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Abstract

Inappropriate activation of mast cells via the FceRI receptor leads to the

release of inflammatory mediators and symptoms of allergic disease. Calcium

influx is a critical regulator of mast cell signaling and is required for exocyto-

sis of preformed mediators and for synthesis of eicosanoids, cytokines and

chemokines. Studies in rodent and human mast cells have identified Orai cal-

cium channels as key contributors to FceRI-initiated mediator release. How-

ever, until now the role of TRPC calcium channels in FceRI-mediated human

mast cell signaling has not been published. Here, we show evidence for the

expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast

cells and the LAD2 human mast cell line but, we only find evidence of func-

tional contribution of Orai and not TRPC channels to FceRI-mediated cal-

cium entry. Calcium imaging experiments, utilizing an Orai selective

antagonist (Synta66) showed the contribution of Orai to FceRI-mediated sig-

naling in human mast cells. Although, the use of a TRPC3/6 selective antago-

nist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal

evidence for TRPC6 contribution to FceRI-mediated calcium signaling in

human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in

human mast cells (as tested by transfecting cells with STIM1-KK684-685EE -

TRPC1 gating mutant) failed to alter FceRI-mediated calcium signaling in

LAD2 human mast cells. Mediator release assays confirm that FceRI-mediated

calcium influx through Orai is necessary for histamine and TNFa release but

is differentially involved in the generation of cytokines and eicosanoids.

Introduction

Mast cells are well known for their contribution to symp-

toms of allergic disease such as asthma (Metcalfe et al.

1997). Allergic activation of mast cells occurs following

cross-linking of the high-affinity IgE receptor (FceRI) by

antigen-IgE complexes. FceRI cross-linking activates a

signaling cascade leading to generation of diacylglycerol

(DAG) and inositol triphosphate (IP3), which causes cal-

cium release from the endoplasmic reticulum (ER), then

calcium influx through calcium permeable channels in the

plasma membrane. Both the temporal and spatial proper-

ties of the resulting calcium signal are key to controlling

exocytosis of preformed mediators such as histamine and
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de novo synthesis of eicosanoids and cytokines (Di Capite

and Parekh 2009). Controlling the release of proinflam-

matory mediators has long been viewed as an important

target for the treatment of diseases in which mast cell

activation plays a key role.

Following FceRI activation, the production of both

DAG and IP3 enable calcium entry through both noncal-

cium selective canonical transient receptor channel family

(TRPC) channels, and/or the highly calcium selective

store-operated calcium entry channels (Orai/CRACM).

TRPC channels can be directly activated by DAG (Hof-

mann et al. 1999). IP3 however acts indirectly; initiating

internal calcium store depletion, which is sensed by the

ER resident protein STIM1 (Liou et al. 2005; Yuan et al.

2009), that in turn causes activation of Orai channels

(Vig et al. 2006; Liao et al. 2007; Prakriya 2009). Various

reports in the literature show TRPC channels can also be

activated indirectly, following internal calcium store

depletion (Liao et al. 2007; Worley et al. 2007).

The importance of Orai/STIM and TRPC channels for

FceRI-mediated mast cell functions in rodents is well

described. Studies in mouse fetal liver-derived mast cells

demonstrate that Orai1 or STIM1 knockout impairs

FceRI-driven calcium influx and mediator release (Baba

et al. 2008; Vig et al. 2008). Further work shows knock-

down of Orai1, STIM1 or TRPC5 significantly impairs

FceRI- stimulated calcium influx and degranulation in a

rat basophilic leukemia mast cell line (RBL-2H3 cells)

(Ma et al. 2008). It has additionally been demonstrated

that TRPC1 and TRPC3 channels contribute to FceRI-
mediated calcium signals in RBL-2H3 mast cells (Cohen

et al. 2009). Furthermore, in mouse bone marrow-derived

mast cells (BMMCs), RNAi silencing of TRPC1 signifi-

cantly inhibits calcium influx and degranulation in

response to antigens (Suzuki et al. 2010). Conflicting

results were more recently shown in a study, using a

TRPC1-/- mouse – that suggested TRPC1 negatively regu-

lated TNFa production (Medic et al. 2013); however, a

role for TRPC1 in FceRI-mediated mast cell signaling was

found nonetheless. Finally, inhibition of Orai channels in

primary rat tracheal mast cells prevented allergen-driven

contractions (Rice et al. 2013).

One study in human mast cells (Ashmole et al. 2012)

has identified functional Orai/ICRAC currents and calcium

signals following FceRI activation. Through the use of an

Orai selective antagonist, Synta66, they demonstrated that

inhibition of Orai channels caused a reduction in the

release of proinflammatory mediators. Whether TRPC

channels also contribute to FceRI calcium signaling in

human mast cells is unknown.

In other cell types, there are numerous studies indi-

cating interaction between TRPC1 and Orai channels

(Liao et al. 2007, 2009; Lee et al. 2010; Hong et al.

2011; Chen et al. 2014) suggesting dependence of

TRPC1 on Orai for its activation (Cheng et al. 2011).

Similarly, although TRPC3/6 were classically defined as

DAG-activated channels, the mode of activation of

TRPC3/6 are now thought to be more complex. Work

has shown that TRPC3/6 channels can be activated via

store depletion when an interaction with Orai occurs

(Hofmann et al. 1999; Estacion et al. 2004; Liao et al.

2007; Chen et al. 2014). Taken together, data in the lit-

erature show that it is still unclear whether TRPC

channels contribute to calcium signaling in human mast

cells and if there is Orai/TRPC interaction in human

mast cells.

In this study, we aimed to evaluate the contribution of

Orai channels and TRPC channels to FceRI-mediated

mast cell calcium signaling and secretion. We confirmed

that in human lung mast cells (HLMCs), Orai conducts

calcium influx and is involved in regulating FceRI release
of both preformed and some, but not all newly synthe-

sized mediators. Conversely, we found no contribution of

TRPC channels to FceRI- mediated calcium signaling in

HLMCs or LAD 2 cells, a much used human mast cell

line which is widely used as a model for mature mast cells

(Kirshenbaum et al. 2003). This study provides evidence

that Orai but not TRPC could represent a target for the

control of mast cell-mediated allergic disease.

Methods

Ethical approval

The provision of lung tissue and the use of the tissue in

this study were approved by the National Research Ethics

Service (REC reference: 10/H1010/50). All human subjects

gave written informed consent for the use of their tissue.

