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Abstract The phosphoryl group, PO3
–, is the dynamic structural unit in the bio-

logical chemistry of phosphorus. Its transfer from a donor to an acceptor atom, with

oxygen much more prevalent than nitrogen, carbon, or sulfur, is at the core of a

great majority of enzyme-catalyzed reactions involving phosphate esters, anhy-

drides, amidates, and phosphorothioates. The serendipitous discovery that the

phosphoryl group could be labeled by ‘‘nuclear mutation,’’ by substitution of PO3
–

by MgF3
– or AlF4

–, has underpinned the application of metal fluoride (MFx)

complexes to mimic transition states for enzymatic phosphoryl transfer reactions,

with sufficient stability for experimental analysis. Protein crystallography in the

solid state and 19F NMR in solution have enabled direct observation of ternary and

quaternary protein complexes embracing MFx transition state models with precision.

These studies have underpinned a radically new mechanistic approach to enzyme

catalysis for a huge range of phosphoryl transfer processes, as varied as kinases,

phosphatases, phosphomutases, and phosphohydrolases. The results, without
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exception, have endorsed trigonal bipyramidal geometry (tbp) for concerted, ‘‘in-

line’’ stereochemistry of phosphoryl transfer. QM computations have established the

validity of tbp MFx complexes as reliable models for true transition states, deliv-

ering similar bond lengths, coordination to essential metal ions, and virtually

identical hydrogen bond networks. The emergence of protein control of reactant

orbital overlap between bond-forming species within enzyme transition states is a

new challenging theme for wider exploration.

Keywords MFx � Phosphoryl group surrogates � Enzyme mechanisms � Transition

state analogs � QM/MM computation � KS-DFT analysis

1 Background

Alexander Todd1 and Frank Westheimer2 held complementary, and sometime

overlapping, views on the centrality of phosphates for life. Todd’s pronouncement:

‘‘Where there’s Life, there’s Phosphorus’’, encapsulated his conviction that enzymes

that manipulate phosphates have been at the heart of biology from the dawn of life

anywhere in the universe [1]. Westheimer identified the evolutionary centrality of

phosphate [2]. The cellular behavior of phosphate esters and anhydrides provides

one of the most remarkable chemical paradoxes: phosphate monoesters hydrolyze

spontaneously under physiological conditions with t1/2 1012 years, yet simple

phosphatase enzymes have kcat ca. 30 s-1. The enormous difference corresponds to

a remarkable catalytic rate enhancement of 1021 [3]. How do enzymes achieve this?

This article focuses on the use of aluminum and magnesium fluoride complexes to

mimic structures of transition states of enzymatic reactions that involve the

phosphoryl group, PO3
-, and to provide a structural base for quantum chemical

computations to describe them in detail.

1.1 Basics of Phosphoryl Transfer

Studies on phosphoryl transfer reactions were greatly advanced by the use of

oxygen isotopes to show that they generally involved P–O cleavage, with transfer of

the phosphoryl group (PO3
-) between a donor oxygen (OD) and an acceptor oxygen

(OA) or, less commonly, nitrogen or sulfur atoms [4]. Polyphosphates, such as ATP,

react by attack of water (or an alcohol) on the terminal c-phosphorus, breaking the

P–O bond to the O3B atom (usually oxygen and infrequently nitrogen) (Scheme 1a).

More advanced isotope work, deploying 16O, 17O, and 18O, established that the

near-universal stereochemistry for such processes, for both chemical and enzymatic

reactions, involves inversion of stereochemistry at the transferring phosphorus

(Scheme 1) [5–7].

An accurate description of the technical aspects of the varieties and uses of MFx
models calls for a brief explanation of the terminology of phosphoryl transfer. The

1 Lord Todd of Trumpington, Nobel Laureate 1957, 1702 Professor of Chemistry 1944-71, Cambridge,

UK.
2 Professor of Chemistry, 1953-2007, Harvard, Cambridge, USA.

 36 Page 2 of 31 Top Curr Chem (Z)  (2017) 375:36 

123



phosphoryl group, PO3
– is identified throughout organic chemistry and biology as

the anionic, trigonal planar assembly of a phosphorus and three oxygen atoms. It is

usually drawn without P=O double bonds, is highly electrophilic, and has not been

identified in any condensed phase (Scheme 2). It is helpful to perceive its

combination with an alcohol, such as adenosyl-50-OH, to generate a phosphate

monoester, illustrated for adenosine 50-phosphate, AMP. The addition of a second

phosphoryl group to a terminal oxygen generates a pyrophosphate monoester,

illustrated for adenosine 50-diphosphate, ADP; and capture of a third phosphoryl

group gives adenosine 50-triphosphate, ATP (Scheme 2). Strings of phosphorus

atoms in such chains have conventionally been labeled Pa, Pb, Pc, etc. but, with

new IUPAC nomenclature, are now better identified as PA, PB, PG, PD, etc [8].

