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Abstract: 

The chemical space explored in drug discovery programmes is restricted by a narrow 

reaction toolkit, and the frequent failure of even these reactions with polar and functionalised 

substrates.  Recently, high-throughput reaction optimisation has been integrated into 

discovery workflows, thereby increasing the value of specific reaction classes in the toolkit.  

It is likely that high-throughput experimentation will enable expansion of the synthetic 

chemistry that is widely exploited in discovery, thereby increasing innovation in medicinal 

chemistry. 

 

Text: 

The discovery of bioactive small molecules is an enduring challenge in both medicinal 

chemistry and chemical biology.  Discovery workflows generally involve designmaketest 

cycles that necessarily rely on the synthetic accessibility of the molecules to be tested.  

Researchers thus tend to gravitate towards a narrow toolkit1 of highly reliable 

transformations which has tended to increase attention on flatter and more lipophilic 

compounds.2  Even with this narrow toolkit, reactions involving polar and highly 

functionalised substrates are systematically more likely to fail, resulting in “logP drift” in 

which the arrays of produced compounds that are less polar than those designed.3  In this 

issue of Journal of Medicinal Chemistry, Cernak and co-workers from Merck describe the 

application of high-throughput reaction optimisation to expand the diversity of the chemical 

space that was explored in a drug discovery programme.4 

Recently, high-throughput experimentation has been adopted by a number of 

pharmaceutical companies to identify efficient synthetic methods to underpin medicinal 

chemistry programmes.  In 2015, the team from Merck also described the high-throughput, 

nanomole-scale optimisation of palladium-catalysed cross-coupling reactions.5  Crucially, 

the approach enabled the identification optimal conditions for a wide range of couplings 



between pairs of highly-functionalised substrates.  In the current study,4 high-throughput 

experimentation was used to identify reliable reaction conditions for SNAr chemistry required 

to underpin the discovery of diacylglycerol acyltransferase 1 (DGAT1) inhibitors.   

The starting point for the investigation was a specific benzimidazole lead compound (IC50: 

52 nM) (Panel A, Figure).  Initial efforts to prepare an array of eight analogues met with 

limited success: in only four of the attempted SNAr reactions between the 2-chloro pyridine 

E1 and an amine nucleophile was a low (5%-32%) yield of the required product isolated 

(Panel B, top).  As a result, the development of structure-activity relationships (SAR) was 

significantly hampered. 

Next, the synthesis of a further 28 analogues was attempted (Panel B, bottom).  In each 

case, a pair of substrates was reacted under specific reaction conditions (either DIPEA as 

base in DMA; or K2CO3 as base in DMSO).  With the 2-chloro pyridine E1 as electrophile, 

only 9 of the 19 designed products were obtained, of which only 4 were isolated in >10% 

yield.  The 2-fluoro pyridine E2 fared better, and all 9 of the designed products were 

obtained; nonetheless, two of the products were obtained in <10% yield, and the use of DMA 

at high temperature led to the formation of a 2-dimethylamino pyridine by-product in many 

cases.  

A more systematic approach to reaction optimisation enabled the synthesis of analogues 

needed to define meaningful SAR.  All 24 combinations of six bases and four solvents were 

screened in the optimisation of the SNAr reaction between the 2-fluoro pyridine E2 and the 

piperidine N2 (Panel C, top).  DIPEA and NaHCO3 were identified as the best-performing 

bases, having resulted in consistently good conversion with all four solvents.  Furthermore, 

the solvents CPME and NMP were prioritised based on the observed yields and their 

chemical inertness and solvation ability. 

 



 

Figure:  High-throughput optimisation of SNAr chemistry, and exploitation of the optimised 

conditions in analogue synthesis.  Panel A: Synthesis of the lead molecule.  Panel B: 

Attempted initial development of SAR using specific synthetic methods.  Panel C: 

Identification of reaction conditions suitable for the synthesis of a wide range of analogues.  

Panel D: Application of the optimised reaction conditions in the synthesis of a wide range of 

analogues needed to define SAR. 

 

To identify the robust reaction conditions for the synthesis of a wide range of analogues, 

the four prioritised base/solvent combinations (DIPEA or NaHCO3 with CPME or NMP) were 

evaluated with a wider range of substrate combinations (Panel C, bottom).  The electrophile 

E2 was reacted with six different nucleophiles, and the nucleophile N1 was reacted with six 

different electrophiles.  With DIPEA or NaHCO3 in NMP, 10 of the 12 substrate combinations 
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gave an acceptable yield of the required product.  Remarkably, neither of these conditions 

had been optimal in the previous screen of the reaction between E2 and N2 (Panel C, top), 

demonstrating the value of investigating alternative reaction conditions with a range of 

different substrate combinations. 

As a result of the high-throughput reaction optimisation, NaHCO3 in NMP was taken 

forward, partly because the partial solubility of the base in organic solvents simplified product 

purification.  The optimised conditions enabled the successful synthesis of 35 (of 43) 

analogues with activities spanning over three orders of magnitude (Panel D).  The most 

potent compound (IC50: 6 nM; MW: 472) was considered an attractive starting point for lead 

optimisation.  Furthermore, the optimised reaction conditions were also exploited in these 

subsequent lead optimisation activities. 

High-throughput reaction optimisation to enable the functional molecule discovery is 

nonetheless still in its infancy.  Published examples of the approach are restricted to the 

optimisation of reactions that are already in the medicinal chemists’ narrow toolkit:1 for 

example, Pd-catalysed cross couplings5 and, now, SNAr chemistry.4  The approach has 

thereby allowed reactions within the established toolkit to be exploited more effectively, and 

has expanded the range of specific analogues that can be prepared. 

Considerable advances are, however, still required in order to increase dramatically the 

range of innovative high-quality small molecules that may be discovered.  For this to happen, 

the toolkit of reactions actually exploited in discovery workflows needs to be expanded 

markedly.  Remarkably, no new reactions have been added to this toolkit over the last 30 

years, despite an unprecedented era of invention in synthetic chemistry.  As a result, 

researchers from AstraZeneca have provocatively asked1a where all of the new reactions 

have gone! 

High-throughput experimentation is already helping to address the greater challenge of 

expanding the reaction toolkit for small molecule discovery.  First, screening can identify 

reactions with high robustness:6 reactions that are compatible with a wide range of polar 

and functionalised substrates.  Indeed, screening has identified several reactions with high 

robustness, for example arylations of sp3-hybridised carbon.  Second, an emerging function-

driven approach7 – activity-directed synthesis – deliberately exploits inherently promiscuous 

reactions.  Crucially, activity-directed synthesis can facilitate the discovery of functional 

small molecules with unexpected structures in parallel with associated synthetic routes. 
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