in the hanging-wall). The strain distribution predicted by geomechanical modelling was then compared with the natural normal faults observed in the fieldwork to validate the applicability of geomechanical modelling. The high accordance between the strain prediction and statistics of natural normal faults indicates good applicability of geomechanical modelling in this complex geological setting. We anticipate that the application of three-dimensional geospatial modelling and geomechanical modelling can provide an effective workflow for investigating the fault architecture at different scales (e.g., ranging from regional- to meso-scale), particularly in the geological setting where traditional geo-data collection and analytical techniques are insufficient to understand the structural complexity and its geological history.

As an important oil-bearing fold-and-thrust belt, many previous studies investigated the structural geometry of the Lenghu fold-and-thrust belt, such as, regional scale section construction, seismic interpretation, and structural restoration (Figure.10 and profile 3 of Figure.13, in Yin et al. (2008a)). Using traditional data collection and analytical techniques (e.g., dip measurements, section construction, and section restoration), Yin et al. (2008a) revealed the first-order geometry of the Lenghu fold-and-thrust belt and fit this regional structure into the basin-scale geological setting. However, constrained by the limitations of these traditional data collection and analytical methods, it is difficult to evaluate the structural deformation at meso-scale. In this study, the application of geospatial and geomechanical models provided new
insights into our understanding of the complex geological setting and demonstrated a robust technique for analyzing and interpreting multi-scale geo-data within a three-dimensional environment. In particular, our understanding in the lateral variation of the Lenghu structure (Fig.5), spatial distribution of fault throws (Fig.6), kinematics of the structure (Fig.7), and principle strain distribution (Fig.8) are highly improved with geospatial and geomechanical models. The geospatial and geomechanical models revealed the important control of the fault throw distribution on both the lateral structural variation and strain spatial distribution.

As computer-aided analytical techniques, it is necessary to understand the accuracy of the geospatial models, such as the spatial distribution of fault throw along the Lenghu fold-and-thrust belt. As 3D Move (Midland Valley) provides a quantitative calculation of fault throw based on the juxtaposition relationship between the hanging-wall and footwall, the accuracy of the fault throw distribution depends on both the field data collection and section construction. Apparently, high-resolution field data collection can guarantee accurate input for geospatial models, as well as proper selection of algorithms for section construction. There are also limitations in the current geomechanical models. Although the geomechanical modelling is useful for meso-scale strain prediction, it needs to be recognized that lithology and mechanical strength also play important roles in the resultant strain distribution (e.g., Alonso and Teixell, 1992; Hardy and Finch, 2007; Hardy and Ford, 1997), which has not been considered in the geomechanical modelling at this stage. The current Mass-Spring algorithm utilized in geomechanical modelling only focuses on the movement of each vertex of the deformed surface without considering the impact of lithology or mechanical strength. The principle extensional and contractional strain were also calculated by evaluating the magnitude of relative movement between the
neighboring vertices. The effects of stratigraphy on the fault architecture has been widely discussed, and it is commonly agreed that competent stratigraphy is strong and behaves in a brittle fashion whereas weaker stratigraphy inclines to ductile deformation (e.g., Corbett et al., 1987; Couzens and Wiltschko, 1996; Hardy and Finch, 2007; Simpson, 2009). It has been suggested that rocks with high competency usually present higher p/s ratios than low competent rocks (Brandenburg, 2013; Pei et al., 2014; Welch et al., 2009a). Therefore, a sequence of beds comprising weak lithology tend to form a wide fault zone with low density of faults or joints (Erslev, 1991; Welch et al., 2009b), whereas a sequence of beds comprising strong lithology is prior to form a narrower fault zone with a higher density of faults or joints (Childs et al., 1996; Peacock and Sanderson, 1991; Walsh et al., 2003). In regard to a mechanically layered sequence of beds, the resultant distribution of faults or joints has higher complexity (e.g., Welch et al., 2009b). The detailed outcrop studies also suggested that stratigraphy plays an important role in determining the detailed fault architecture at meso-scale and micro-scale (e.g., Loveless et al., 2011; Pei et al., 2015). Many mechanical and physical models suggested the important role of stratigraphy and its strength in controlling the deformation style; however, it is likely to be second-order controls superimposed upon the first-order geometry that are dominated by the throw distribution along a thrust fault (Allmendinger, 1998; Dixon, 2004; Pei et al., 2014; Welch et al., 2009a). Therefore, the resultant strain distribution predicted by geomechanical modelling may not be reliable at a scale that is much smaller than the first-order geometry. We also suggest that field validation could be taken into account as a “ground truthing” tool for geomechanical modelling.
Acknowledgement

