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Abstract 28 

Bacterial plasmid and chromosome segregation systems ensure that genetic material is 29 

efficiently transmitted to progeny cells. Cell-based studies have shed light on the dynamic 30 

nature and the molecular basis of plasmid partition systems. In vitro reconstitutions, on the 31 

other hand, have proved to be an invaluable tool for studying the minimal components 32 

required to elucidate the mechanism of DNA segregation. This allows us to gain insight into 33 

the biological and biophysical processes that enable bacterial cells to move and position 34 

DNA. Here, we review the reconstitutions of plasmid partition systems in cell-free reactions, 35 

and discuss recent work that has begun to challenge long standing models of DNA 36 

segregation in bacteria. 37 

 38 

Introduction 39 

In all forms of life, it is essential for DNA to be accurately segregated for the stable 40 

inheritance of genetic material. Eukaryotic cells use well-characterized mitotic spindles to 41 

segregate chromosomes via a tubulin-based mechanism. The processes that govern plasmids 42 

and chromosome segregation in bacterial cells are however, less well-understood. High copy-43 

number plasmids rely on random diffusion to distribute replicated plasmids. Conversely, low-44 

copy number plasmids and most chromosomes encode for dedicated partition (Par) systems 45 

to actively segregate DNA to daughter cells prior to cell division. The Par system encodes 46 

only two proteins, ParA and ParB, and a parS partition site. The parS site contains specific 47 

DNA sequences that act like a centromere, to which ParB binds to form the partition 48 

complex. ParA is an NTPase that binds and hydrolyzes ATP or GTP to provide the energy to 49 

drive DNA segregation. Three Par systems have been classified according to their respective 50 

NTPase: P loop ATPase with a deviant Walker A motif (Type I), actin-like ATPase (Type II) 51 

and tubulin-like GTPase (Type III) (reviewed in Gerdes et al., 2010; Baxter and Funnell, 52 



   
 

3 

 

2014). Although the loci that encode for Par systems have remarkable similarity in their 53 

genetic organization, fundamental differences in the sequence and structure of their NTPases 54 

have led to divergent plasmid partition mechanisms. 55 

 The advancement of fluorescence microscopy in the past few decades has transformed 56 

our view of bacterial subcellular organization.  Bacteria are no longer seen as ‘bags of 57 

enzymes’, but instead to have highly organized structures. Bacterial cell biology has provided 58 

much insight into the subcellular organization of proteins, DNA and cellular compartments. 59 

Concomitantly, our knowledge of plasmid partition has progressed considerably with the aid 60 

of in vivo imaging. However, the knowledge that can be gleaned in vivo is limited by the 61 

resolution of the microscope and subcellular dynamics are convoluted by the complexities 62 

within the cell. Consequently, in vitro reconstitution is crucial for understanding the 63 

fundamental components that drive the cellular processes of a biological system. In vitro 64 

reconstitution uses a reductionist approach to create a minimal biological system and to 65 

identify the conditions required to reproduce in vivo dynamics. The plasmid partition system 66 

is a minimal system, consisting of only three components, hence making it an ideal model to 67 

reconstitute in a cell-free reaction. Table 1 indicates various in vitro reconstitutions of 68 

plasmid partition systems and the mechanisms derived from them. The technologies involved 69 

in cell-free reactions can be diverse and multifaceted, ranging from biochemical and 70 

molecular biology techniques used for the purification, labeling and reconstitution of 71 

components, to various fluorescence microscopy techniques for the imaging of system 72 

dynamics. In this review, we discuss the development of in vitro reconstitutions of plasmid 73 

partition systems and examine how they have advanced our understanding of the mechanisms 74 

underpinning bacterial DNA segregation.  75 

 76 

 77 
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Actin-like plasmid partition systems 78 

Perhaps the most well-understood plasmid partition system is the E. coli R1 plasmid.  The R1 79 

plasmid encodes a type II ParMRC system that consists of an actin-like ATPase (ParM), an 80 

adaptor protein (ParR) and a partition site (parC) onto which ParR binds specifically. ParM is 81 

structurally similar to eukaryotic actin, forming two stranded filament bundles (Van den Ent 82 

et al., 2002). In vivo studies showed dynamic ParM filaments connecting plasmid pairs and 83 

forming elongated polymers, physically pushing the plasmids apart (Møller-Jensen et al., 84 