Cell culture

All cell types described below were incubated at 37°C in a

5% CO2 humidified atmosphere, cells were grown in tis-

sue culture-treated flasks.

LAD2 were cultured in StemPro-34 media supple-

mented with StemPro-34 nutrient supplement and

2 mmol/L L-glutamine (all Gibco Life Technologies) in

addition to 100 ng/mL recombinant human stem cell fac-

tor (rhSCF) (R&D systems). Cells were passaged weekly;

media was added to maintain a density of 400,000–
500,000 cells/mL.

For data presented in Figure 5, human embryonic kid-

ney cells stably expressing human TRPC6 (HEK- TRPC6)

were cultured in DMEM containing 10% FCS and

400 lg/mL geneticin (Gibco) to select for TRPC6

expression.
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For data presented in Figure S5, human and rat TRPC3

and TRPC6 channels were heterologously expressed in

human embryonic kidney 293 (HEK293) cells, using Bac-

Mam transduction. All human and rat TRPC3 and

TRPC6 BacMam reagents were generated at

GlaxoSmithKline (King of Prussia, PA). HEK293 cells

were grown in 6-well culture dishes, using DMEM F-12

medium supplemented with 10% FBS and 1% Pen/Strep.

6–12% TRPC3 or TRPC6 BacMam virus were added to

6-well culture dishes 24~48 h before experiments. HEK

293 cells were detached from the culture dish using tryp-

sin solution (0.25% trypsin + 0.1% EDTA) and stored in

the culture medium at room temperature for patch-clamp

experiments within 5 h.

Human lung mast cell culture

Nonlesional tissue from lung resections was obtained after

surgery. Tissue was enzymatically digested by methods

adapted from (Sanmugalingam et al. 2000; Cruse et al.

2005) and mast cells were isolated, using the Dynal� mag-

netic bead system using CD117 antibody-coated beads

(Miltenyi Biotech), as described by Okayama et al. (1994).

Human Lung Mast Cell (HLMCs) were cultured in

DMEM+Glutamax media (Gibco) containing 1% antibi-

otic–antimycotic solution (Sigma), 1% non-essential amino

acids, 10% fetal calf serum (Gibco) and supplemented with

100 ng/mL human stem cell factor, 50 ng/mL IL-6 and

10 ng/mL IL-10 (R&D systems). For histamine assays mast

cells were isolated from human lung tissue by a method

described by Lewis et al. (2013) and used within 24 h.

Quantitative PCR

RNA was extracted from 250,000 cells/donor (RNeasy Kit.

Qiagen), the optional DNase clean up step was per-

formed. RNA concentration/purity was determined, using

a nanodrop (Thermo-scientific), and cDNA conversion

was completed, using a high capacity RNA to cDNA kit

(Applied Biosystems) according to the manufacturer’s

instructions. QPCR was run on a BioRad thermocycler

machine, using 5 lg of cDNA per reaction. Primers were

custom designed and optimized by PrimerDesign©, ‘Pre-
cision mastermix for the Bio-Rad iCycler with SYBR

green’ was used throughout. Reverse transcriptase and

non-template controls were used to verify that there was

no genomic DNA contamination and melt curves were

analyzed to assess the primer specificity. The geNorm

analysis was performed to determine the most consis-

tently expressed housekeeping gene in the samples of

interest. Raw threshold cycle (Ct) values were then nor-

malized to the housekeeping gene (18sRNA) and data are

expressed as 2^ΔCt.

Microarray

Microarray experiments were performed, using an Agilent

SurePrint G3 Gene Expression 8 9 60K one-color

microarray system, which enables estimation of absolute

levels of gene expression between arrays. RNA was col-

lected from 500,000 LAD2 or HLMC cells, using RNeasy

Kit (Qiagen) according to manufacturer’s instructions.

The data were normalized to the 75th percentile intensity

of all non-control probes according to Agilent instruc-

tions, allowing comparison across arrays.

Immunocytochemistry

Cells were fixed with 4% paraformaldehyde + 4% sucrose

(pH7.4) for 10 min followed by washing in PBS and per-

meabilization with PBS + 0.1% Triton-X-100 (Sigma) for

15 min. Blocking solution of 0.02% Triton-X-100 and

0.2% fish skin gelatin (Sigma) was applied for at least 2 h

at room temperature before addition of primary antibody

overnight at 4°C (TRPC1, Alomone ACC-010; TRPC6,

Origene TA306349; Rabbit polyclonal IgG, Abcam

ab27472 each used at 1:200). Secondary antibodies at con-

centrations of 1:1000 (Anti-Rabbit Alexa Fluor 488, poly-

clonal, Invitrogen) were incubated for 1.5 h at room

temperature before the coverslips were mounted onto

glass slides, using DAPI-Fluoromount G (Southern Bio-

tech). Images were taken with an Olympus FV1000 confo-

cal microscope and quantification was performed on

Image J. Image quantification is represented as mean flu-

orescent intensity minus background.

LAD2 cell transfection and preparation of
STIM1 constructs

A Neon� Life Technologies electroporation system was

used. 100,000 cells were used per transfection condition

with pulse duration of 30 msec at 1600 mV. Cells were

used in experiments 48 h after transfection. Human

STIM1-WT-YFP/MO91 with a CMV promoter was

bought from Addgene. STIM1 (KK684-685EE)/pcDNA3.1

with a CMV promoter was kindly donated by Ambudkar

lab. Constructs were grown up in DH5a competent cells

(Sigma) and then extracted, using a GenElute™ Plasmid

midiprep kit (Sigma) as per manufacturer’s instructions.

DNA was concentrated to 1 lg/mL and purified DNA

was sequenced before use to confirm sequence integrity.

Calcium imaging

Cells were loaded with fura-2 AM (1 lmol/L) (Invitrogen

Molecular Probes) in HLMC culture media (omitting

antibiotic-antimycotic) for 30 min at 37°C. An inverted
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microscope (Axiovert S100 TV, Zeiss, Cambridge, UK)

equipped with a 40x oil immersion objective (NA 1.3,

Zeiss) was used. Cells were alternately illuminated at 340

and 380 nm with a 20 msec exposure time. (Polychrome

IV, TILL Photonics, Munich, Germany). Emitted light

was passed through a 510 nm band pass filter and col-

lected by a 512B Cascade CCD camera (Photometrics,

Tucson, AZ) and images were acquired at 0.5 Hz.

