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A NOTE ON THE CONTINUITY OF FREE-BOUNDARIES

IN FINITE-HORIZON OPTIMAL STOPPING PROBLEMS

FOR ONE-DIMENSIONAL DIFFUSIONS ∗

TIZIANO DE ANGELIS†

Abstract. We provide sufficient conditions for the continuity of the free-boundary in a general
class of finite-horizon optimal stopping problems arising for instance in finance and economics. The
underlying process is a strong solution of one-dimensional, time-homogeneous stochastic differential
equation (SDE). The proof relies on both analytic and probabilistic arguments and it is based on
a contradiction scheme inspired by the maximum principle in partial differential equations (PDE)
theory. Mild, local regularity of the coefficients of the SDE and smoothness of the gain function
locally at the boundary are required.

Key words. optimal stopping, one-dimensional diffusions, free-boundary problems, continuous
free-boundaries, second-order linear parabolic PDEs

AMS subject classifications. 60G40, 60J60, 35R35, 35K20

1. Introduction. In this work we provide some sufficient conditions for the
continuity of optimal stopping boundaries in a class of optimal stopping problems of
the form

sup
0≤τ≤T−t

E

[

G
(

t+ τ,Xτ

)

]

,(1.1)

where 0 < T < +∞ and the supremum is taken over stopping times of a Markov
process X . The gain function G is real valued and X is the unique strong solution
of a time-homogeneous, one-dimensional stochastic differential equation (SDE). We
require mild regularity on the coefficients of the SDE and some regularity properties
of G. Although in most cases the optimal boundary cannot be found explicitly, we
will observe in Section 2 that in many interesting problems of the form of (1.1) one
can find bounds for the stopping region that guarantee that the optimal boundary lies
in specific portions of the (t, x)-plane. In these cases it is possible to require regularity
of G only locally at the optimal boundary. In principle G may even be discontinuous
at points not on the optimal boundary without altering validity of our results.

It is well known that a link exists between optimal stopping problems in probabil-
ity theory and free-boundary problems in partial differential equations (PDE) theory.
For a general exposition of analytical and probabilistic results related to this topic
one may refer, to [2] and [14], among others. Also, a probabilistic approach to opti-
mal stopping and free-boundary problems may be found, for instance, in [34] (mainly
Markovian setting and infinite time-horizon) and [31] (both Markovian setting and
martingale methods with finite/infinite time-horizon) and references therein.

A particular class of problems that has been attracting intense studies for more
than 40 years is the one in which X is real valued and the free-boundary is a curve
{b(t), t ∈ [0, T ]} depending only on time. In these cases it is possible and often
interesting to analyse the regularity of the map t 7→ b(t).

Properties of the free-boundary have been studied thoroughly by means of PDE
methods in a large number of cases related to the Stefan problem. There exists a huge
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2 TIZIANO DE ANGELIS

literature in this area and listing a complete set of references is a demanding task that
falls outside the scopes of this work (some insights may be found for instance in [4],
[33] and references therein). On the other hand, several works on stochastic control
problems are partially devoted to the analysis of continuity and differentiability of
the free-boundary by means of variational methods (cf. [1] and [15], among others);
in [15] for instance the author proves free-boundary’s differentiability for a particular
class of problems and shows its continuity in wide generality (cf. Section 6 of that
work).

Methods involving both analytical and probabilistic tools where originally devel-
oped in [21], [25] and [35], among others, where differentiability of the free-boundary
b in the open interval (0, T ) was proven under suitable assumptions on X and G. In
[25] it was also shown that b solves a countable system of non-linear integral equa-
tions but the problem of uniqueness of such solution was left open. Another integral
equation for b and its first derivative b′ was obtained in [35]; however, a full proof
of existence and local uniqueness of a solution pair (b , b′) was only given in the case
of b′ bounded on [0, T ]. This condition is somewhat restrictive in general and does
not hold for instance in the famous example of the American put option. The lat-
ter has received significant attention due to its strongly applicative nature and the
regularity of the associated free-boundary was analysed carefully (cf. for instance [3],
[6], [7] and [13], for an overview of known results in that setting; cf. also [23] for the
challenging problem of American options on several assets). At the beginning of the
1990s an integral equation for the optimal boundary (with no derivatives) was derived
independently by [5], [18] and [20] but, as it was pointed out in [26], the question of
uniqueness was left open at that time. More than ten years later it was proven in [28]
that the free-boundary is the unique solution in the class of continuous functions to
this integral equation.

It seems then natural from the standpoint of optimal stopping to investigate
continuity properties of the free-boundary. In fact, in a very large class of examples,
if continuity is established a priori, one may rely upon on an extension of Itô’s formula
(cf. [29] or [30] for a detailed exposition) to find an integral equation for b; uniqueness
of its solution in the class of continuous functions may be then proven by developing
arguments as in [28] (see [31] and the references therein). This characterises the free-
boundary unambiguously and the value V of (1.1) may be expressed as a functional
of b itself.

A proof of continuity generally requires techniques based on ad hoc arguments
that have to be found on a case by case basis. In fact, in optimal stopping literature
this is usually obtained by an application of Newton-Leibnitz formula, combined with
the so-called smooth-fit property (i.e. the fact that V (t, · ) is C1 across the optimal
boundary) and estimates on V obtained ex ante (see [31] for a list of examples).

Although Newton-Leibnitz formula turns out to be a suitable tool to deal with
most of the examples that we could find in literature, we observed that some cases seem
quite hard to tackle this way (cf. for instance [9], [11], [36] or [8]; in particular in [11]
one may find applications of results of this work to zero-sum optimal stopping games).
In fact, some difficulties may arise when one or more of the following facts occur: i)
V is not convex/concave with respect to the space variable, ii) the explicit expression
of the process X is unknown or the coefficients of its infinitesimal generator are non-
trivial and make some estimates rather difficult, iii) the gain function underlying the
optimal stopping problem is non-differentiable or it is explicitly time-dependent, iv)
the free-boundary is non-monotone.
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The purpose of this work is to provide an alternative proof of the free-boundary’s
continuity partly based on local regularity of G at the boundary and partly based on
properties of V which are generally obtainable via probabilistic arguments. To the
best of our knowledge all examples where continuity has already been established meet
requirements of our setting. It might be worth noticing that smooth-fit condition is
not needed in our proofs.