2002). ParM polymerization only occurred in the presence of ParR and parC, prompting the 85 

idea that ParR/parC is responsible for stabilization of ParM filaments. These observations led 86 

to the hypothesis that dynamic polymerization of ParM provides the force to segregate 87 

plasmids. ParM undergoes dynamic switching between periods of growth and shrinkage, 88 

suggesting a “search and capture” mechanism where ParM filaments can continually explore 89 

the entire cell volume to bind a ParR/parC complex (Garner et al., 2004). This dynamic 90 

instability is a property that had previously only been observed in eukaryotic microtubules. 91 

Dynamic instability of ParM is driven by ATP hydrolysis and is crucial to plasmid partition. 92 

However, it remained unclear how ParM polymerization performs useful work to facilitate 93 

DNA transport. 94 

The in vitro reconstitution of the three-component ParMRC system serves as an 95 

important step forward to understanding the mechanism (Garner et al., 2007). Beads were 96 

coated with Cy3-labeled parC DNA and mixed with ParR and Alexa488-labeled ParM. ParM 97 

filaments were observed to dynamically grow and shrink from the surface of the parC-beads. 98 

When dynamic filaments originating from different beads made contact, they stabilized to 99 

form a filament bundle. Continued elongation of the spindle pushed the beads apart, 100 

separating the beads over long distances (<120 µm), far exceeding the dimensions of a typical 101 

bacterial cell. Elongating ParM filaments were only observed between parC bead pairs, 102 
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suggesting that ParR/parC complexes bound to both filament ends and stabilized the unstable 103 

filaments, preventing their collapse. Conversely, unattached filaments exhibited dynamic 104 

instability and quickly depolymerized, allowing monomers to be recycled and relocate to 105 

polymerization sites on more stable filaments. Evidence for insertional polymerization was 106 

obtained through photobleaching experiments to show that polymerization occurs at the ends 107 

of the filament, near the plasmids (Møller-Jensen et al., 2003). Insertional polymerization was 108 

confirmed in vitro using photobleaching and speckle microscopy. Firstly, an elongating 109 

filament was photobleached and the intensity remained constant. Secondly, a sparse amount 110 

of Rhodamine-ParM was infused into the system for speckle microscopy. This showed direct 111 

incorporation of ParM monomers solely at the location of the partition complexes (Garner et 112 

al., 2007). The mechanism for spindle self-alignment was also investigated using micro-113 

fabricated channels of various shapes (Campbell and Mullins, 2007). It was shown that the 114 

spindles aligned with the long axis of the channel. Elongation was seen to occur freely until 115 

the spindles encountered resistance at the poles or the bends of channels. For stabilized 116 

filaments to undergo elongation, a surplus of ParM monomers was required to add to the ends 117 

of the filament. This excess of monomers was provided by the collapse of the dynamically 118 

unstable, unbound ParM filaments, converting the free energy of unbound filaments into the 119 

elongating spindles. The indefinite growth of ParM filaments therefore ensures separation of 120 

plasmid pairs to opposite cell poles.  121 

 122 

Tubulin-like plasmid partition systems 123 

Type III tubulin-like Par systems consist of a GTPase (TubZ), an adapter protein (TubR), and 124 

a centromeric-site (tubC).  The TubZRC system has been found to be encoded in numerous 125 

plasmids in the Bacillus genus, and poses a new form of plasmid partition system. TubZ from 126 

B. thuringiensis pBtoxis was found to assemble into dynamic linear polymers in vivo (Larsen 127 
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et al., 2007). These TubZ filaments are structurally similar to FtsZ/tubulin. Movement of 128 

TubZ filaments occurred via a treadmilling mechanism, where monomers assembled at the 129 

leading plus-end and disassembled at the trailing minus-end. This polarity contrasts with the 130 

bidirectional growth and collapse of ParM filaments. TubZ filaments did not exhibit dynamic 131 

instability, differentiating them from ParM polymers.  Furthermore, ParM only formed 132 

filaments at physiological levels in the presence of ParR/parC, whereas TubZ polymerized 133 

even in the absence of TubR. The GTPase activity of TubZ was shown to be crucial to 134 

filament formation, with a TubZ mutant defective in GTP-hydrolysis assembling polymers at 135 

significantly lower levels than wild-type TubZ.  136 

The pBtoxis TubZRC system from B. thuringiensis has only been recently 137 

reconstituted to explore their ability to transport DNA in vitro (Fink and Löwe, 2015). 138 

Atto488-labeled TubZ, TubR and Atto647-labeled tubC were mixed and imaged using TIRF 139 

microscopy. Dynamic growth and shrinkage of TubZ filaments and their interaction with 140 