1.2 Historic Development of Mechanisms

Todd [9] and Westheimer [2] thought that phosphoryl transfer reactions should be

stepwise, involving a monomeric metaphosphate intermediate species (Scheme 1a).

That concept, unproven after extended but fruitless effort, has now been discarded

in favor of concerted phosphoryl transfer reactions for phosphate monoesters and

anhydrides. These have ‘‘in-line’’ geometry for OD–P–OA in the transition state

(TS), with variable associative or dissociative character (Scheme 1b) [10–12].

Isotope labeling studies have contributed historically to studies on phosphoryl

transfer in biological systems [13] and 31P NMR has been applied effectively for

investigations on ATP [14] and phosphoarginine [15], but protein crystallography

before the mid-1990s was restricted to binary complexes with stable substrate and

bisubstrate analogs that gave limited information about reaction mechanisms

[16, 17]. In 1994, that situation changed dramatically with the crystallization of

ternary complexes of guanosine diphosphate (GDP) coordinated to tetrafluoroalu-

minate, AlF4
–, and the small G protein, Gia1 (PDB: 1gfi) [18] and with transducin a

(PDB: 1tad) [19]. Although these complexes had octahedral geometry for the

Scheme 1 a The atomic identities in ATP employ the new IUPAC nomenclature [8]. b Three
mechanisms for transfer of a phosphoryl group (PO3

–, top center) between a donor (left) and an acceptor
(right) species. Sequential process (a, blue arrows) involves formation of a trigonal planar metaphosphate
anion as an intermediate. Concerted process (b, green arrows) shows a trigonal bipyramidal (tbp)
transition state with phosphorus fully bonded to three equatorial oxygens and partially bonded to the axial
donor (OD) and acceptor (OA) oxygens. An alternative, sequential process (c, magenta arrows), largely
discarded, shows formation of a stable pentacoordinate phosphorane intermediate having full bonds to all
five oxygens
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aluminum tetrafluoride moiety, they were immediately described as transition state

analogs (TSAs) for phosphoryl transfer. They were soon followed by further MFx
species, notably BeF3

–, AlF3
0, and MgF3

–. The number of such complexes has grown

steadily, now exceeding 350 (Fig. 1).

2 Development of Metal Fluorides as Phosphate Analogs

2.1 The ‘Burst Phase’ of Analog Discovery

Exciting developments in the field of signal switch mechanisms based on hydrolysis

of GTP by small G proteins and on the molecular biology discoveries depending on

ATP hydrolysis stimulated the development of three analog systems in the mid-

1990s. Using tetrafluoroaluminate, work on Gia1, from the University of Texas,

Dallas [18], narrowly edged out a closely related publication on Transducin a from

Yale [19], while both focused on the role of the essential glutamine and arginine

residues, of the catalytic magnesium, and on the positioning of water for attack on

the terminal phosphate, PG (Fig. 2a). Shortly after, a complex of ADP with AlF4
–

was described to represent the TS for ATP hydrolysis in myosin, alongside the first

structure of a trifluoroberyllate (BeF3
–) complex with ADP, recognized as a ground

state analog (GSA; Fig. 2b) [20].

Scheme 2 Successive capture of three phosphoryl groups, PO3
–, converts an alcohol first into a

phosphate monoester, then into an alkyl diphosphate, and finally into alkyl triphosphate, illustrated for
adenosine 50-triphosphate

Fig. 1 MFx structures deposited in the Protein Data Bank since their inception in 1996. Vanadate
(orange) is included for comparison
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After a short interval, a third class of MFx analog was reported: an aluminum

trifluoride complex of magnesium ADP for a dinucleotide kinase, described

alongside the corresponding trifluoroberyllate tetrahedral complex. Its great

advantage was tbp geometry for the TSA complex that, for the first time, accurately

mimicked the TS geometry of the c-phosphate of ATP undergoing transfer [21].