The rest of the paper is organised as follows. In Section 2 we introduce the
optimal stopping problem, some standard assumptions and a list of conditions that
will be used only when needed in different proofs of free-boundary’s continuity. We
take X as the unique strong solution of a time-homogeneous SDE in R with locally
Lipschitz coefficients, we assume that a free-boundary exists and we make some mild
regularity assumptions on the gain function G locally at the boundary. These as-
sumptions are mainly in the spirit of a probabilistic approach to optimal stopping,
rather than a PDE one. In Section 3 we prove that the free-boundary of an optimal
stopping problem of this kind is continuous in all intervals where it is either increasing
or decreasing (increasing here means b(t1) ≤ b(t2), for t1 ≤ t2). Proofs are provided
for two different settings: firstly, we assume that V has a local modulus of continuity;
secondly, we replace that assumption by a suitable integrability condition on G and
extend continuity of b to a setting in which V is only continuous. A contradiction
scheme and arguments inspired by the maximum principle are combined with prob-
abilistic estimates to obtain the results. The section is completed by an alternative
proof of the free-boundary’s continuity in the special case of time independent gain
functions. In Section 4 we test our method against two specific examples already
studied in the literature and in particular we solve a problem left open in [9] showing
that Assumption-[Cfb] therein is in fact always true.

2. Setting and Assumptions. Consider a complete probability space (Ω,F ,P)
equipped with the natural filtration F := (Ft)t≥0 generated by a one-dimensional,
standard Brownian motion B := (Bt)t≥0. Assume that the filtration is completed
with P-null sets and it is therefore continuous. Without loss of generality we may
consider Ω = C([0,∞)), i.e. the canonical space of continuous trajectories and P the
Wiener measure; then Bt = ω(t) coincides with the coordinate mapping.

In this work we will only consider a diffusion X with state space O = R to
simplify the exposition. However, it is important to remark that our results hold for
diffusions with state space in an arbitrary open subset O of R if the boundary ∂O
is non-attainable by the process. In fact one may replace R by O in all conditions
listed below in this section and apply the theorems of Section 3 accordingly (a simple
example is the Geometric Brownian motion starting from x > 0 and with state space
O := (0,+∞)). It should also be noticed that all proofs of Section 3 are based on
the local behaviour of the diffusion X around its initial position. Therefore they may
easily be repeated in case of X taking values in O provided that the free-boundary
does not intersect ∂O. Alternatively, if a portion of the free-boundary coincides with
a portion of ∂O, the analysis becomes more delicate, arguments of our work may
break down and one may have to take into account for the behaviour of the diffusion
at ∂O.

Now take O = R and let functions µ : R → R and σ : R → R+ be such that

(A.1) µ and σ are locally Lipschitz, µ is piecewise-C2, σ > 0 and it is piecewise-C3.

Denote by X := (Xt)t≥0 the time-homogeneous real process that uniquely solves

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x(2.1)
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in the strong sense. We denote by Px the probability measure induced by X started
at time zero from x.

Fix T > 0 and take G : [0, T ]× R → R such that

(A.2) G is upper semi-continuous.

We can now define a general optimal stopping problem with value function given by

V (t, x) := sup
0≤τ≤T−t

Ex

[

G(t+ τ,Xτ )
]

,(2.2)

where the supremum is taken over all F-stopping times in [0, T − t].
In many cases of interest one may verify that

(A.3) V is continuous on (0, T )× R

and the stopping time

τ∗(t, x) := inf
{

s ≥ 0 : V (t+ s,Xs) = G(t+ s,Xs)
}

∧ (T − t) under Px(2.3)

is optimal for (2.2). The state space is then naturally split into a continuation set
C :=

{

V > G
}

and a stopping set D :=
{

V = G
}

which are an open and a closed
subset of [0, T ]× R, respectively.

Define the infinitesimal generator LX of X by

LXf(x) :=
σ2(x)

2
f ′′(x) + µ(x)f ′(x) for f ∈ C2

b (R).(2.4)

From standard Markovian arguments and with no further assumptions one obtains
that V ∈ C1,2 inside C and it solves the free-boundary problem

Vt + LXV = 0 in C

Vt + LXV ≤ 0 in [0, T ]× R

V ≥ G in [0, T ]× R

V = G in D ∪ {T } × R.

(2.5)

We now introduce a set of conditions (cf. (A.4), (C.1), (C.2) and Assumption 2.1,
below) which are mostly in the spirit of a probabilistic approach to optimal stopping
problems rather than a PDE one. A basic existence assumption for the free-boundary
is given by

Assumption 2.1. There exists a free-boundary {b(t), 0 ≤ t ≤ T } such that

C :=
{

x ∈ R : x > b(t), t ∈ [0, T )
}

,

D :=
{

x ∈ R : x ≤ b(t), t ∈ [0, T )
}

∪ {T } × R.
(2.6)

A natural sufficient condition for Assumption 2.1 to hold is that V (t, x2)−V (t, x1) ≥
G(t, x2)−G(t, x1) with t ∈ (0, T ) and x1 < x2. In practical examples this may often
be proved by a direct probabilistic comparison of the value function V evaluated at
points (t, x1) and (t, x2) (cf. for instance Proposition 2.1 of [18] or Section 26 of [31],
eq. (26.2.30)). Other methods of proof based on stochastic calculus are also described
in [19], Theorem 4.3 and purely analytical arguments based on the maximum principle
for variational problems may be employed sometimes if suitable regularity of V holds.

In generalG is only USC on [0, T ]×R but one may often verify that a stronger local
regularity holds at points of the boundary (cf. [31] for an overview). In fact, although
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in most cases an explicit expression for the free-boundary is not available, it is often
possible to show that it must lie in specific portions of the (t, x)-plane. A key example
is again the American put option, where the gain function is G(x) := (K − x)+ for
some K > 0 but it is well known that the boundary lies strictly below K for t ∈ [0, T )
(cf. [18]). Another example of this kind is provided in [32] where the Asian call
option with floating strike is analysed (cf. also Section 4 below). The problem may
be formulated as in (2.2) with G(t, x) := (1 − x/t)+ and therefore derivatives of G
do not exist along the diagonal α(t) := t for t ∈ [0, T ]. In [32] it is proved that the
free-boundary lies strictly below α(t) for t ∈ [0, T ].

Motivated by these considerations we may take G fulfilling (A.2) and such that

(A.4) For any t ∈ [0, T ), there exists ε > 0 and a ball B := Bεt,b(t) centered in

(t, b(t)), with radius ε, such that G ∈ C1,2(B ∩ C).