Recording chamber was continually superfused with

external solution (in mmol/L; 120 NaCl, 10 KCl, 10

HEPES, 2 MgCl2, 2 CaCl2, 10 Glucose (300 mOsm/L, pH

7.3, NaOH)) at a rate of approximately 1.5 mL/min.

MetaMorph� Meta imaging software (Molecular Devices,

Sunnyvale, CA) was used to analyze all calcium imaging

experiments and background signal was subtracted.

Histamine assays

Inhibitory compounds were added to cells 5 min (time of

onset in patch-clamp experiments performed in this lab

showed that 5 min was sufficient time for Syntaa66 to

inhibit Orai currents) prior to stimulation with anti-IgE,

(the previously established EC80 concentration) (Sigma)

for 25 min at 37°C in a 5% CO2 humidified incubator.

Samples were diluted in PBS and spun at 1500 RPM for

10 min, supernatants were then collected for histamine

analysis. Histamine levels were determined as a percentage

of total histamine, where total values were obtained from

equivalent cells lysed with 0.5% perchloric acid. Sponta-

neous release was measured from supernatants without

addition of anti-IgE. Histamine levels were determined,

using a fluorimetric method first described by Siraganian

(1975) and later modified by Ennis (1991).

Lipid & Cytokine mediator release assays

Eicosanoid and cytokine/chemokine concentrations were

determined from supernatants of isolated primary

HLMCs 7–10 days post-purification. Cells were initially

pre-sensitized with 300 ng/mL human IgE (Calbiochem)

for 24 h before a 25 min/24 h stimulation with anti-IgE

(Sigma) at 37°C for eicosanoid/cytokine mediator release,

respectively. Inhibitors or vehicle controls were pre-incu-

bated for 5 min prior to addition of anti-IgE. Super-

natants were removed and stored at �80°C until assays

were performed.

Prostaglandin D2 content was measured, using a Pros-

taglandin D2-MOX EIA kit, TNFa concentration was

determined, using a QuantiGlo� Chemiluminescent

ELISA (R&D Systems) and cytokine/chemokines, using

the Proteome Profiler™Array - Human cytokine panel

array A (R&D systems Abingdon, UK) each in accordance

with the manufacturer’s instructions. Plates were read,

using a FLUOstar OPTIMA luminometer (BMG LAB-

TECH), using OPTIMA software; 0.5 sec/well read time.

Electrophysiology

Whole cell patch clamp experiments were conducted at

room temperature (~22°C). Cells were placed in a small

chamber and continuously perfused with an external solu-

tion (~3 mL/min). Electrodes were made from glass capil-

lary tubes and had a resistance of 3–4 MΩ when filled with

internal solutions (for TRPC3 current in mmol/L: 140

CsCl, 5 Na4EGTA, 10 HEPES; pH=7.2; for TRPC6 current

in mmol/L: 130 CsCl, 5 EGTA, 5.5 MgCl2, 5 Na2ATP,

0.1 Na-GTP, 5 HEPES; pH=7.2). AXOPATCH 200B

amplifier and pCLAMP software (version 8, Molecular

Devices) were used for data acquisition. Seal between the

cell membrane and electrode was made in an external solu-

tion containing (mmol/L) 140 NaCl, 4 KCl, 1 MgCl2, 0.2

CaCl2, 10 Glucose, 10 HEPES; pH=7.4. Cell membrane

capacitance was canceled electronically and the series resis-

tance was compensated by about 70%. External solution

was then switched to the one omitting CaCl2 but with

2 mmol/L Na4EGTA (same other components) in order to

minimize desensitization of TRPC3 and TRPC6 current.

TRPC3 or TRPC6 current was activated, using agonist

GSK1702934A applied to the bath solution. To record

TRPC3 or TRPC6 current, a ramp voltage protocol was

applied every 10 sec for as long as the experiment lasted.

The ramp protocol stepped from a holding potential of

�60 mV to �80 mV for 40 msec and then depolarized to

+80 mV in 400 msec, finally stepped back to �60 mV after

having spent 40 msec at +80 mV. TRPC3 or TRPC6 cur-

rent gradually increased as the cell was perfused with

GSK1702934A. The TRPC3 or TRPC6 current was

measured as the average current at �80 or +80 mV. The

time course of current was plotted for the whole

experiment.

Patch clamp data analysis

The effect of agonist GSK1702934A was calculated as %

Current activation = 1009(ID- IC)/(Imax- IC), where ID
was the current amplitude measured at the peak response

of a particular concentration of GSK1702934A, IC was the

control current amplitude measured before GSK1702934A

application, and Imax was the current amplitude at the

maximal response (1 lmol/L for TRPC3 and 3 lmol/L

for TRPC6). The averaged data were fit, using 4-Para-

meter Logistic Equation (Origin 7.0 software) to calculate

half maximal activation concentration (EC50). Data were

expressed as mean � SE (N). Prism 5 software was used

for comparing the mean of EC50, and P < 0.05 was con-

sidered statistically significant.
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Statistical analysis

Paired/unpaired students t-test and one-way ANOVA

with Bonferonni or Tukey’s post hoc tests were used as

appropriate and performed, using GraphPad Prism. A

P-value of P < 0.05 was considered to indicate statistical

significance. Data expressed as mean � S.E.M.

Results

TRPC1 and 6 are expressed in LAD2 and
HLMCs

To get a comprehensive view of the calcium permeable

channels which may putatively contribute to FceRI sig-

naling in human mast cells, and validate the LAD2

human mast cell line as a suitable model for primary

HLMCs, we first performed a microarray analysis of

mRNA expression in the two cell types. Analysis of the

microarray data show expression of Orai1, 2 and 3, with

Orai 1 and 3 expressed at levels of 3-4 compared to

Orai 2 at <1, in both cell types (Fig. 1). Similarly,

mRNA expression of TRPC1, 3 and 6 were detected (at

levels of <1, <0.2 and, <6, respectively). In addition to

the TRPC channels specifically investigated in this study,

the microarray data also provided novel evidence for the

expression of TRP channel members from the melastatin

TRP family and the vanilloid TRP family, providing use-

ful insight into direct future research in the field. Inter-

estingly, TRPM7 (<0.4) and P2X7 (<2 - data not

shown) were detected at similar levels to the TRPC fam-

ily subtypes. Both these channels have previously been

functionally characterized in human mast cells (Wykes

et al. 2007; Wareham et al. 2009; Wareham and Seward

2016); therefore, demonstrating that this level of mRNA

expression could be sufficient to provide a functional

contribution to cell physiology.