We would like to acknowledge Dr Geoff Lloyd, Dr Jonathan Imber, Dr Henry Lickorish, Dr Anren Li and Prof Xin Wang for their helpful communications and suggestions contributing to this research. The support from Qinghai Oilfield of PetroChina and Rock Deformation Research (RDR) is highly appreciated. Thanks are also given to both the section editor Dr Adam Bumby and two anonymous reviewers for their useful and constructive comments that highly improve quality of this manuscript. This research has been collaboratively supported by the National Natural Science Foundation of China (No.41502192, NO.41272142) and Shandong Provincial Natural Science Foundation China (No.2014BSE28008).
Figure Captions

Figure 1 The geological map of the northern Qaidam basin, NE Tibetan Plateau (modified after Yin et al., 2008a). The Qaidam basin is an oil-bearing sedimentary basin developed corresponding to the NE-propagation of stress due to the uplift of the Tibetan Plateau. A series of NW-SE-trending folds and faults are developed in the basin. The study area is located in the NW-SE-trending Lenghu fold-and-thrust belt in the northern Qaidam basin, where a northeast-directing Lenghu thrust fault accounts for the development of the hanging-wall anticline.

Figure 2 The seismic section of the Lenghu fold-and-thrust belt delineating the primary structural geometry (see position in Fig.1) (modified after Pei et al., 2014). Being constrained by the Lengke1 well, horizons and faults are interpreted in the seismic section. Initiating from a horizon-parallel low angle fault, the upper Lenghu thrust \(f_1 \) presents upward-steepening fault geometry. The Lenghu fold-and-thrust belt is dominated by the upper NE-directing Lenghu thrust fault \(f_1 \) and the lower inverted faults \(f_2 \) and \(f_3 \). The blue rectangle represents the approximate coverage of the parallel sections (i.e., Fig.5) and geospatial models (i.e., Fig.6-7).

Figure 3 The structural interpretation based on detailed field data integrating high-resolution landsat image. The hanging-wall anticline, Lenghu thrust fault zone and minor faults/folds in both the hanging-wall and footwall are interpreted. Three stratigraphic columns \(HW_1, HW_2 \) and \(FW \) are logged along three traverses that are sub-perpendicular to the structure. Ten sub-parallel regional sections (S1-S10) are constructed to build three-dimensional geospatial models to understand the lateral structural variation of the Lenghu fold-and-thrust belt.

Figure 4 The regional stratigraphy of the Lenghu fold-and-thrust belt (see detailed traverses in Fig.3). The hanging-wall stratigraphy \(HW_1 \) and \(HW_2 \) presents good
correlation with the footwall stratigraphy \((FW)\). By correlating the stratigraphic columns, five major stratigraphic units are sub-divided: \((S_a)\) clay-rich fine sandstone (~175 m); \((S_b)\) fine-medium sandstone (~350 m); \((S_c)\) medium sandstone (10-30 m); \((S_d)\) medium-coarse sandstone (~400 m), and \((S_e)\) coarse sandstone to conglomerate (>250 m).