Now we list conditions that will be used in Section 3 below to prove continuity
of the free-boundary in different settings. It is important to stress that we will not
employ all of them at the same time and that they will be recalled only when needed.
The next two conditions are useful to show continuity of the free-boundary when it
is increasing or decreasing, respectively.

(C.1) There exist ε > 0 and B as in (A.4) such that

H := Gt + LXG ≤ −ℓε in B ∩ C(2.7)

with ℓε > 0 a suitable constant.
(C.2) There exist ε > 0 and B as in (A.4) such that Gtx and Gxxx exist and are

continuous in B ∩ C. Moreover, there exists a constant ℓ′ε > 0 such that

Hx :=
∂

∂x

(

Gt + LXG
)

≥ ℓ′ε in B ∩ C(2.8)

and

Vx ≥ Gx in B ∩ C.(2.9)

Remark 2.2. Assumption 2.1 is not binding. In fact, results of this work extend
to the case of a free-boundary {c(t), 0 ≤ t ≤ T } such that

C :=
{

x ∈ R : x < c(t), t ∈ [0, T )
}

,

D :=
{

x ∈ R : x ≥ c(t), t ∈ [0, T )
}

∪ {T } × R.
(2.10)

Conditions (C.1) and (C.2) (with ℓ′ε < 0 and reverse inequalities in (2.8) and (2.9)
if (2.10) holds) are instead crucial, as it will be shown in a counterexample below.
Suitable extension to the case of multiple free-boundaries as for instance in [11], [12]
and [36] may be obtained with minor modifications.

The inequality (2.7) means, roughly speaking, that the free-boundary lies in a
portion of the (t, x)-plane where it is locally not convenient to wait. Note that (2.7)
is stronger than the usual condition

D ⊂
{

(t, x) : Gt + LXG ≤ 0
}

for G ∈ C1,2(2.11)

since it requires strict inequality. Conditions (A.4) and (C.2) are also closely related.
In fact regularity of V in C, (A.4) and Assumption 2.1 imply (2.9). On the other
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hand, if G ∈ C1,2 and (2.8) holds in [0, T ] × R one may show that Assumption 2.1
and (2.9) hold as well (cf. for instance [19], Theorem 4.3).

As already mentioned conditions (2.7) and (2.8) are crucial in our proofs. In
fact, continuity of the boundary may break down if we omit one of them. There is
for instance an interesting counterexample in which at some points on the boundary
ℓε = ℓ′ε ≡ 0 for all ε > 0. In Remark 15, at the end of [10], authors analyse a
particular optimal stopping problem for Brownian motion which is relevant to the
study of Skorokhod embedding (cf. eq. (5.23) therein). The continuation set and
the stopping set are separated by discontinuous optimal boundaries (this was also
shown in [24] with a different approach). The gain function has the particular form
G(x) := |x| − 2

∫ x

0
F (y)dy, where F , in principle, is not even C1 (for simplicity we

will consider F ∈ C1). It was shown in [10], Proposition 7, that discontinuities for a
right-continuous, increasing boundary only happen at particular points t0 such that
F ′(x) ≡ 0 for x ∈ (b(t0), b(t0+)). Equivalently, discontinuities for a right-continuous,
decreasing boundary only happen for t′0 such that F ′(x) ≡ 0 for x ∈ (c(t′0+), c(t′0)).
However, for t0 and t′0 as above one has LXG(x) = 1

2Gxx(x) = −F ′(x) ≡ 0 on
(b(t0), b(t0+)) \ {0} and (c(t′0+), c(t′0)) \ {0} implying that both ℓε and ℓ

′
ε in (2.7) and

(2.8) cannot be larger than zero.
Remark 2.3. Once the existence of a free-boundary is proven one would like

to add to (2.5) the so-called smooth-fit condition, i.e. Vx(t, b(t)+) = Gx(t, b(t)−),
t ∈ [0, T ). This can hardly be done by probabilistic methods when an explicit solution
of (2.1) is not known. However, under some additional assumptions on µ and σ one
could rely on results about variational inequalities and Sobolev embedding theorems
(cf. for instance [14] and [15]) to retrieve this further condition. For the purpose of
this exposition the smooth-fit is not necessary, hence we will not discuss it here.

We now introduce two conditions, each of which is sufficient, together with (C.1),
to prove continuity of increasing free-boundaries. The first one is on the regularity of
the value function (2.2) and it is stronger than (A.3) but it may be verified in several
examples of interest (cf. for instance [12] and [18]).

(C.3) The value function fulfils (A.3) with a local modulus of continuity. In par-
ticular there exists α > 0 and continuous functions θi : R+ → R+ for i = 1, 2
such that

∣

∣V (t+ h, x+ h′)− V (t, x)
∣

∣ ≤ θ1(|x|)|h|
α/2 + θ2(|t|)|h

′|α(2.12)

for (t, x) ∈ [0, T − h]× R and h, h′ > 0.

Sufficient conditions for (C.3) to hold with θ1 = θ2 ≡ const. are that µ, σ in (2.1) are
Lipschitz and |G(t1, x1)−G(t2, x2)| ≤ C(|t2 − t1|

α/2+ |x2−x1|
α) for a fixed constant

C > 0.
The second condition is very similar to a usual sufficient condition for the well-

posedness of the optimal stopping problem (cf. for instance [31], Section 2.2).

(C.4) There exists δ > 1 such that the map (t, x) 7→ κ(t, x) defined by

κ(t, x) := Ex

[

sup
0≤s≤T−t

∣

∣G(t+ s,Xs)
∣

∣

δ
]

(2.13)

satisfies

sup
0≤t≤T

∫ R

−R

∣

∣κ(t, x)
∣

∣

1

δ dx <∞ for any fixed R > 0.(2.14)
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The usual assumption only requires that the expression in (2.13) is finite with δ = 1;
however, one may often show that the map (t, x) 7→ κ(t, x) is in fact bounded on any
compact set [0, T ]× [−R,R].

It is worth noticing that conditions (A.1), (A.2) and (A.4) have a local character
and G could exhibit jumps somewhere without invalidating results of this paper.
Although somewhat technical most of the assumptions and conditions listed above can
be verified in a wide class of optimal stopping problems like (2.2). In Section 4 below
we will discuss two examples from the existing literature where those requirements
were verified by standard probabilistic methods. In one of them continuity of the
free-boundary was only assumed but not proved; in this paper we will show that such
assumption is in fact always true.