This was quickly followed by a GDP�AlF3
0 complex for the small G protein

Ras�RasGAP (Fig. 2c) [22] and then by an ADP�AlF3
0
�GDP complex for a

quaternary complex of a nucleoside diphosphate kinase from the slime mold,

Dictyostelium discoideum [23]. These, and subsequent examples of tbp complexes,

recognized that AlF3
0 was a neutral MFx species and therefore a Coulombic

mismatch for an anionic phosphoryl group. It was 5 years before that feature was

rectified with the first identification of trifluoromagnesate (MgF3
–) bound to GDP in

a complex with the small G protein, RhoA. A key component of that work was the

rigorous use of proton-induced X-ray emission spectroscopy (PIXE) to identify

magnesium as the atom at the core of the tbp complex (Fig. 2d) [24].

By this time, there were some 50 structures deposited in the PDB for MFx
complexes, usually with anionic oxygen as one axial ligand. Their importance has

stimulated a rapid, ongoing growth in their use (Fig. 1). We shall now examine the

relative qualities of these four classes and their offshoots on a systematic basis,

organized by geometric considerations.

Fig. 2 Landmark protein structures with a fourfold range of MFx octahedral tetrafluoroaluminate, tbp
aluminum trifluoride and trifluoromagnesate, and tetrahedral trifluoroberyllate complexes. a Transducin a
with GDP coordinated to AlF4

– and catalytic magnesium (PDB: 1tad at 1.7 Å). b Myosin with ADP
coordinated to tetrahedral BeF3

– and Mgcat (PDB: 1mmd at 2.0 Å). c Ras�RasGAP with GDP coordinated
to tbp AlF3

0 and Mgcat (PDB: 1wq1 at 2.5 Å). d RhoA�RhoGAP with GDP coordinated to tbp MgF3
– and

Mgcat (PDB: 1ow3 at 1.7 Å) (colors: aluminum, grey; beryllium, lime; surrogate magnesium, magenta;
Mgcat, green; fluorine, light blue; nucleotides, yellow; key amino acids, silver; nitrogen, blue; oxygen,
red)

Top Curr Chem (Z)  (2017) 375:36 Page 5 of 31  36 

123



3 MF
x
Ground State Analogs

3.1 BeF3
– as a Ground State Phosphate Mimic

In aqueous solution, beryllium (II) forms stable fluorides as a mixture of tetrahedral

species including BeF2�2H2O, BeF3
–
�H2O, and BeF4

= [25]. 19F NMR studies on

fluoroberyllate complexes with ADP identified mixed fluoroberyllate�ADP species

for myosin (Fig. 2b). Nearly 130 trifluoroberyllate complexes have now been

described, with three structures solved by NMR and 119 X-ray structures having

resolutions of C1.2 Å, generally having tetrahedral trifluoroberyllate bonded to an

anionic oxygen. These comprise two sub-groups: over 70 have Be coordinated to an

aspartate carboxylate while some 50 have Be coordinated to a terminal phosphate

oxygen of a nucleotide. Just two have Be coordinated to a histidine ring nitrogen,

while one has BeF2 bridging two phosphates.

3.1.1 Aspartyl Trifluoroberyllates

Aspartyl phosphates are intermediates in many enzyme reactions, with a half-life for

spontaneous hydrolysis from 23 s to a few hours [26]. Aspartyl trifluoroberyllates

are stable and available for analysis by 19F NMR and protein crystallography. They

are tetrahedral, ground state mimics of an aspartyl phosphate. The 70 structures

have a common core, with bidentate coordination to a divalent metal ion, generally

Mg2? and rarely Mn2?, from fluorine F1 and the second carboxylate oxygen to give

a near-planar six-membered ring (Fig. 3a; all MFx structural data are tabulated in a

recent review [27]). Because of its low electron density, the beryllium atom is

difficult to locate by X-ray diffraction, resulting in uncertainty in its exact position,

leading to considerable variation in attributed geometry (Fig. 3b): the 27 best

resolved structures have a Be–O distance 1.72 Å with Be–F 1.53 Å.