In order to verify the consistency of expression of

TRPC subtypes in HLMCs between different lung donors,

qPCR was performed on four additional lung donors.

The results (Fig. 1) confirm that TRPC1 and 6 are the

only TRPC family members that are expressed in HLMCs,

and this was uniform across multiple donors. Based on

this evidence, immunocytochemistry experiments were

performed to confirm protein expression of TRPC1 and

C6. TRPC1 (TRPC1 Ab mean intensity =36.8 � 4.8

n = 31) and TRPC6 staining were observed in HLMCs

(TRPC6 Ab mean intensity 31.58 � 1.1 n = 41, IgG iso-

type control mean intensity =16.7 � 0.7 n = 69 cells)

both at levels significantly greater than in the negative

controls, (Fig. 2). The staining shows a largely intracellu-

lar diffuse pattern with no obvious surface staining.

Figure 1. Orai and TRPC subtypes are expressed in LAD2 and

HLMC cells at mRNA level. Microarray data was normalized to the

75th percentile of all non-control probes, according to Agilent

instructions. (A) LAD2 mRNA expression from three independent

RNA extractions �SEM (B) HLMC mRNA expression from one

HLMC donor. (C) Quantitative PCR to assess the expression of Orai,

STIM and TRPC mRNA in HLMCs. Expression was normalized to 18S

endogenous control and expressed as % relative to 18S. –RT and

NTC controls were performed to show no genomic contamination

was present. SYBR green probes were used and melt curves plotted

to assess primer specificity.
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Positive expression of TRPC1 in LAD2 cells was similar

(Fig. S1); TRPC1 Ab mean intensity = 142.7 � 1.12

n = 41, IgG isotype control 45.7 � 1.4 n = 35 cells. As a

whole, the data presented in Figures 1 & 2 show novel

evidence for the expression of TRPC1 and C6 in HLMCs

and LAD2 cells, and confirm expression of Orai

channels in HLMCs as previously reported (Ashmole

et al. 2012).

Synta66-sensitive channels (Orai and Orai-
regulated channels) contribute to FceRI-
mediated calcium entry in HLMCs and LAD2s

To investigate the identity of channels underlying calcium

signaling induced by FceRI activation, calcium imaging

experiments were performed on isolated cells loaded with

Fura-2AM. A calcium ‘add-back’ protocol was performed

TRPC1 primary
DAPI

IgG isotype control 
DAPI

TRPC6 primary 
DAPI

IgG isotype control 
DAPI

10 µmol/L

A B

C

E

D

Figure 2. TRPC1 and 6 are expressed in HLMCs at protein level. Immunocytochemistry to assess TRPC channels in HLMC cells, (A) anti-

TRPC1 staining, (B) IgG isotype control. (C) anti-TRPC6 staining (D) IgG isotype control. Bar graph shows quantification of mean intensity of

cells in each conditions � SEM. Results were analyzed, using one-way ANOVA with Tukey’s multiple comparison test. *P < 0.01

****P < 0.0001.
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where the stimulus was applied in the absence of extracel-

lular calcium to allow separation of the calcium signal

induced by ER store release from the calcium influx

through plasma membrane channels. As shown in Fig-

ure 3, the anti-IgE-initiated calcium signal exhibited an

initial fast increase in signal (store max – basal = 40/60 sec

for LAD2/HLMC) followed by a signal rise which was

more sustained (max-basal = 130/100 sec for LAD2/

HLMC). Pre-application of 10 lmol/L Synta66 (to block

Orai contribution) inhibited the anti-IgE induced change

in fura-2 fluorescence by 69% in HLMCs, and by 67% in

LAD2 cells. Note that given the nonlinear relationship

between the fura-2 fluorescence ratio (340/380 nm) and

Ca2+ concentration, the actual decrease in free calcium in

the cells is actually predicted to be even greater. Synta66

had no significant effect on the store component of the

signal in either cell type. Although interestingly, the store

signal is seen to be consistently higher in HLMCs com-

pared to LAD2 cells (~0.3 vs 0.1 Δsignal). In HEK cells

over-expressing Orai1/STIM1, 10 lmol/L Synta66 caused

94 � 3% inhibition of ICRAC currents (data not shown).

Work by Di Sabatino et al. 2009 provides a comprehensive

list of targets which have been shown to be insensitive to

10 lmol/L Synta66 treatment giving confidence in the

selectivity of this compound at this concentration. Com-

pound structures for Synta66 are shown in Derler et al.

2013. Together with the expression data shown in Fig-

ure 1, data in Figure 3 show compelling evidence that

there are functional Orai channels and/or Orai-regulated

channels in HLMCs and LAD2 cells.

Figure 3. FceRI activated calcium influx in HLMCs and LAD2s is inhibited by Orai inhibitor, Synta66. Calcium imaging of fura 2-AM loaded

HLMCs and LAD2s. HLMCs and LAD2s were incubated overnight with 300 ng/mL IgE (A) Calcium signal over time, 3 lg/mL anti-IgE and

10 lmol/L Synta66 were bath applied as indicated by the horizontal bars. This is a representative trace from 3 HLMC donors tested (B) Bar

graph showing mean fluorescence change in calcium signal (t300sec–t0sec) for conditions � Synta66. n > 40 for each donor over 2–3

experiments. (C and D) Same as A and B but for LAD2 cells. Results were analyzed, using unpaired students t-test ***P < 0.001,

****P < 0.0001.
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STIM1-regulated TRPC1 does not contribute
to FceRI-mediated calcium entry in LAD2
cells

In order to specifically assess whether TRPC channels

contribute to FceRI- induced calcium signaling in human

mast cells, two routes of investigation were undertaken.

Based on the expression data shown in Figure 1, the

potential functionality of TRPC1 and TRPC6 were

focussed on. At present, there are no specific pharmaco-

logical tools to inhibit TRPC1; therefore, in order to test

whether TRPC1 was functionally active in human mast

cells, LAD2 mast cells were transfected with an STIM1-

KK684-685EE mutant which renders STIM1-regulated

TRPC1 inactive (Cheng et al. 2011). The Lys 684-685

region of STIM1 has been shown to interact electrostatically

with TRPC1 aspartate residues to control gating of TRPC1,

but not to interact with Orai channels. Thus, mutating this

Lys region of STIM1 to glutamate reverses the charge so

that STIM1 is no longer able to activate TRPC1 (Zeng et al.