3. Continuity of the free-boundary. In what follows we will prove continuity
of the free-boundary in different settings. For increasing free-boundary we obtain
a first proof under condition (C.3) and a second one under condition (C.4); for
decreasing free-boundary we only require condition (C.2).

Theorem 3.1. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be
a time interval where the free-boundary is increasing. Then, under conditions (C.1)
and (C.3), the free-boundary t 7→ b(t) is continuous on [t1, t2].

Proof. Since D is closed and b is increasing, we can rely on a standard argument
to show that b is right-continuous (see, e.g. [18]). First we notice that b has right
and left limits at all points t ∈ (t1, t2) by its monotonicity. For fixed t ∈ (t1, t2) we
consider a decreasing sequence (tn)n∈N ⊂ (t, t2) such that tn ↓ t; then (tn, b(tn)) ∈ D
for all n ∈ N and (tn, b(tn)) → (t, b(t+)) with b(t+) denoting the right-limit of b at
time t. The limit of a sequence of elements in D must be an element of D since the
set is closed. Hence (t, b(t+)) ∈ D and b(t+) ≤ b(t) by Assumption 2.1. Monotonicity
of b in [t1, t2] implies b(t+) ≥ b(t), hence right-continuity follows.

To prove continuity we argue by contradiction and assume that there exists t0 ∈
(t1, t2] such that a discontinuity of b occurs. That is, at t0 one has b(t0−) < b(t0),
where b(t0−) denotes the left limit of the boundary at t0. Take x1 and x2 such
that b(t0−) < x1 < x2 < b(t0); then, for arbitrary but fixed t′ ∈ (t1, t0) define an
open bounded domain R ⊂ C with R := (t′, t0) × (x1, x2). Its parabolic boundary
∂PR is formed by the horizontal lines [t′, t0) × {xi}, i = 1, 2, and by the vertical
line {t0} × [x1, x2] (note that in this setting C lies on the left of the vertical segment
[b(t0−), b(t0)]).

From (2.5) we know that V (uniquely) solves the Cauchy-Dirichlet problem

ut + LXu = 0 in R

u = V on ∂PR
(3.1)

and it is C1,2 in the interior of R. Denote by C∞
c ([x1, x2]) the set of functions with

infinitely many continuous derivatives and compact support in [x1, x2]. Take ψ ≥ 0
arbitrary in C∞

c ([x1, x2]) and such that
∫ x2

x1

ψ(y)dy = 1. Multiply the first equation

in (3.1) (with V instead of u) by ψ and integrate1 over (t, t0) × (x1, x2) for some

1Note that V is C1,2 on RP and not necessarily on RP . The integration with respect to y may
be interpreted in the sense of distributions by taking derivatives of ψ. The integral with respect to
s is well defined since

∫ t0
t

∫ x2

x1
Vt(s, y)ψ(y)dy ds =

∫ x2

x1

(

V (t0, y)− V (t, y)
)

ψ(y)dy.
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t ∈ (t′, t0). It gives
∫ t0

t

∫ x2

x1

(

Vt(s, y) + LXV (s, y)
)

ψ(y)dy ds = 0.(3.2)

We want to estimate the left-hand side of (3.2) and provide an upper bound. In order
to do so we will study separately the two terms of the integrand.

Integrating Vt over (t, t0) and using V (t0, y) = G(t0, y) and V (t, y) ≥ G(t, y) it
follows

∫ t0

t

∫ x2

x1

Vt(s, y)ψ(y)dy ds ≤

∫ x2

x1

(

G(t0, y)−G(t, y)
)

ψ(y)dy(3.3)

=

∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds.

Now, we integrate by parts in dy the term in (3.2) involving the infinitesimal generator
of X and we use the fact that ψ has compact support in [x1, x2]. It gives

∫ t0

t

∫ x2

x1

LXV (s, y)ψ(y)dy ds =

∫ t0

t

∫ x2

x1

V (s, y)LX
∗ψ(y)dy ds,(3.4)

where LX
∗ denotes the formal adjoint of LX defined by

LX
∗φ(x) :=

1

2

∂2

∂x2
(

σ2(x)φ(x)
)

−
∂

∂x

(

µ(x)φ(x)
)

, φ ∈ C2(R).(3.5)

Note that with no loss of generality we can take R so that (3.5) is well defined and
continuous on R by (A.1).

Since G ∈ C1,2(R) there exists a continuous function θG(| · |) such that
∣

∣V (s, y)−G(s, y)
∣

∣ ≤
∣

∣V (s, y)− V (t0, y)
∣

∣+
∣

∣G(t0, y)−G(s, y)
∣

∣(3.6)

≤ θ1(|y|)(t0 − s)α/2 + θG(|y|)(t0 − s) for (s, y) ∈ R

by (2.12). We may consider |t0 − t| < 1 and hence (3.6) holds with the right-hand
side replaced by

(

θ1(|y|) + θG(|y|)
)

(t0 − s)α/2. We set ϑ(y) := θ1(|y|) + θG(|y|) and
use V ≥ G and (3.6) to obtain

G(s, y) ≤ V (s, y) ≤ G(s, y) + ϑ(y)(t0 − s)α/2 in R.(3.7)

For any s ∈ (t, t0) we deduce from (3.7) that
∫ x2

x1

V (s, y)LX
∗ψ(y)dy(3.8)

=

∫ x2

x1

I{LX
∗ψ≥0}(y)V (s, y)LX

∗ψ(y)dy +

∫ x2

x1

I{LX
∗ψ<0}(y)V (s, y)LX

∗ψ(y)dy

≤

∫ x2

x1

I{LX
∗ψ≥0}(y)G(s, y)LX

∗ψ(y)dy +

∫ x2

x1

I{LX
∗ψ<0}(y)G(s, y)LX

∗ψ(y)dy

+ (t0 − s)α/2
∫ x2

x1

I{LX
∗ψ≥0}(y)ϑ(y)LX

∗ψ(y)dy

=

∫ x2

x1

G(s, y)LX
∗ψ(y)dy + (t0 − s)α/2

∫ x2

x1

I{LX
∗ψ≥0}(y)ϑ(y)LX

∗ψ(y)dy

=

∫ x2

x1

LXG(s, y)ψ(y)dy + (t0 − s)α/2
∫ x2

x1

I{LX
∗ψ≥0}(y)ϑ(y)LX

∗ψ(y)dy



A NOTE ON THE CONTINUITY OF FREE-BOUNDARIES 9

by integration by parts. Note that the last term is strictly positive by arbitrariness
of ψ. We define γ ≡ γ(ψ;x1, x2) > 0 by