TubR/tubC complexes was observed. Speckle microscopy was performed where Rhodamine-141 

labeled TubZ incorporated solely at the plus-end of filaments and depolymerized from the 142 

minus-end. These experiments corroborated the TubZ treadmilling behavior previously 143 

observed in vivo. Binding of TubR/tubC to TubZ filaments resulted in a seven-fold decrease 144 

in depolymerization rate compared to unbound TubZ filaments. These results evidenced that 145 

TubR/tubC does not induce insertional polymerization, but instead reduces the rate at which 146 

subunits disassemble. It still remains to be seen exactly how cells use minus-end tracking for 147 

DNA segregation. Reconstitution of the TubZRC system suggests that a treadmilling TubZ 148 

filament exerts a pulling force on a TubR/tubC complex bound at the trailing end. This 149 

activity is consistent with in vivo observation of Bacillus cells, where TubZ filaments 150 

carrying DNA cargo travel along the long axis of a cell, depositing plasmids upon reaching 151 

the cell poles. 152 
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Walker-type plasmid partition systems  153 

The type I Par system is the most widespread form of plasmid and chromosome segregation 154 

system across the bacterial kingdom. However, the mechanism of type I plasmid partition has 155 

been the most elusive.  In the past decade or so, most reported partition systems have been 156 

based on a mitotic-like model in which ‘cytoskeletal’ ParA filaments push or pull plasmids 157 

apart. However, in the past few years, the diffusion ratchet model has emerged which instead 158 

focuses on dynamic ParA gradients as the driver of plasmid transport. Initial in vivo and in 159 

vitro observations supported filament-based models. In vivo studies identified diffuse clouds 160 

or helical structures of ParA that colocalized with the nucleoid and oscillated within the cell 161 

(Marston and Errington, 1999; Ebersbach and Gerdes, 2004; Fogel and Waldor , 2006., 162 

Hatano et al., 2007, Pratto et al., 2008). In vitro studies showed ParA forming filaments, 163 

suggesting that linear or helical ParA structures polymerize and depolymerize to position the 164 

partition loci (Barillà., 2005; Ebersbach et al., 2006; Ptacin et al., 2010). On the other hand, 165 

P1 ParA formed diffuse clouds over the nucleoid and discrete foci that blinked upon plasmid 166 

segregation (Hatano and Niki, 2010). In vivo observations of pB171 migrating behind ParA 167 

structures prompted a ‘filament-pulling’ model, in which extending ParA filament ends 168 

disassemble upon encountering ParB/parS complexes to pull plasmids towards the cell pole 169 

(Ringgaard et al., 2009). Extensive biochemical studies showed P1 ParA binding to 170 

nonspecific DNA in an ATP-dependent manner; and the slow conformational change of 171 

ParA, cycling between non-binding and DNA-binding states (Vecchiarelli et al., 2010). These 172 

data were inconsistent with ParA forming stable filaments required for force generation, but 173 

instead suggested the use of the nucleoid as a scaffold for plasmid motion. Therefore, a novel 174 

diffusion ratchet model was proposed where the time delay switch of ParA allows for it to 175 

diffuse and uniformly redistribute on the nucleoid. ParB loads onto the parS site, forming a 176 

high local concentration of ParB, and stimulating ATP hydrolysis of ParA on the partition 177 
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complex. The slow rebinding of ParA on the nucleoid, relative to the fast disassembly of 178 

ParA by ParB/parS creates an uneven distribution of ParA in the vicinity of the partition 179 

complex, driving plasmid motion.  180 

A significant development on plasmid partition came with the in vitro reconstitutions 181 

of P1 and F plasmids (Hwang et al., 2013; Vecchiarelli et al., 2013). The cell-free reaction 182 

was performed using a flow cell coated with nonspecific DNA to form an immobilized DNA 183 

carpet that mimicked the bacterial nucleoid. Purified components consisting of ParA-GFP, 184 

ParB and Alexa647-labeled parS plasmids were mixed and infused into the flow cell and the 185 

system dynamics were visualized using a prism-based TIRF microscope. ParA-GFP coated 186 

the DNA carpet depending on ATP and ParA to ParB concentration ratios. Surprisingly, 187 

photobleaching experiments of ParA and ParB on the DNA carpet showed free protein 188 

exchange on the DNA carpet, contradicting earlier in vitro observations of stable ParA 189 

filaments.  Partition complexes were observed to bind the DNA carpet for a short time before 190 

dissembling and dissociating from the flow cell surface. ParB-stimulated ATP hydrolysis 191 

accelerated ParA disassembly from the partition complexes and DNA carpet. This coupled 192 

with the time delay of ParA, resulted in depletion zones surrounding the partition complexes.  193 