2008). YFP tagged - STIM1-KK684-685EE or STIM1-WT

constructs were transfected into LAD2 human mast cells in

order to monitor the resulting changes in calcium signal.

Time lapse imaging experiments of LAD2 cells transfected

with the YFP-tagged constructs are shown in Figure S2; the

YFP intensity is significantly increased at the plasma mem-

brane after store-depletion with thapsigargin (normalized

YFP intensity; WT = 1.00 to 1.18 � 0.06 and STIM1-

KK684-685EE = 1.00 to 1.13 � 0.07), indicating the STIM1

constructs are able to translocate to the plasma membrane

following store depletion and confirming expected

functionality of the constructs. When calcium imaging

experiments were performed on the transfected LAD2 cells,

there was no significant difference following FceRI receptor
activation with a mean signal change of 0.6 � 0.1 in both

STIM1-WT and STIM1-KK684-685EE cells (Fig. 4). To

determine that the level of construct expression was not

variable between the mutant and control conditions, the

YFP intensity of cells transfected with each construct was

quantified, and found to not be significantly different. In

the STIM1-WT cells, the S.D. of YFP intensity was

212.0 � 50 (n = 20) and in the STIM1-KK684-685EE cells, it

was 167.1 � 20.4 (n = 30). Thus, unlike store-operated

calcium signals evoked in HSG cells (Cheng et al. 2011)

and rodent mast cells (Cohen et al. 2009; Suzuki et al.

2010), our data indicate that STIM1-regulated TRPC1 does

Figure 4. STIM1 regulated TRPC1 does not contribute to FceRI-mediated calcium entry in LAD2 mast cells. Calcium imaging of Fura 2-AM

loaded LAD2 cells transfected with YFP-STIM1-WT or YFP-STIM1 KK684-685EE. LAD2s were incubated overnight with 300 ng/mL IgE. (A)

Calcium signal over time, 1 lg/mL anti-IgE applied as indicated by horizontal bars. (B) Bar graph showing mean fluorescence change in calcium

signal (max-basal) (C) Bar graph showing standard deviation of YFP intensity in transfected cells. (D) Bar graph showing the 1st derivative of

t = 400s. All data are shown as mean � SEM. n > 10 cells N = 3. Only YFP-expressing cells included for analysis. Results were analyzed, using

unpaired students t-test, ns P > 0.05.
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not contribute to FceRI- induced calcium signaling in

LAD2 human mast cells.

TRPC3/6 channels do not contribute to
FceRI- induced calcium entry in HLMCs

Recently discovered potent and selective TRPC3/6 ago-

nists and antagonists (Washburn et al. 2013; Seo et al.

2014) were used to investigate the possible contribution

of TRPC3/6 to FceRI-induced calcium influx in human

mast cells. GSK2833503A (GSK-3503A) is a selective inhi-

bitor of TRPC3 and TRPC6 with at least 100-fold selec-

tivity over other calcium-permeable channels (example 19

in Washburn et al. 2013). GSK1702934A (GSK-2934A) is

a potent TRPC3/6 agonist (Figure S5) and does not stim-

ulate TRPV4, TRPA1, M1, M4, CaV1.2, hERG, NaV1.5,

or CXCR5 receptors at concentrations <10 lmol/L. Com-

pound structures for GSK-2934A and GSK-3503A are

illustrated in Figure 5. The activity of the TRPC3/6 com-

pounds to change intracellular calcium concentrations

was performed in a HEK cell line over-expressing TRPC6

(Fig. 5A, B). We show that the agonist GSK-2934A

induces calcium signals in HEK-TRPC6 cells (pEC50=6.6)
and the antagonist GSK-3503A inhibits TRPC3/6-

mediated calcium signals (pIC50=7.8). From these data

approximate EC80 values were used for further investiga-

tions (Fig. 5C–F). Further, characterization of the

TRPC3/6 agonist, GSK-2934A was performed in whole

cell patch clamp electrophysiology experiments shown in

Figure S5. The data presented in this figure support that

the GSK-2934A compound activates TRPC3/6 channels

with similar potency to that observed in calcium imaging

assays. Here, we also show that GSK-2934A activates rat

TRPC3 and C6 as well as human TRPC3 and C6, no dif-

ference in the potency of the compounds was seen

between rat and human models. These selective pharma-

cological tools allow novel investigation into whether

TRPC3/6 channels are contributing to mast cell signaling

and function.

Calcium imaging in HLMCs activated with 3 lmol/L

GSK-2934A, the TRPC3/6 agonist (Fig. 5C,D) did not

induce a significant increase in calcium signal,

(0.01 � 0.001, n = 126 cells N = 5 donors), however, the

same cells did respond to anti-IgE at typically observed

magnitude (D0.6), applied at the end of the experiment

as an experimental control (Fig. 5C).

Previous studies show TRPC6 channels require signal-

ing proteins to initiate their translocation to the plasma

membrane (Cayouette et al. 2004; Monet et al. 2012).

Therefore, it is possible that a signal change in response

to the TRPC3/6 agonist was not observed in our exper-

iments (Fig. 5C) because TRPC6 channels were not pre-

sent in the plasma membrane. To explore this, the

effect of the TRPC3/6 antagonist (2 lmol/L GSK-

3503A) on FceRI- induced calcium influx was investi-

gated. FceRI activation induced mean max-basal change

of 0.6 � 0.02 (n = 49 N = 3 donors) in control HLMC,

which was the same as the 0.6 � 0.02 response seen in

GSK-3503A treated cells (n = 45 N = 3 donors). These

data demonstrate that when using selective pharmaco-

logical tools, there is no evidence for a contribution

from TRPC3/6 to FceRI-initiated calcium signaling in

HLMCs.

Calcium imaging in HLMC and LAD2 mast cells sug-

gest that only Synta66-sensitive Orai calcium channels

are contributors to FceRI-induced calcium signaling,

suggesting that the Orai channels are likely to have a

critical role in driving FceRI-dependent mast cell func-

tions. To determine whether Orai-dependent calcium

signaling is critical and wholly responsible for mast cell

mediator release further experiments were performed,

utilizing the Orai selective inhibitor, Synta66. The data

shown in Figure S4 confirms the lack of a cytotoxic

effect of Synta66 on HLMC cells when incubated over a

24 h time period.