γ :=

∫ x2

x1

I{LX
∗ψ≥0}(y)ϑ(y)LX

∗ψ(y)dy.(3.9)

Now, from (3.2), (3.3), (3.4) and (3.8) we obtain

0 ≤

∫ t0

t

∫ x2

x1

(

Gt(s, y) + LXG(s, y)
)

ψ(y)dy ds+ γ(t0 − t)1+α/2.(3.10)

One may observe from (C.1) that the first integral in (3.10) must be strictly negative.
In fact, recalling that

∫ x2

x1

ψ(y)dy = 1, there exists ℓ > 0 depending on x1, x2, such
that

0 ≤ −ℓ(t0 − t) + γ(t0 − t)1+α/2(3.11)

by (2.7) and (3.10). In the limit as t ↑ t0 we inevitably reach a contradiction as the
positive term vanishes more rapidly than the negative one and hence the jump may
not occur.

The proof above did not require any probabilistic arguments and it follows from
simple PDE results and the regularity assumptions on V and G. It is sometimes
useful to relax condition (C.3) and replace it by (C.4). The latter is in fact easier
to verify than (C.3) and holds for a wide class of gain functions G. Although the
proof of continuity becomes slightly more involved, bounds similar to (3.7) may be
retrieved by means of purely probabilistic arguments.

Theorem 3.2. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be
a time interval where the free-boundary is increasing. Then, under conditions (C.1)
and (C.4) the free-boundary t 7→ b(t) is continuous on [t1, t2].

Proof. We recall once more that since D is closed and b is increasing then b
is right-continuous (cf. proof of Theorem 3.1). To prove continuity we argue again
by contradiction and assume that there exists t0 ∈ (t1, t2] where a discontinuity of
b occurs and b(t0−) < b(t0). We define an open bounded domain U ⊂ C, U :=
(t̄, t0) × (x01, x

0
2) with x01 and x02 such that b(t0−) < x01 < x02 < b(t0) and arbitrary

t̄ ∈ (t1, t0). Its parabolic boundary ∂PU is formed by the horizontal lines [t̄, t0)×{x0i },
i = 1, 2 and by the vertical line {t0}× [x01, x

0
2]. Hence, the value function V is (unique)

classical solution of the boundary value problem

ut + LXu = 0 in U

u = V on ∂PU
(3.12)

by (2.5).
Fix η0 > 0 such that 2η0 < min{|x02−x01|, 2}, take x1 and x2 such that (x1, x2) ⊂

(x01 + η0, x
0
2 − η0) and take an arbitrary t ∈ (t̄, t0). Now define another open bounded

domain R ⊂ U by R := (t, t0)× (x1, x2) with parabolic boundary ∂PR formed by the
horizontal lines (t, t0)× {xi}, i = 1, 2 and by the vertical line {t0}× [x1, x2] and such
that (2.7) holds.

Take ψ ≥ 0 arbitrary in C∞
c ([x1, x2]) and such that

∫ x2

x1

ψ(y)dy = 1, multiply the

first equation in (3.12) (with V instead of u) by ψ and integrate over (t, t0)× (x1, x2).
It follows

∫ t0

t

∫ x2

x1

(

Vt(s, y) + LXV (s, y)
)

ψ(y)dy ds = 0.(3.13)
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Of course we would like to reproduce here arguments similar to those adopted in
(3.2)–(3.10) to find a contradiction in (3.13). However, in order to do so we need a
bound similar to (3.7).

Let τU denote the first exit time of (s + r,Xr)r≥0 from U for s ∈ [t, t0) and
X0 = y ∈ (x1, x2), that is,

τU (s, y) := inf
{

s ≥ 0 : (s+ r,Xr) /∈ U
}

under Py, y ∈ (x1, x2).(3.14)

Set τU ≡ τU (s, y) for simplicity. Clearly τU ≤ t0 − s ≤ t0 − t, Py-a.s. for y ∈ (x1, x2).
Also, the stopping time

τ∗(s, y) := inf
{

r ≥ 0 : Xr ≤ b(s+ r)
}

∧ (T − s)(3.15)

is an optimal stopping time for V (s, y) and τU ≤ τ∗, Py-a.s. for y ∈ (x1, x2), from
monotonicity of b.

Since U is arbitrary, G ∈ C1,2 in U by (A.4) and we may use Itô’s calculus to
obtain

G(s, y) = Ey

[

G(s+ ρ,Xρ)−

∫ ρ

0

(

Gt + LXG
)

(s+ r,Xr)dr
]

(3.16)

for all stopping times ρ ≤ τU , Py-a.s., y ∈ (x1, x2). Set for simplicity τ∗ ≡ τ∗(s, y)
and take ρ = τU ∧ τ∗ in (3.16). It follows

0 ≤V (s, y)−G(s, y)(3.17)

=Ey

[

G(s+ τ∗, Xτ∗)−G(s+ τU ∧ τ∗, XτU∧τ∗)
]

+ Ey

[

∫ τU∧τ∗

0

(

Gt + LXG
)

(s+ r,Xr)dr
]

≤Ey

[

G(s+ τ∗, Xτ∗)−G(s+ τU ∧ τ∗, XτU∧τ∗)
]

,

where in the last inequality we used (2.7). The only non-zero contribution in the last
expression of (3.17) comes from the set

{

τ∗ > τU
}

and we have

0 ≤V (s, y)−G(s, y)(3.18)

≤Ey

[(

G(s+ τ∗, Xτ∗)−G(s+ τU , XτU )
)

I{τ∗>τU}

]

≤Ey

[∣

∣

∣
G(s+ τ∗, Xτ∗)−G(s+ τU , XτU )

∣

∣

∣

δ] 1

δ

Py

(

τ∗ > τU
)1− 1

δ

where we have used Hölder’s inequality E|XY | ≤
(

E|X |p
)1/p(

E|Y |q
)1/q

with p = δ

and q = δ
δ−1 . Note that condition (C.4) guarantees that the last term in (3.18) is

well defined.
We observe that if τ∗ > τU then the process exits U from the upper/lower hor-

izontal boundary strictly before hitting the free-boundary b. This also means that
τU < t0−s as otherwise τU = τ∗. Now, recalling that y ∈ (x1, x2) ⊂ (x01+η0, x