Figure 5 The parallel cross sections delineating the lateral structural variation of the Lenghu fold-and-thrust belt, using 2D/3D Move (Midland Valley). The NW-SE-striking fault zone composes a main thrust fault (i.e., \(F_1\)) and several splay faults (e.g., \(F_2\) and \(F_3\)). The main thrust fault \(F_1\) is a through-going fault along the Lenghu fold-and-thrust belt, whereas \(F_2\) and \(F_3\) are splay faults with minor throws and limited striking extension.

Figure 6 The geospatial model and fault throw distribution along the strike of the Lenghu fold-and-thrust belt. (a) Geospatial model is constructed integrating the parallel cross sections, using 3D Move (Midland Valley). (b) Plan view perspective of the main thrust fault \(F_1\) and two underlying splay faults \(F_2\) and \(F_3\) (\(F_1\) is set translucent to visualize \(F_2\) and \(F_3\)). (c) Throw vs distance chart of the section A-B demonstrating the fault throw distribution along the Lenghu thrust fault zone.

Figure 7 The kinematic evolution of the Lenghu fold-and-thrust belt revealed by three-dimensional restoration using 3D Move (Midland Valley). The yellow arrows represent direction of the principle contractional stress regarding to the geospatial model at each geological time. (a) undeformed layers; (b) folding and initiation of the Lenghu thrust fault \(F_1\); (c) layers faulted by the Lenghu thrust fault \(F_1\); (d-e) \(F_2\) and \(F_3\) branching off from \(F_1\); (f) uplift and erosion to present.

Figure 8 The strain analysis upon the simplified geospatial model of the Lenghu fold-and-thrust belt, based on the geomechanical modelling using a Mass-Spring
algorithm in Midland Valley. The results delineate (a) the total movement, (b) the extensional principle strain e_1, (c) the contractional principle strain e_3, and (d) the strain ratio $(1+e_1)/(1+e_3)$.

Figure 9 The distribution of the high-angle normal faults in a 1 km × 1 km rectangle in the hanging-wall of the Lenghu fold-and-thrust belt (see position in Fig.3). The normal faults are mapped in high-resolution, with fault throws ranging from meters to tens of meters. The normal faults with fault throws smaller than ~10 m are mostly striking NE-SW, which are at high angle with the Lenghu thrust fault zone, whereas the normal faults with fault throws larger than ~10 m are mostly striking N-S, which are sub-parallel to the strike of the Lenghu thrust fault zone.

Figure 10 The strike rose diagrams and stereonets revealing the relationship between the Lenghu thrust fault and the normal fault arrays in the hanging-wall: (a) strike rose diagram of the Lenghu thrust fault, (b) strike rose diagram of the normal fault arrays, (c) stereonet of the thrust fault planes and poles, (d) stereonet of the normal fault planes and poles. The mean principle poles and mean principle planes for each set of the faults are predicted using the ‘Orientation Analysis’ module in Midland Valley.
References

Faults in The Eastern Qilian Shan, And Evidence For a Major Seismic Gap, the Tianzhu Gap, on the Western Haiyuan Fault, Gansu (China). Geophys J Int 120, 599-645.

Figure 1
Figure 2

approximate coverage of parallel sections in Fig. 5
Figure 6

(a) 3D structural model showing the local culmination, anticline, and syncline.

(b) Plan view showing fault F1: translucent, F2, and F3.

(c) Fault throw distribution along the SE direction with distances in km.

- Yellow: F1
- Cyan: F2
- Red: F3
- Pink: Fcum
Figure 7

(to be continued)
Figure 8

(a) total movement

(b) e_1 strain

(c) e_3 strain

(d) strain ratio: $(1+e_1)/(1+e_3)$
Figure 10

(a) thrust faults

(b) normal fault arrays

dips = 32

dips = 150

(c) thrust faults

(d) normal fault arrays
Highlights

- The Lenghu fold-and-thrust belt presents high degree of structural variation.
- Geospacial models are constructed based on high-resolution field data.
- Uneven fault throw distribution determines the lateral structural variation.
- Meso-scale strain distribution is predicted using geomechanical modelling.
- Strain prediction needs to be validated by high-resolution field data.