Fig. 3 a Typical aspartyl trifluoroberyllate structure with catalytic magnesium coordination (left).
Aspartyl phosphate complex with catalytic magnesium from phosphoserine phosphatase (PSP) (PDB:
1j97) for comparison of geometry (center). Electron density map for the 1.2-Å resolution structure for b-
phosphoglucomutase (PDB: 2wf8) (center). b Twenty aligned aspartyl–trifluoroberyllate structures with
BeF3

– locked in a six-membered ring. Catalytic Mg2? and an Asp carboxylate fuse a 13-atom ring to the
fluoroberyllate ring (rear). Octahedral coordination to Mg is completed by an additional aspartate (right),
by 1–2 waters, and only twice by a histidine (top, magenta) (atom colors: fluorine, light blue; beryllium,
lime; nitrogen, blue; oxygen, red; carbon, grey; 3-phosphoglycerate, cyan) (electron densities presented in
CCP4MG from mtz data in EDS and contoured at 1r) (a adapted by the authors from [27])
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3.1.2 BeF3
– Nucleotide Structures

There are 42 X-ray structures of BeF3
– complexes with ADP, and six with GDP.

They are isosteric mimics of ATP and GTP (Fig. 4a) in kinases, F1 ATPase,

hydrolases, mutases, helicases, and small G proteins. Twenty structures align very

well (Fig. 4b) with Be bonded to a b-phosphate oxygen, while a catalytic Mg2? is

coordinated to F1 and to another b-phosphate oxygen.

3.1.3 Histidine Trifluoroberyllates

Various approaches to analogs of g-phosphohistidine have been explored.

Structural work on nicotinamide phosphoribosyltransferase (NAMPT) has mim-

icked phosphorylation of an active-site histidine using trifluoroberyllate. Crystal

structures of NAMPT for reactant and product complexes (PDB: 3dhf; Fig. 5b)

have a covalent His247�BeF3
-, and in contrast to all other trifluoroberyllate

structures, magnesium is coordinated to one fluorine without any direct linkage to

His247 [28].

Fig. 4 a Typical nucleoside diphosphate trifluoroberyllate structure (left) with catalytic magnesium
coordination for comparison of geometry with the nucleoside triphosphate (right). b The BeF3

– moiety in
20 aligned ADP�trifluoroberyllate structures is in a six-membered ring (center) with Mg2? coordinating
F1 and O

3B. c-Phosphate coordination to an Arg and a Lys is also common. c Biphasic normal distribution
of the location of the nucleophilic water, Ow, relative to the bond from ADP–O3B to beryllium in 16
ADP�BeF3

– ground state complexes. Major group Ow–Be–O3B angle C165̊ (orange); minor group Ow–
Be–O3B angle 176̊ C170̊ (blue)
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3.1.4 Structural Conclusions

The significant ability of beryllium (II) fluorides to complete tetrahedral coordi-

nation by binding to an anionic oxygen has made them good isosteric and

electrostatic GSAs of phosphate for a wide range of uses [29]. Bond lengths for Be–

F and Be–O are close to those for P–O (1.6 ± 0.5 Å) and the strong ionic character

of the Be–F bond means that its fluorines readily accept H-bonds from a range of

donors and/or coordinate to Group 2 metal ions [30]. Thus, fluoroberyllates have

been used beneficially to study changes in major conformations of proteins by

crystallography, NMR, and EM, while studies on ADP�BeF3
– have supported

investigations on ATPases that drive various mechanical processes at a molecular

level, particularly for myosin [31–36]. They have proved especially valuable for the

identification of near attack conformations (NACs) in enzyme mechanisms, notably

for b-phosphoglucomutase (bPGM) [37].

4 MF
x
in Transition State Analog Complexes

4.1 Tetrafluoroaluminate TS Complexes—AlF4
–

Aluminum (III) forms stable fluorides in water, the mixture of octahedral species

including AlF2
?
�4H2O, AlF3�3H2O, AlF4

–
�2H2O, and AlF5

=
�H2O, depending on the

concentration of fluoride [38, 39]. Crystal structures for octahedral GDP�AlF4
–

protein complexes [18–20] were prompted by the discovery that aluminum plus

fluoride stimulates the activity of small G proteins in the presence of GDP [40],

while 19F NMR analysis of a GDP�AlFx complex for G1a [41] confirmed that they

Fig. 5 a Structure of BeF3
– complex for bPGK (PDB: 4axx). Beryllium (lime green) is ‘‘in-line’’

between a O3B of ADP and 3PG. b Nicotinamide phosphoribosyl transferase (PDB: 3dhf) catalyses
displacement of pyrophosphate from C1 of ribose 5-phosphate. Structures of two overlaid complexes
show BeF3