0
2−η0, )

we find
{

τ∗ > τU

}

⊆
{

XτU ≤ x1 − η0 or XτU ≥ x2 + η0

}

(3.19)

⊆
{

sup
0≤r≤t0−s

∣

∣Xr − y
∣

∣ > η0

}

.
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From (3.19), Markov inequality and standard estimates for strong solutions of SDEs
(cf. for instance [22] Chapter 2, Section 5, Corollary 12 or [16], Chapter 5, Theorem
2.3 for the case of locally Lipschitz coefficients µ and σ) it follows

Py

(

τ∗ > τU
)

≤Py

(

sup
0≤r≤t0−s

∣

∣Xr − y
∣

∣ > η0

)

≤
1

ηβ0
Ey

[

sup
0≤r≤t0−t

∣

∣Xr − y
∣

∣

β
]

(3.20)

≤
1

ηβ0
CT,β

(

1 + |y|β
)(

t0 − t
)β/2

for a suitable constant CT,β > 0 only depending on T and arbitrary β > 0.
Set ζ := 1− 1/δ. Using (3.18), (3.20) and (2.13) we finally obtain

0 ≤ V (s, y)−G(s, y) ≤ 2κ(s, y)1/δ
( 1

ηβ0
CT,β

(

1 + |y|β
)

)ζ
(

t0 − t
)ζβ/2

(3.21)

for y ∈ (x1, x2). The inequality (3.21) provides the analogue of (3.7) in the present
setting. We repeat the same arguments as in (3.1)–(3.4) to obtain

0 ≤

∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds+

∫ t0

t

∫ x2

x1

V (s, y)LX
∗ψ(y)dy ds(3.22)

from (3.13) and use (3.21), (3.22), condition (C.4) and calculations as in (3.8) to find

0 ≤

∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds+

∫ t0

t

∫ x2

x1

LXG(s, y)ψ(y)dy ds+
c

ηβ0
(t0 − t)1+ζβ/2

(3.23)

with

c ≡c(T, δ, η0, β, x
0
1, x

0
2, ψ)(3.24)

:=2c∞ψ

[

CT,β
(

1 + max{|x01|, |x
0
2|}

β
)

]ζ

sup
0≤s≤T

∫ x0

2

x0

1

κ1/δ(s, y)dy

and c∞ψ ≡ c∞ψ (x01, x
0
2) := supy∈[x0

1
,x0

2
]

∣

∣L
∗
Xψ(y)

∣

∣. Note that c∞ψ < +∞ as µ, σ and ψ

are C2 in [x01, x
0
2]. As usual Gt + LXG < −ℓ in U for some constant ℓ > 0 by (C.1)

and hence

0 ≤ −ℓ(t0 − t) +
c

ηβ0
(t0 − t)1+ζβ/2(3.25)

by (3.23). For fixed δ, η0, β, U and ψ, (3.25) leads to a contradiction in the limit as
t ↑ t0.

When Assumption 2.1 holds and the free-boundary is decreasing, arguments above
seem to break down. This is mainly due to the fact that if a jump occurs at t0 and
the diffusion (t,X) starts either from a point (t0 + ε, x) with ε > 0 or from (t0 − ε, x)
with x > b(t0−) then, as time elapses it will move away from the discontinuity. On
the contrary, in theorems above and in particular in Theorem 3.2 we crucially relied
on the fact that (t,X) moves towards the jump. Intuitively it might happen that
the diffusion does not “see” discontinuities of a decreasing boundary and hence the
rationale above may not be adopted. Our first natural attempt to overcome this
difficulty was to study the time reversed process (t − s,Xs)s≥0 but we realised that
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this introduces seemingly harder complications to deal with. An approach based on
PDE results and condition (C.2) allows instead to find continuity of b again.

Theorem 3.3. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be
a time interval where the free-boundary is decreasing. Then, under condition (C.2)
the free-boundary t 7→ b(t) is continuous on [t1, t2].

Proof. In this case by arguments similar to those used in the proof of Theorem
3.1 one finds that b is left-continuous as D is closed and b is decreasing. Assume that
there exists t0 ∈ [t1, t2) such that a discontinuity of b occurs. That is, b(t0+) < b(t0),
where b(t0+) denotes the right limit of the boundary at t0. Take x1 and x2 such that
b(t0+) < x1 < x2 < b(t0) and t′ ∈ (t0, t2); then, define once more an open bounded
domain R ⊂ C with R := (t0, t

′) × (x1, x2). Its parabolic boundary ∂PR is formed
by the horizontal lines (t0, t

′) × {xi}, i = 1, 2, and by the vertical line {t′} × [x1, x2]
(note that in this setting C lies on the right of the vertical segment [b(t0+), b(t0)]).

Set u := V − G and recall the definition of H from (2.7). Hence, u is (unique)
classical solution of the boundary value problem

ut + LXu = −H in R

u = V −G on ∂PR
(3.26)

by (2.5) and (A.4). For x ∈ R and f ∈ C2(R) define a differential operator A by

Af(x) :=
1

2
σ2(x)f ′′(x) +

(

σ σ′ (x) + µ(x)
)

f ′(x) + µ′(x)f(x).(3.27)

Now, conditions (A.1), (A.4) and (C.2) imply that utx and uxxx exist and are con-
tinuous in R (cf. [17], Chapter 3, Theorem 10). We differentiate the first equation in
(3.12) with respect to x and set ū := ux to obtain

ūt +Aū = −Hx in R,(3.28)

with A as in (3.27). Take ψ ≥ 0 arbitrary in C∞
c ([x1, x2]) and such that

∫ x2

x1

ψ(y)dy =

1. We define a function Fψ : (t0, t
′) → R by

Fψ(t) :=

∫ x2

x1

ūt(t, x)ψ(x)dx(3.29)

and (3.28) gives

Fψ(t) =−

∫ x2

x1

(

Hx(t, x) +Aū(t, x)
)

ψ(x)dx(3.30)

=−

∫ x2

x1

Hx(t, x)ψ(x)dx −

∫ x2

x1

ū(t, x)A∗ψ(x)dx

=−

∫ x2

x1

Hx(t, x)ψ(x)dx +

∫ x2

x1

u(t, x)
∂

∂x

(

A∗ψ
)

(x)dx,

where A∗ is the formal adjoint of A and ∂
∂x

(

A∗ψ
)