The plasmid clusters displayed tethered Brownian motion that aided the formation of 194 

transient depletion zones by clearing the local vicinity of ParA. Eventually, the clusters 195 

dissociated and the depletion zone refilled. In the diffusion ratchet model, these depletion 196 

zones are thought to facilitate directed motion of partition complexes by inducing a local 197 

concentration gradient of ParA on the DNA carpet. However, this requires spatial 198 

confinement resembling the narrow gap between the nucleoid surface and the cell membrane 199 

in which plasmid partition is thought to occur. This was cleverly achieved by trapping parS-200 

coated magnetic beads on the DNA carpet with an external magnetic field (Vecchiarelli et al., 201 

2014). Under surface confinement, the trapped beads generated a persistent ParA depletion 202 
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zone on the DNA carpet by ParB-stimulated release. Strikingly, the beads displayed directed 203 

motion, chasing toward a higher ParA concentration gradient that propagated with the bead. 204 

Together, these reconstitutions support a diffusion ratchet model of plasmid motility in the 205 

absence of observable filamentous ParA. However, the dynamics of bidirectional segregation 206 

have yet to be reconstituted. Nevertheless, we would expect replicated plasmids to 207 

bidirectionally segregate as the merging of their depletion zones would drive them to move in 208 

opposite directions toward higher ParA concentrations.  209 

Similar to the ParABS system, the MinCDE system self-organizes in E. coli to 210 

localize the cell division septum to midcell. MinD and ParA are both part of the family of P 211 

loop ATPases and both act as an ATP-dependent switch for binding to DNA (ParA) or cell 212 

membrane (MinD)(reviewed in Lutkenhaus 2012; Vecchiarelli et al 2012). An ensemble of in 213 

vitro reconstitutions of the Min system on planar membranes has contributed to the 214 

understanding of the similarities between MinD and ParA self-organization based on the 215 

reaction-diffusion mechanism (Loose et al., 2008; Ivanov and Mizuuchi 2010; Zieske and 216 

Schwille 2014; Vecchiarelli et al., 2016).  217 

 218 

Recent progress on DNA segregation mechanisms 219 

There have been recent developments on our understanding of DNA segregation mechanisms 220 

that have arisen from in vivo observations using super-resolution microscopy and in silico 221 

modeling. The in vitro reconstitutions of P1 and F plasmid dynamics have provided much 222 

mechanistic insight into plasmid partition. However, the debate is still evolving as to how the 223 

Par system transports and localizes partition complexes in the cellular environment. In C. 224 

crescentus, 3D super-resolution microscopy showed that the directed movement of 225 

chromosomes is the result of ParB/parS chasing the trailing edge of a ParA gradient across 226 

the nucleoid (Ptacin et al., 2014). Computer modeling suggested that diffusion-binding of 227 
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partition complexes is insufficient for ParA-mediated DNA transport and proposed a ‘DNA-228 

relay’ model, where the partition complex utilizes ParA-DNA tethers and the elastic 229 

properties of chromosomes to translocate across the nucleoid (Lim et al., 2014; Surovtsev et 230 

al., 2016). An alternative model showed plasmid transport as a Brownian ratchet, mediated 231 

by the forces of ParA-ParB interactions (Hu et al., 2015; Jindal and Emberly, 2015). The 232 

mechanochemical model demonstrated that collective binding and dissociation of ParA-ParB 233 

bonds are able to tether the plasmid and quench random diffusion, providing for the directed 234 

motion along a ParA gradient (Hu et al., 2015).   235 

A recent notable finding revealed that partition complexes from F plasmid and B. 236 

subtilis chromosome are located within the nucleoid interior and colocalized with dense 237 

chromosome regions (Le Gall et al., 2016). Similar to C. crescentus, ParA filaments were 238 

found to be absent. Hence, an adapted diffusion ratchet named the ‘hitch-hiking’ model was 239 

proposed, in which ParA localize with dense DNA regions within the nucleoid. Partition 240 

complexes are then transported between these dense chromosome regions driven by local 241 