FceRI-activated histamine and TNFa release
is significantly inhibited by Synta66 in
HLMCs

Histamine is a preformed mediator, released via

exocytosis from mast cell granules by a calcium-depen-

dent process (Douglas and Ueda 1973). A five minute

pre-application of 10 lmol/L Synta66 caused significant

inhibition of FceRI- mediated histamine (73% �10,

N = 7 donors) secretion in HLMCs (Fig. 6). This shows

the dependency on Synta66-sensitive channel-driven cal-

cium influx, in FceRI- induced histamine release.

TNFa can be both pre-stored and secreted through the

regulated pathway as well as de novo synthesized and

secreted (Gordon and Galli 1991). TNFa production and

secretion was measured from HLMC supernatants col-

lected 24 h after FceRI activation, in the presence and

absence of Synta66. The compound caused a mean per-

centage inhibition of 79% � 10 N = 3 donors, demon-

strating that Orai- mediated calcium entry is also a

critical requirement for the secretion of TNFa from

HLMCs.

FceRI-activated eicosanoid and cytokine
release are differentially inhibited by
Synta66 in HLMCs

De novo synthesized lipid mediators and cytokines that

are also significant contributors to allergic inflammation

and activation of other immune system cells and their
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production is also a calcium-dependent process (Hogan

et al. 2003; Di Capite and Parekh 2009). Therefore, we

assessed the contribution of Synta66-sensitive channels to

FceRI-mediated de novo eicosanoid release.

Prostaglandin D2 synthesis and secretion was measured

from supernatants harvested 30 min after HLMCs were

challenged with anti-IgE. Synta66 had no significant effect

on anti-IgE stimulated PGD2 secretion in any of the

donors tested (Fig. 7A–B). Confirmation of the

dependency on calcium influx for PGD2 production was

shown by performing the experiment in calcium-free con-

ditions; no PGD2 was detected (data not shown). Overall,

these results indicate that Orai-mediated calcium influx is

not responsible for eicosanoid synthesis and release in

HLMCs.

Following FceRI stimulation for 24 h, mast cell super-

natants were assessed for the release of inflammatory

cytokines and chemokines using a human cytokine panel

Figure 5. TRPC3/6 agonist and antagonist have no effect on calcium signaling in human mast cells. Calcium imaging of Fura 2-AM loaded

HEK-TRPC6. (A) Concentration-response curve in HEK-TRPC6 cells – summarizing change in calcium signal to varying concentrations of GSK-

2934A agonist. (B) Effect of varying concentrations of antagonist GSK-3503A to 3 lmol/L GSK-2934A induced calcium signal in HEK-TRPC6

cells. n > 20 cells for each concentration performed over 2-3 independent experiments. Data shown as mean � SEM (C-F) Calcium imaging of

fura 2-AM loaded HLMCs. (C) Calcium signal over time; DMSO vehicle control/3 lmol/L GSK-2934A was applied as indicated by the horizontal

bars, followed by anti-IgE, 1 lg/mL. (D) Scatter graph showing max-basal calcium signal of TRPC3/6 agonist (before anti-IgE application) (E)

Calcium signal over time. Effect of GSK-3503A on anti-IgE induced calcium entry. Solutions applied as indicated by horizontal bars. 2 lmol/L

GSK-3503A pre-incubated for 10 min and present in solution throughout the experimental duration. (F) Scatter graph showing max-basal

calcium signal of anti-IgE response in each cell. Lines in bar graphs show mean � SEM, calcium signal over time show representative traces.

n > 45 cells for each condition, N = 3 donors. Results were analyzed, using unpaired students t-test, ns P > 0.05.
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array (see methods). There was wide variation in cytokine

release in response to anti-IgE between 3 donors tested,

and variation in the extent to which Synta66 inhibited it

(Fig. 7). The maximum and most consistent inhibition by

Synta66 was observed with MIF (macrophage migration

inhibitory factor) secretion, with a mean percentage inhi-

bition of 90%; CSFa (colony-stimulating factor), IL-5 and

IL-8 were all also inhibited by more than 60% and IL-6

by 50%. For Serpin E1 and IL-23, only ~20% inhibition

was observed. To the best of our knowledge, this is the

first demonstration that MIF, CSFa, Serpin E1, and IL-23

are secreted from HLMCs following anti-IgE activation,

and that CSFa and MIF production are heavily dependent

on Orai for synthesis and/or release.

In summary, the varying effects of Synta66 suggest dif-

ferential regulation of cytokine and chemokine produc-

tion via the range of signaling pathways initiated

following FceRI activation, each with differing amounts of

involvement of Orai calcium signaling. Orai is not wholly

and critically responsible for the anti-IgE induced release

of eicosanoids, cytokines and chemokines, but does have

a critical role in the release of histamine and TNF-a.

Figure 6. Synta66 significantly inhibited FceRI stimulated histamine and TNFa secretion in HLMCs. Freshly isolated impure HLMCs were

stimulated with anti-IgE and histamine release was measured as a percentage of total histamine present in equivalent cell numbers in each

donor. Each data point represents n = 40,000 HLMCs from individual lung donors. (A) Histamine release when cells were stimulated with 3 lg/

mL anti-IgE alone (N = 7) anti-IgE in the presence of 0.1% DMSO (N = 4), 10 lmol/L Synta66 (N = 7), and with 10 lmol/L Synta66 alone

(N = 5). (B) Percentage inhibition in each donor. (C) TNFa was measured from isolated primary HLMCs cultured for 7 days in enriched media

and incubated overnight with 300 ng/mL IgE. Cells were pre-incubated for 5 min with Synta66 (10 lmol/L) prior to stimulation with 3 lg/mL

anti-IgE. Supernatants were harvested 24 h after challenge with anti-IgE. (D) Percentage inhibition in each donor (N = 3). Bar represents mean

�SEM. Results were analyzed, using one-way ANOVA with Tukey post test. *= means were significantly different: **P < 0.01,***P < 0.001,

****P < 0.0001.

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.

2017 | Vol. 5 | Iss. 5 | e13166
Page 11

H. E. Wajdner et al. Orai and TRPC in Human Mast Cells



Discussion

The results of this study show that Orai1, 2, 3; STIM1

and 2; TRPC 1 and 6 are expressed in LAD2 and HLMC

cells. TRPC1 and 6 appear to have a predominantly intra-

cellular localization and not to contribute significantly to

antigen-evoked calcium signaling following FceRI receptor
activation. Surface expression of TRPC1 channels is regu-

lated through heteromultimerization with other TRPC

channels or membrane trafficking. Heteromeric TRP

channels containing TRPC1 are found at the plasma

membrane, while homomeric TRPC1 channels are local-

ized to intracellular compartments (Dietrich et al. 2014).