∈ Cc([x1, x2]) by (A.1) and arbi-
trariness of [x1, x2]. It follows from (3.30) that Fψ is continuous on (t0, t

′) and the
right-limit of Fψ at t0 exists and it is

Fψ(t0+) := lim
t↓t0

Fψ(t) = −

∫ x2

x1

Hx(t0, x)ψ(x)dx(3.31)
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by using that u ∈ C(R) and u(t0, x) ≡ 0 for x ∈ [x1, x2]. Therefore, from (2.8) we
obtain Fψ(t0+) ≤ −ℓ for suitable ℓ > 0 and continuity of Fψ implies that there exists
ε > 0 such that Fψ(t) < −ℓ/2 for all t ∈ (t0, t0 + ε). Set 0 < δ < ε, then (3.29),
Fubini’s Theorem and an integration by parts give

−
ℓ

2
(ε− δ) >

∫ ε

δ

Fψ(t0 + s)ds =

∫ x2

x1

[

ū(t0 + ε, x)− ū(t0 + δ, x)
]

ψ(x)dx(3.32)

=

∫ x2

x1

ū(t0 + ε, x)ψ(x)dx +

∫ x2

x1

u(t0 + δ, x)ψ′(x)dx.

Now, taking limits as δ → 0, using dominated convergence and recalling that ū = ux,
u ∈ C(R), u(t0, x) ≡ 0 for x ∈ [x1, x2] we obtain

−
ℓ

2
ε ≥

∫ x2

x1

ū(t0 + ε, x)ψ(x)dx =

∫ x2

x1

[

Vx −Gx
]

(t0 + ε, x)ψ(x)dx.(3.33)

Since ψ ≥ 0, then (2.9) and (3.33) lead to a contradiction; hence bmust be continuous.

It easy to see that from Theorems 3.1–3.3 it follows
Corollary 3.4. Let (A.1)–(A.4), Assumption 2.1 and conditions (C.1), (C.2)

hold. Assume that the free-boundary is piecewise monotone on [0, T ] and that either
(C.3) or (C.4) holds. Then b is continuous on [0, T ].

The special case of a time-independent gain function may be treated separately.
In fact, in that case conditions (C.2), (C.3) and (C.4) may be dropped and continuity
is obtained in a very general setting. We prove this claim in the next Proposition, for
completeness.

Proposition 3.5. Assume (A.1) and that G : R → R is time independent and
it meets (A.2). Assume also that the value function

V (t, x) := sup
0≤τ≤T−t

Ex

[

G(Xτ )
]

(3.34)

fulfils (A.3) and that there exists a free-boundary
{

b(t), 0 ≤ t ≤ T
}

such that As-
sumption 2.1, (A.4) and (C.1) hold. Then t 7→ b(t) is increasing and continuous on
[0, T ].

Proof. To show that t 7→ b(t) is monotone increasing we use standard arguments
(cf. [18], for instance). Since G does not depend on time, the mapping t 7→ V (t, x) is
decreasing for any x ∈ R. Take (t0, x0) ∈ D and t > t0, then V (t, x0) ≤ V (t0, x0) =
G(x0) and hence (t, x0) ∈ D for all t > t0. Closedness of D implies that b(t) is also
right-continuous.

To prove continuity, assume that there exists t0 ∈ (0, T ] such that b(t0−) < b(t0);
construct a rectangular domain R with parabolic boundary ∂PR as in the proof of
Theorem 3.1, then V is the (unique) classical solution of the Cauchy-Dirichlet problem

ut + LXu = 0 in R

u = V on ∂PR.
(3.35)

Take ψ ≥ 0 arbitrary in C∞
c ([x1, x2]) with

∫ x2

x1

ψ(y)dy = 1, multiply the first

equation in (3.35) (with V instead of u) by ψ and integrate over [x1, x2]. Then
∫ x2

x1

Vt(s, y)ψ(y)dy = −

∫ x2

x1

LXV (s, y)ψ(y)dy for all s ∈ (t′, t0)(3.36)
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and, integrating by parts the term on the right-hand side of (3.36), we obtain

∫ x2

x1

Vt(s, y)ψ(y)dy = −

∫ x2

x1

V (s, y)LX
∗ψ(y)dy for all s ∈ (t′, t0).(3.37)

The left-hand side of (3.37) is negative since V is decreasing in time and ψ ≥ 0.
Then, we take the limit as s ↑ t0 in the right-hand side of (3.37) and use dominated
convergence, continuity of V and boundary condition V (t0, y) = G(y) to obtain

0 ≥−

∫ x2

x1

V (t0, y)LX
∗ψ(y)dy(3.38)

=−

∫ x2

x1

G(y)LX
∗ψ(y)dy = −

∫ x2

x1

LXG(y)ψ(y)dy.

There exists ℓ > 0 depending only on R such that LXG(y) < −ℓ in [x1, x2], by (2.7)
and then we find the contradiction

0 ≥ ℓ

∫ x2

x1

ψ(y)dy = ℓ > 0(3.39)

by (3.38).
A basic example of a more general optimal stopping problem may be considered

by taking

G(t, x) := g(t, x)I{t<T} + h(x)I{t=T}(3.40)

in (2.2) with g and h bounded and continuous. A probabilistic proof of the existence
of an optimal stopping time in this setting may be found in [27] and the continuation
set is C :=

{

V > g
}

. Then, replacing assumptions on G with analogous ones for g
one may use the same arguments as above to show that b(t) as in Assumption 2.1 is
continuous on the open interval (0, T ). However, continuity at the maturity T may
break down and it should be studied again on a case by case basis. Note that if b(t)
is decreasing on (t1, T ] for some t1 < T , then it is also continuous at T since it is
left-continuous on the interval. On the other hand, for an increasing boundary on
(t1, T ] one may easily check, proceeding as in the proofs of Theorems 3.1 and 3.2,
that sufficient conditions for continuity at T are: i) LXh well defined and piecewise
continuous, ii) LXh < −ℓε for x ≤ b(T ).

All results of this paper naturally extend to the case of discounted gain functions
and in presence of running costs. In fact, if we take for instance a positive, C1 discount
rate function r(x) and a positive, continuous cost function C(t, x) such that

Ex

[

∫ T

0

C(s,Xs)ds
]

< +∞ for x ∈ R(3.41)

and Cx ∈ C((0, T )× R), we may define the optimal stopping problem

V (t, x) := sup
0≤τ≤T−t

Ex

[

e−
∫

τ

0
r(Xs)dsG(t+ τ,Xτ )−

∫ τ

0

e−
∫

s

0
r(Xu)duC(t+ s,Xs)ds

]

.