- bound to Ng of His247 and one fluorine coordinating Mg2? (green sphere). PRPP reactant
C1’ (cyan sphere) moves 1.8 Å to bond to nicotinamide N1 (atom colors: fluorine, light blue; beryllium,
lime; nitrogen, blue; oxygen, red; protein residues are in grey; nucleotides in cyan) (a is reproduced from
[27])
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could mimic bound GTP [42]. All 114 crystallographic AlF4
– complex structures in

the PDB (PDB ligand: ALF) are octahedral and have aluminum sandwiched

between donor and acceptor atoms, predominantly oxygens. Unlike beryllium, the

aluminum is well defined in the electron density map (Fig. 6a) and can accept a

neutral oxygen as one axial ligand. However, aluminum forms insoluble Al(OH)3
above pH 7.5 [38, 39], which restricts the stability of aluminum fluoride complexes

to pH\8.

4.1.1 Aspartyl Tetrafluoroaluminates

Fourteen PDB structures have tetrafluoroaluminate bonded to an aspartate with an

essential Mg2? in a six-membered ring. They align well on the best resolved

complex, b-phosphoglucomutase (bPGM, PDB: 2wf7; 1.05-Å resolution (Fig. 6b),

with four equatorial oxygen ligands coordinating the catalytic Mg2?. The structures

fit into two subsets: six members of the first group have a second aspartate sub-

adjacent to the first (Asp8 and Asp10 in bPGM). The OA–Al–OD bonds are ‘‘in-

line’’ (167.5̊ ± 7.0̊) with the aluminum midway between the two oxygens

(separation 3.9 ± 0.1 Å) and have a catalytic aspartate that accepts a short H-bond

from the apical water/hydroxyl group (2.59 ± 0.05 Å) to align this oxygen for

nucleophilic attack on phosphorus [43].

The second subset has ATPases involved in pumping calcium, copper, and zinc

ions. They use an aspartyl phosphate intermediate, whose TS for hydrolysis is

mimicked by an octahedral AlF4
–. An axial water oxygen forms short H-bonds to an

invariant glutamate (2.5 ± 0.1 Å) and to a threonine carbonyl (2.57 ± 0.05 Å),

which clearly orientate and polarize the water for ‘‘in-line’’ attack on the aspartyl

phosphate [44].

Fig. 6 a Typical aspartyl tetrafluoroaluminate structure with catalytic magnesium coordination (left).
Aspartyl phosphate complex with catalytic magnesium from phosphoserine phosphatase (PDB: 1j97) for
comparison of geometry (center). Electron density map for the 1.2-Å resolution structure for b-
phosphoglucomutase (PDB: 2wf8) (right). b Structures of 13 aspartyl tetrafluoroaluminates aligned on
Ca. Octahedral aluminum is coordinated to Asp-O4, in a six-membered ring with Mgcat and ‘‘in-line’’
with a nucleophilic water oxygen (red sphere) or the OH group of a nucleoside or hexose reactant
(rainbow colors) (atom colors: fluorine, light blue; aluminum, grey; nitrogen, blue; oxygen, red;
magnesium, green sphere) (Figure reproduced from [27])
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4.1.2 Nucleotide Guanosine Diphosphate (GDP) Tetrafluoroaluminates

GDP forms 50 AlF4
– complexes that constitute isoelectronic but non-isosteric

mimics of GTP in a broad range of proteins. The best resolved 21 align remarkably

well (Fig. 7a), with aluminum bonded to O3B on GDP and the Mgcat coordinated to

F1 and O
1B in a six-membered ring. The guanosine base and ribose usually occupy a

common conformation (Fig. 7a). The geometry of the AlF4
– moiety is regularly

octahedral, with ‘‘in-line’’ OA–Al–OD angle 172.8̊ ± 7.1̊. All structures have an

axial oxygen ligand (Fig. 7a, red spheres) coordinated to aluminum that is trigonal

planar with respect to two H-bond acceptors: the backbone carbonyls of a threonine

and a glutamine side-chain (occasionally a water) (Fig. 7a, lower right, red spheres).

4.1.3 Nucleotide Adenosine Diphosphate (ADP) Tetrafluoroaluminates

Forty-nine octahedral structures have AlF4
– bonded to a terminal oxygen of ADP

(O3B) to mimic ATP in the TS. They are found in kinases, hydrolases, isomerases,

ATPases, myosins, helicases, transporter pumps, and nitrogenase. The 31 that are

best resolved have an axial OA–Al–OD distance of 4.05 ± 0.03 Å with an ‘‘in-line’’

angle of 170̊ ± 8̊ and most have water as the second oxygen ligand with a catalytic

Mg2? coordinating one of the fluorines. This is illustrated for F1 ATPase (PDB:

1h8e) (Fig. 8a). In contrast to the uniform conformation for complexes with GDP

(Fig. 7), complexes with ADP show a great variety of conformations, as illustrated

for 16 well-resolved structures (Fig. 8b).