Co-expression with TRPC4 or TRPC5, but not TRPC6,

leads to stable plasma membrane localization, coupling to

G protein coupled receptors (GPCRs) and formation of

receptors with reduced calcium permeability (Alfonso

et al. 2008; Storch et al. 2012; Dietrich et al. 2014). Our

evaluation of TRPC expression in HLMCs and LAD2 cells

indicate that TRPC4 and TRPC5 are not present, which

would be consistent with the lack of surface expression of

TRPC1 observed by immunohistochemistry and support

the notion that TRPC1 may form homomeric intracellular

channels in HLMCs and LAD2 cells.

Intracellular localization of TRPC1 and TRPC6 chan-

nels has been observed previously in other cell types;

controlling the trafficking of these channels to the surface

and their interactions with proteins at the membrane thus

plays a crucial role in regulating their cellular function

(Ong et al. 2014; de Souza and Ambudkar 2014). Homo-

meric TRPC1 channels are confined to the endoplasmic

reticulum and recycling endosomes and are therefore

dependent on trafficking to the plasma membrane if they

are to contribute to calcium influx (Alfonso et al. 2008;

Dietrich et al. 2014; de Souza et al. 2015). Calcium influx

through Orai and direct interactions between STIM and

TRPC1 regulates the delivery of TRPC1 channels to speci-

fic domains within the plasma membrane (Ong et al.

2007; Zeng et al. 2008; Cheng et al. 2011). Spatial restric-

tion of the channels within membrane microdomains

impact upon their cellular function (Alicia et al. 2008).

TRPC1 channels directed toward caveolin-1-enriched

membrane domains and associated with the scaffolding

protein homer (Pani et al. 2008, 2013) may allow prefer-

ential coupling to G protein-coupled receptors (GPCRs)

and PLCb (Shi et al. 2016). Disrupting coupling of

STIM1 to TRPC channels with STIM1-KK684-685EE is

very effective in disrupting GPCR calcium signaling (Zeng

et al. 2008a; reviewed in Ong et al. 2016). Here, we show

for the first time that antigen-induced calcium influx fol-

lowing activation of FceRI in human mast cells is com-

pletely unaffected by expression of STIM1-KK684-685EE

Figure 7. Synta66 had differential effects on FceRI stimulated Prostaglandin D2 and cytokine release in HLMCs. Prostaglandin D2 and cytokine

release was measured from isolated primary HLMCs cultured for 7 days in enriched media and incubated overnight with 300 ng/mL IgE. Cells

were pre-incubated for 5 min with Synta66 (10 lmol/L) prior to stimulation with 3 lg/mL anti-IgE. Supernatants were harvested 24 h after

challenge with anti-IgE. A and C.) Mean mediator release in each condition from four lung donors. B and D.) Percentage inhibition of release in

response to Anti-IgE by Synta66, lines represents mean �SEM. (E) Example results from one donor showing quantified cytokine levels displayed

as integrated pixel density (1. CSFa, 2. MIF, 3. IL-5, 4. IL-6, 5. IL-6, 6. Serpin E1.) (F) Percentage inhibition of cytokine release in response to

Anti-IgE by Synta66 from three lung donors, lines represent mean �SEM. Results were analyzed, using one-way ANOVA with Tukey posttest.
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indicating a lack of involvement of STIM1-regulated

TRPC1 downstream of receptor activation. FceRI signal-

ing is known to be spatially very restricted and organized

through interactions with LAT, LAT2, and PLCc1 (Gilfil-

lan and Beaven 2011; Holowka and Baird 2015) and may

therefore not provide the appropriate platform for

recruiting TRPC1 channels to the membrane. Interest-

ingly, expression of calveolin-1 in rodent mast cells modi-

fies calcium signals generated through a GPCR (Yeh et al.

2014) consistent with the idea that FceRI and GPCRs

may generate spatially and temporally distinct calcium

signals to fine tune the responses of mast cells to distinct

stimuli. Whether STIM-regulated TRPC1 contribute to

GPCR signaling in mast cells (Kuehn and Gilfillan 2007)

remains to be determined.

TRPC6 was also found to be localized to an intracellular

compartment in HLMCs and LAD2 cells. Consistent with

this intracellular localization, application of a newly char-

acterized TRPC3/6 selective agonist GSK-2934A did not

evoke calcium signals in mast cells although it was effective

in TRPC6-expressing HEK cells. Application of the TRPC6

antagonist GSK-3503A to mast cells did not inhibit FceRI-
initiated calcium signals. In agreement with our results,

mast cells generated from TRPC6 knockout mice also

show no alterations in FceRI calcium signaling (Medic

et al. 2013). Like with TRPC1, it has been reported that

the surface expression and therefore the function of

TRPC6 may be regulated through trafficking, GPCRs

(Cayouette et al. 2004, 2010), and phosphoinositide 3-

kinase (Monet et al. 2012; Chaudhuri et al. 2016). A role

for intracellular TRPC6 channels in innate immunity has

also recently been described following their discovery on

autophagosomes in alveolar macrophages (Riazanski et al.

2015); whether they similarly contribute to mast cell-

mediated host defense will require further investigation.

In agreement with previous published works by Ash-

mole et al. (2012, 2013), we found Orai channels to play

a major role in FceRI-activated calcium influx and

degranulation in HLMCs and LAD2 cells. Incubation of

the cells with the Orai-selective inhibitor Synta66 at

10 lmol/L inhibited the calcium signal measured in mast

cells following antigen stimulation by approximately 70%;

similar levels of inhibition were observed on secreted his-

tamine and TNFa and some but not all cytokines. Owing

to the limited solubility of Synta66, we could not explore

whether higher concentrations would achieve a 100%

block of either the calcium signals or mediator secretion,

leaving the question of whether additional channels may

be involved. As discussed above, all our evidence points

against a role for TRPC channels in FceRI-regulated sig-

naling. Moreover, patch clamp studies of currents evoked

following store-depletion in HLMCs by ourselves (data

not shown) and (Ashmole et al. 2012, 2013) had all the

biophysical characteristics of ICRAC, namely strong inward

rectification, a reversal potential >40 mV, and high cal-

cium selectivity (Prakriya and Lewis 2015), providing fur-

ther evidence against a contribution of TRP channels to

store-operated calcium influx in human mast cells.