ParA gradients. This is further supported by super-resolution images of TP228 ParF forming 242 

a 3D polymeric meshwork that oscillates within the nucleoid for plasmid transport (McLeod 243 

et al., 2016). It was proposed that the meshwork acts as a ‘Venus flytrap’ that captures ParG-244 

plasmids via ParF-ParG interactions. ParG stimulates ParF disassembly, creating a less dense 245 

mesh at the trailing edge that releases the ParG-plasmids. The dynamic remodeling of ParF 246 

mesh by ParG generates an oscillating gradient of meshwork in the cell to continuously 247 

capture and release the plasmids to fine tune their positions.  248 

Previously, the diffusion ratchet mechanism was based on the postulation that the 249 

nucleoid takes up a sizeable volume of the bacterial cell and that large plasmids would be 250 

excluded from the nucleoid (reviewed in Vecchiarelli et al., 2012). Hence, the plasmids 251 

would exploit the nucleoid and cell membrane interface to traffic along the surface-mediated 252 
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ParA gradient. Given the latest findings, this would imply that partition complexes are 253 

instead caged within the nucleoid interior, providing a 3D confinement for the partition 254 

complexes to move along a volume-mediated ParA gradient or meshwork. The spatial 255 

organization of the ParA gradient would be dependent on the underlying structure of the 256 

nucleoid scaffold, as well as the dynamics of nucleoid macromolecular crowding. The 257 

spatiotemporal dynamics of the partition system in relation to the nucleoid structure remains 258 

to be explored using super-resolution microscopy.   259 

Super-resolution microscopy has initiated a major shift in how we view plasmid and 260 

chromosome segregation in bacteria, from ParA filament-based models toward gradient-261 

based mechanisms, involving patches or meshwork of ParA dimers or oligomers binding to 262 

the nucleoid. Although these techniques have proved to further our understanding of DNA 263 

segregation, it is important to recognize that they can be prone to artifacts. Many of these 264 

artifacts can be attributed to the use of unsuitable fluorescent-fusion proteins (Landgraf et al., 265 

2012; Swulius and Jensen, 2012). It is therefore important that super-resolution microscopy 266 

be used as a complementary tool to other established techniques. 267 

 268 

Summary 269 

In vitro reconstitution is an important method for investigating minimal systems in the 270 

absence of any extraneous cellular components. Through the reconstitution of biological 271 

systems required for basic cellular processes, we can better understand how these processes 272 

work on a molecular level. In this review, we have shown how in vitro reconstitution, in 273 

combination with in vivo cell imaging and super-resolution microscopy, has allowed for a 274 

deeper understanding of the diverse structures and dynamic processes which contribute to 275 

spatial organization of DNA within bacterial cells. The actin-like partition system is now 276 

fairly well-characterized and extensive knowledge of ParM filament self-assembly and 277 
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structure has been gained through methods such as cryo-electron microscopy (Bharat et al., 278 

2015). Bidirectional segregation of plasmid cargo has yet to be achieved using TubZRC and 279 

further reconstitutions are required to replicate the plasmid dynamics observed in vivo. 280 

Additionally, reconstituting the dynamics of treadmilling TubZ filaments within a confined 281 

geometry could also provide insight into how plasmids are deposited at cell poles. For 282 

Walker-type partition system, the in vitro reconstitutions of plasmid transport by ParA 283 

gradient, the lack of ParA filaments in vivo and the localization of partition complexes within 284 

the nucleoid, together suggest that Par-mediated chromosome segregation could also be 285 

driven by Brownian ratchet-type mechanism. An important next step is to reconstitute the 286 

chromosomal Par system. From here we would be able to gain a clearer understanding of the 287 

role of each Par component and the nucleoid in chromosome segregation, and reveal whether 288 

partition complex dynamics self-organize as a minimal system, or as part of a larger, more 289 

complex system.  290 
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Table 1: Reconstitutions of plasmid partition systems and their mechanisms 427 

Type Plasmid/ 

Partition 
System 

Host In vitro reconstitution* Mechanism References 

I P1  

ParABS 

 

F  

SopABC 

E. coli 

 

Diffusion ratchet 
mechanism  

 

Hwang et al. 
2013,  

Vechiarelli et al. 
2013, 14 

  

  

 

 

II  R1  

ParMRC 

E. coli 

 

Insertional 
polymerization 
mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

Garner et al. 
2007 

 

III  pBtoxis 

TubZRC 

B. thuringiensis 

 

 

Treadmilling 
mechanism 

 

 

 

 

 

 

 

 

Fink et al. 2015 

 

*Figures adapted from references cited in table 428 