4.2 Octahedral Aluminum Trifluoride Phosphate TS Mimics

An aluminum trifluoride moiety accepts three oxygens to give an octahedral, six-

coordination TSA complex in three examples. In the small G protein Rab5a, the

Fig. 7 a Twenty GDP�AlF4
– structures aligned on a-carbon atoms of the invariant hexapeptide (in PDB:

2gj8). AlF4
– is locked in a six–membered ring (center) with Mgcat (green spheres) coordinating F1 and a

PB oxygen. Octahedral coordination to Mg2? is provided by a second PB oxygen, two waters, a Thr
hydroxyl (right), and a Ser/Thr hydroxyl (top). PB,G oxygens H-bond to a Lys (center). b Structures of
hGBP1 with a GMP�AlF3

0 complex (cyan) aligned with a GDP�AlF4
– complex (green) showing occupancy

of the catalytic site by the AlF3
0 mimic of PB (magenta sphere) and by the AlF4

– mimic of PG (grey
sphere) (atom colors: GDP, cyan; GMP, green; magnesium, green; fluorine, light blue; amino acids,
silver; nitrogen, blue; oxygen, red)
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mutation A30P enables addition of the side chain hydroxyl of Ser29 to aluminum

trifluoride (PDB: 1n6k). In the case of hPGK, the K219A mutant has a water as the

fourth ligand coordinated to the aluminum [45]. Thirdly, for a bacterial dUTPase,

aluminum trifluoride takes the place of the PB in dUTP with coordination to two

oxygens from the b-phosphoryl group and to the water nucleophile to complete the

octahedral array (Fig. 9a, b). This significant structure provides a unique example

where nucleophilic attack is directed at a non-terminal nucleotide phosphorus [46].

5 MF3 Improved Geometry Transition State Mimics

5.1 MgF3
–, Trifluoromagnesate

Magnesium does not form mixtures of stable fluorides in water at sub-molar

concentration: only one resonance for magnesium fluoride is seen in 19F NMR

Fig. 8 a F1 ATPase TSA complex (PDB: 1h8e) with ADP�AlF4
– showing local charge balance for five

1ve and five -ve charges. b 16 ADP�AlF4
– complexes aligned for C5’, PA, PB, and Al show great variety

in ATP analog conformations (atom colors: adenosines, cyan; magnesium, green spheres; fluorine, light
blue; aluminum, gold; amino acids and second substrates, grey; nitrogen, blue; oxygen, red)

Fig. 9 a Aluminum trifluoride structure for dUTPase (PDB: 4di8). UMP (cyan) coordinates aluminum
(grey) with in-line water (red) and with PO4

= adjacent to the leaving O3A. Two magnesiums (green
spheres) are located by coordination to the reactants and to four carboxylate residues (amino acids in
grey). b Cartoon showing octahedral aluminum trifluoride sharing the tbp coordination of the true TS for
a phosphoryl group (colors: nucleoside, cyan; magnesium, green sphere; aluminum, grey; sodium,
purple; amino acids, silver; nitrogen, blue; oxygen, red) (Figure adapted from [27])

Top Curr Chem (Z)  (2017) 375:36 Page 11 of 31  36 

123



solution spectra, that of MgF?. While MgF2 is moderately soluble in water (2 mM),

it has an estimated dissociation constant of 10-5 M [47]. Trifluoromagnesate protein

complexes were first anticipated based on magnesium-dependent fluoride inhibition

studies, and they led directly to the identification of MgF3
– in a tbp crystalline TSA

complex for the small G protein RhoA�RhoGAP (Fig. 10a) [24, 48]. The PDB now

has 16 entries for trifluoromagnesate (PDB ligand: MGF) while a further three

entries assigned as tbp AlF3
0 have been shown by 19F NMR to be MgF3

– complexes

[49–51]. Standard coordination chemistry identifies magnesium as being regularly

octahedral, forming complexes with six (oxygen) ligands. By contrast, trifluoro-

magnesate in protein complexes is unexpectedly five-coordinate. This makes it ideal

for mimicking tbp phosphoryl transfer and, moreover, MgF3
– is isoelectronic with

PO3
–. Examples of its use include complexes of small and large molecule kinases,

mutases, phosphatases, and hydrolases, which invariably involve fluorine coordi-

nation to a catalytic Mg2? (two magnesiums in the case of some protein kinases).