Taken together with the earlier study of Ashmole et al.

2012; our results show that FceRI activated Orai-mediated

calcium influx directs the synthesis of LTC4, TNFa, IL-5,
IL-6, IL-8, Il-13 CSFa, and MIF, but is not required for

the synthesis of PGD2 and Serpin E1/PAI-1 in HLMCs.

Similar dependence on Orai signaling for antigen-evoked

LTC4, TNFa, and IL-6 was reported for mast cells derived

from Orai1 knockout mice (Vig et al. 2008). Secreted

TNFa from mast cells may originate from a pre-stored

pool and thus would be expected to be inhibited by cal-

cium influx through the same channels regulating degran-

ulation and histamine i.e. Orai in human mast cells, as

shown here. In late phase mast cell responses, however

TNFa may be synthesized de novo and secreted along

with other cytokines through an alternative pathway

(Martin-Avila et al. 2016), independent of calcium influx

through Orai, such as shown here for Serpin E1. As with

other de novo synthesized cytokines and chemokines, cal-

cium-sensitivity will be depend on the transcription fac-

tors driving their synthesis and integrated signaling with

co-stimulatory receptors (Gilfillan and Tkaczyk 2006;

Klein et al. 2006; Pullen et al. 2012). In this regard, it is

interesting to note that in bone marrow-derived mast

cells from TRPC1 knockout mice, an unexpected increase

in antigen-evoked CSF, TNFa and IL-6 secretion, associ-

ated with increased activity of calcium-regulated tran-

scription factors, is observed which is enhanced by the

presence of cKIT and dependent on IL-3 (Medic et al.

2013). The enhanced and prolonged calcium influx

observed in these cells is what would be expected by the

loss of TRPC1 from heteromeric TRP channels (Dietrich

et al. 2014). As discussed above, we did not find a role

for TRPC in human mast cell signaling, thus whether the

differences between our study and those of Medic et al.

2013 are due to the differences in the species, source and

maturity of mast cells, all of which profoundly influence

mast cell properties (Bischoff 2007) and/or presence of

co-stimulatory signals will require further investigation.

To summarize, the results presented in this study have

shown important and novel evidence that Orai but not

TRPC channels are contributing to FceRI-mediated cal-

cium signaling in human mast cells. Taken together, these

results have important consequences in highlighting the

identity of potential therapeutic targets to treat mast cell-

mediated allergic disease, such as asthma. It can now be

seen that selective compounds targeting Orai but not

TRPC have the potential to be used as novel mast cell sta-

bilizers/pre-symptomatic asthma treatment.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. Immunocytochemistry showing TRPC1 expres-

sion in LAD2 cells. (A) anti-TRPC1 staining, (B) anti-IgG

isotype control. Bar graph is quantification of mean stain-

ing intensity of cells in each conditions mean�SEM.

Results were analyzed, using one-way ANOVA with Bon-

ferroni posttest. *= means were significantly different:

**P < 0.01,***P < 0.001, ****P < 0.0001.

Figure S2. YFP-tagged STIM1-WT and STIM1 KK684-685EE

constructs translocate to PM following store depletion.
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Time lapse images of LAD2 cells transfected with STIM1

WT – YFP or STIM1 KK684-685EE constructs. 2 lmol/L

Thapsigargin (TG) was applied to visualize translocation of

STIM1 to the plasma membrane. Images were normalized

for bleaching and are representative from 3 experiments

n = 6. Results were analyzed, using an unpaired t-test.

**P < 0.01,***P < 0.001, ****P < 0.0001.

Figure S3. TRPC3/6 antagonist has no effect on P2Y or

c-kit receptor-mediated calcium signaling. Calcium imag-

ing of fura 2-AM loaded HLMCs. (A) Mean calcium sig-

nal over time. 2 lmol/L of GSK-3503A antagonist was

pre-applied for 15 min before bath application of

100 lmol/L ADP/100 ng/mL SCF, respectively, as indi-

cated by the horizontal bars. (B) Scatter graph showing

change in calcium signal (max-basal) to ADP in each cell

from all experiments, (C) 100 lg/mL SCF applied as indi-

cated by horizonal bars - shows representative calcium

signal traces and (D) shows a bar graph summarizing the

normalized max and the area under the curve change in

calcium signal to SCF. n > 50 for each condition over 3

or 4 HLMC donors. Results were analyzed, using stu-

dent’s unpaired t-test/two-way ANOVA with the Bonfer-

roni posttest, as appropriate. nsP > 0.05

Figure S4. Synta66 has no effect on cell viability over a

24 h time period. Presence of the cell viability indicator

enzyme LDH was quantified by colorimetric assay in

primary isolated HLMCs following 24 h incubation with

3 lg/mL anti-IgE (black), 3 lg/mL anti-IgE + 10 lmol/L

Synta66 (red) or 10 lmol/L Synta66 only, shown in com-

parison to the total enzyme from an equivalent number

of lysed cells and spontaneous release. Each bar represents

duplicate results from 10,000 mast cells.

Figure S5. GSK1702934A activated TRPC3 and TRPC6

channels heterologously expressed in HEK293 cells. (A)

Time course of hTRPC3 activation by GSK1702934A at

escalating concentrations. Top panel: Current amplitudes

measured at -80 mV and +80 mV plotted against record-

ing time. Bottom panel: Current/voltage relation of

hTRPC3 in the absence and presence of 0.03, 0.1, and

0.3 lmol/L GSK1702934A. (B) Time course of hTRPC6

activation by GSK1702934A at escalating concentrations

(Top); current/voltage relation of hTRPC6 in the absence

and presence of 0.1, 0.3, 1, and 3 lmol/L GSK1702934A

(Bottom). (C) GSK1702934A had no effect on the back-

ground current in HEK293 cells transduced with null Bac-

Mam virus (12%). (D) Concentration-dependent response

curve of GSK1702934A for hTRPC3 (N = 5) and hTRPC6

current (N = 7). (E) Concentration-dependent response

curve of GSK1702934A for rTRPC3 (N = 4) and rTRPC6

current (N = 5). (F&G) Compound structures for

GSK1702934A and GSK2833503A, respectively.
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