(3.42)

If (A.2) and (A.3) hold then τ∗ as in (2.3) is optimal. If we now modify conditions
(C.1) and (C.2) by using Gt + LXG− rG−C instead of Gt + LXG and assume for
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instance that

ξ(t, x) := Ex

[

∫ T−t

0

∣

∣C(t+ s,Xs)
∣

∣

δ
ds
]

(3.43)

is locally bounded on [0, T ]× R, for δ > 1 as in (C.4), all conclusions above remain
true (this is the case for instance of [9]).

4. Two examples. For completeness we now discuss two examples of optimal
stopping problems where conditions listed in Section 2 can be checked by using mostly
probabilistic arguments. The literature on optimal stopping is huge and we pick these
specific examples just because they allow us to point out the local nature of our
assumptions on G (Example 1) and the interesting features of a decreasing boundary
(Example 2).

Example 1. We consider the problem studied in [32] of finding the optimal exercise
boundary of an Asian call option with floating strike. In [32] it was shown that the
valuation of the option reduces to studying

V (t, x) := sup
0<τ≤T−t

Ex

[(

1−
Xτ

t+ τ

)+ ]

(4.1)

where ( · )+ denotes the positive part and (Xt)t≥0 is the positive process solving

dXt = (1− rXt)dt+ σXtdBt, X0 = x ≥ 0(4.2)

under Px, with r and σ positive constants. We remark that continuity of the boundary
was originally proved in [32], Theorem 3.1.

Conditions (A.1) and (A.2) are clearly verified and G(t, x) := (1 − x/t)+ is
positive and bounded by one on (0, T ]× R+, hence (C.4) holds as well. Continuity
of V was proved in points 2 and 3 of the proof of Theorem 3.1 in [32] by probabilistic
comparison arguments and the existence of an optimal stopping time as in (A.3)
follows from general theory of optimal stopping (cf. [31], Section 2, Corollary 2.9).
Peskir and Uys also showed that there exists a monotone increasing optimal boundary
as in our Assumption 2.1 and that 0 < b(t) < t/(1 + rt) for t ∈ (0, T ) (cf. points 6
and 7 of the proof of Theorem 3.1). It follows that our condition (A.4) holds. To
prove existence of b authors employed the generalisation of Itô’s formula described
in [29] combined with a simple probabilistic argument needed to obtain convexity
of x 7→ V (t, x). To show monotonicity instead they relied on a direct comparison
of the value function at different times, i.e. they proved that V (t2, x) − V (t1, x) ≤
G(t2, x)−G(t1, x) for all 0 ≤ t1 < t2 ≤ T and x > 0.

We observe that Gt+LXG = x/t2−(1−rx)/t < 0 for x < t/(1+rt) and therefore
(C.1) is satisfied for all t ∈ (0, T ). All conditions of our Theorem 3.2 are fulfilled and
continuity of the free-boundary follows.

Example 2. We now consider the optimal stopping problem, linked to a singular
stochastic control one, that was studied in [9]. In that context continuity of the free-
boundary was only assumed (cf. [9], Assumption-[Cfb], p. 454). Our results allow to
prove that such boundary is indeed continuous.

We adapt the notation of [9] to ours to simplify the exposition2. The value

2Here we use (Xx, r, c1, c2, µ, σ) instead of (Y y , µ̄, 1/fC , ao, σ
2

C
− µC , σC) of [9]
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function of the problem analysed in Section 4 of [9] is

V (t, x) := inf
0≤τ≤T−t

Ex

[

∫ τ

0

e−rs
(

Xs

)α−1
ds+ e−rτc1I{τ<T−t} + e−r(T−t)c2I{τ=T−t}

]

(4.3)

with 0 < α < 1 and c1, c2, r positive constants such that c1 ≥ c2. The dynamics of
X is given by

dXt = µXtdt+ σXtdBt, X0 = x > 0(4.4)

with µ ∈ R and σ > 0. Although (4.3) is a minimisation problem there is no sub-
stantial difference in dealing with continuity of its boundary. In fact infτ Ex

[

Ĝ(t +

τ,Xτ )
]

= − supτ Ex
[

− Ĝ(t+ τ,Xτ )
]

for any Borel-measurable Ĝ and we can rely on
Theorem 3.3 by suitably adjusting inequalities in condition (C.2).

Condition (A.1) holds. The gain function G of (4.3) is of the form of (3.40)
with g(x) = c1 and h(x) = c2. Since c1 ≥ c2 we have G lower semi-continuous as
it is natural in minimisation problems. The running cost c(x) := xα−1 is C1 for
x > 0. In Proposition 4.1-[viii]v̂ of [9] it was shown (again by probabilistic methods
similar to those described in Example 1 above) that V is continuous, i.e. our (A.3)
holds. Since the gain function is a constant our condition (A.4) is trivially true. In
Propositions 4.2 and 4.3 of [9] it was also shown that there exists a unique decreasing,
left-continuous optimal boundary b for (4.3), that b(T ) = 0 and that C and D fulfil
our Assumption 2.1 (the free-boundary in [9] is denoted by ŷ).

In order to apply our Theorem 3.3 we only need to check condition (C.2). However
since we are dealing with an infimum problem we need ℓ′ε < 0 and reversed inequalities
in (2.8) and (2.9). The solution of (4.4) is P-a.s. increasing in its initial condition,
hence x 7→ V (t, x) is decreasing. Since the gain function c1 in (4.3) is constant and
Vx ≤ 0 then the counterpart of (2.9) in this setting is fulfilled. It is now easy to see
that H(x) := (∂t + LX − r)c1 + xα−1 = xα−1 − r c1 and hence Hx(x) < 0 for x > 0
and the counterpart of (2.8) holds as well. From arguments analogous to those used
in the proof of Theorem 3.3 we obtain continuity of b for all t ∈ [0, T ). Since b is
decreasing and left-continuous it is continuous at the terminal time T as well.

We would like to remark that other running costs may be considered in (4.3)
without substantially altering the results. For instance free-boundaries of a zero
sum optimal stopping game that generalises (4.3) were studied in [11] under milder
assumptions regarding the running cost and their continuity was proven by methods
similar to those developed in Theorem 3.3.

Acknowledgments: I wish to thank G. Ferrari and G. Peskir for useful discussions
and comments.
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