These are usually octahedral and built into a cyclic six-membered ring structure, as

shown for aspartyl phosphate mimics (Fig. 10b). They have an axial OA–Mg–OD

distance of 4.19 ± 0.08 Å with an in-line angle 171.4̊ ± 3.9̊.

5.2 AlF3
0, Aluminum Trifluoride

There are now 56 examples of structures purported to have an AlF3
0 core. Three of

them are octahedral, while 19F NMR has established that another three are MgF3
–.

For the remaining majority, only structures of two alkaline phosphatase complexes

(AP) can be confidently identified as having a tbp AlF3
0 core (Fig. 11). One is in

mutant APP300A (PDB: 1kh5), where two catalytic Zn2? ions coordinate one

fluorine while Ser102 and a zinc-coordinated water provide the axial ligands for the

tbp aluminum (Fig. 11b). What about the remaining 48 ‘‘AlF3
0 complexes’’?

The pH dependency of the transition between octahedral and tbp structures of

AlFx complexes in protein crystal structures was proposed to involve a switch from

AlF4
– to AlF3

0 at elevated pH [52]. However, studies on the pH dependence of the

solubility of aluminum ion [38, 39] provided an alternative interpretation. Al(OH)3
precipitates at pH C8, which results in aluminum being superseded by magnesium

in protein MFx complexes at high pH, with a consequent change in geometry from

Fig. 10 a MgF3
– complex with GDP for RhoA/GAP (PDB: 1ow3) showing electron density. b Typical

MgF3
– complex with aspartate residues in a six-membered ring with the catalytic Mg2? (left) compared to

an aspartyl phosphate (right) (Figure adapted from [27])
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octahedral to tbp. That conclusion has now been validated by pH-dependent 19F

NMR analyses for several enzymes [50, 53]. In some marginal cases, e.g., protein

kinase A (cAPK) and PSP, there is mixed occupancy of the active site by tbp and

octahedral complexes in the crystal [43, 50, 51]. In geometric terms, ‘‘AlF3
0’’ tbp

complexes closely map on those of trifluoromagnesates: axial OA–M–OD bonds

4.29 ± 0.39 Å (Fig. 12b), and M–F bonds 1.75 ± 0.12 Å. It seems likely that some,

or many, of these ‘‘AlF3
0’’ complexes are trifluoromagnesates: a conclusion

supported by geometric analysis for both families of complex.

5.3 A Combined MgF3
2- and AlF3

0 Structural Analysis

A statistical analysis of the structures of AlF3
0 and MgF3

- complexes contributes to

the resolution of this compositional uncertainty. The near-invariant geometry of

Fig. 11 a Structure of the catalytic center for alkaline phosphatase complexed to AlF3 (PDB: 1kh5).
b Cartoon of the coordination organization in the active site with transferring phosphoryl group (blue) and
nucleophilic water (red) (Figure adapted from [27])

Fig. 12 a Overlay of five GDP�MgF3
– (yellow) and eight GDP�AlF3

0 (cyan) complexes to show the
geometric uniformity of the two sets of TSA structures. b Normal distribution plots for the OA–M–OD

distance for this set of 13 structures (red) and the corresponding OA–Al–OD distance for 18 GDP�AlF4
–

TSA complexes (blue)
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octahedral AlF4
- complexes for GDP makes them a useful set for comparison with

the corresponding set of tbp MF3 complexes. Thus, eight GDP ‘‘AlF3
0’’ structures for

small G proteins align very well with those for five MgF3
- complexes (Fig. 12a).

The axial separation for the donor and acceptor oxygens in these combined 13

GDP�MF3 TSAs is 4.38 ± 0.20 Å, significantly distinct from the corresponding

average for 19 GDP�AlF4
– complexes, 4.02 ± 0.14 Å, and clearly supported by

normal distribution analysis (Fig. 12b). The conclusion is: For ‘‘AlF3
0’’ read MgF3

–!

Taking ‘‘AlF3
0’’ together with trifluoromagnesates, a common general pattern of

axial ligands emerges. The MF3 species requires at least one anionic oxygen. b-

Oxygens from ADP (33 structures) and GDP (24 structures) provide the

overwhelming majority of examples while aspartate (11 structures) is also

significant. Water (27 structures) is the dominant neutral axial ligand while serine

and threonine hydroxyls appear less frequently. Significantly, there is no example of

both axial ligand positions being occupied by two neutral ROH groups.

5.4 MgF4
=, Tetrafluoromagnesate

There are several structures for the Ca2? pump ATPase that have been assigned as

tetrahedral MgF4
= moieties without objective experimental validation. Magnesium is

only exceptionally four-coordinate and then it usually has sterically bulky ether

oxygens as ligands [54]. The tetrahedral ‘‘MgF4
=’’ moiety in all PDB examples is

remote from ADP, is coordinated to a second magnesium, and has one or more of its

four ‘‘fluorine’’ atoms in close contact with a backbone carbonyl oxygen, as shown

for PDB: 1wpg (Fig. 13a) [55]. Such ‘‘MgF4
=’’ behavior closely resembles the six-

membered ring tbp structures common for MgF3
– complexes of aspartate (Fig. 10).

Crystallographic re-refinement, with MgF3
– replacing MgF4

= for 1wpg, can produce

an equally valid structure. Thus, unless established by further measurements, a more

consistent chemical interpretation for all such ‘‘MgF4
=’’ situations is that they are

trifluoromagnesates that mimic the TS for hydrolysis of an aspartyl phosphate.

Subsequent work has described a similar tetrahedral moiety for the Na?/K? pump

ATPase (PDB: 2zxe) [56].

Fig. 13 a Structure of Ca2? pump ATPase with MgF4
= (PDB: 1wpg). Coordination for MgF4

= is typical of
an aspartyl trifluoromagnesate complex (colors: fluorine, light blue; magnesium, green; nitrogen, blue,
oxygen, red; carbons, silver). b Structure of hPPIP5K2 (PDB: 2q9p) to show the ‘‘Mg4F9’’ cluster
adjacent to phosphates 4 and 5 of Ins6P
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Finally, the most remarkable MFx structure is that of a human diphosphoinositol

phosphatase, co-crystallized with myo-inositol hexakis-phosphate and then soaked

with sodium fluoride (PDB: 2q9p) [57]. This complex has four octahedral

magnesiums with nine ligands assigned as fluorines in a complex that embraces

MgF2, MgF3, MgF4, and MgF5 species in a single block. It also offers the first

example of octahedral MgFx (Fig. 13b). Its core appears related to the Rutile

structure of MgF2, which is characterized by octahedral magnesium and trigonal

planar fluorine [58].

6 19F NMR Studies of MF
x
Complexes

The very high gyromagnetic ratio (25.18 9 107 T-1 s-1) of 19F gives it very high

sensitivity in NMR, which facilitates detection of fluorine-containing species at low

concentration in large molecular weight complexes, as illustrated for AlF4
– and

MgF3
– complexes with RhoA�GAP�GDP (Fig. 14a, b) [44, 50, 51, 59, 60]. In the

context of TSAs and GSAs, the chemical shifts of 19F resonances provide a key

measure of interactions between MFx moieties and their protein hosts, and report the

electronic environment of the fluorine nuclei. When combined with NMR

computations, they also act as indirect reporters of changes in electronic

environment experienced by phosphoryl oxygen atoms in transfer reaction TSs

[44, 61, 62]. 19F NMR resonances display a high degree of dispersion and are

calculable with good precision from QM analysis of electronic distribution

[37, 51, 63], showing resonances strongly affected by neighboring H-bond donors.

Reduction in the number of H-bond partners generally results in upfield shift of 19F

resonances, as shown clearly in a comparison of the G6P and the 2-deoxy G6P

Fig. 14 a 1D 19F NMR spectra of: a RhoA/GAP�GDP�AlF4
– TSA complex with four fluorines

rotationally averaged [44, 48]. b RhoA/GAP�GDP�MgF3
– TSA complex with three fluorines resolved

[44]. c Conversion of the cAPK�ADP�AlF4
– TSA complex to the cAPK�ADP�MgF3

– TSA complex in a
pH titration from pH 7.0 to pH 9.0 [50]. The 19F resonance at -119 ppm in each spectrum is from free F–

ion, while the broad peaks around-156 ppm are from unbound MgF? and AlFx species, which may often
overlap with protein bound fluorine resonances. In those cases, presaturation of the free fluoride
resonance at -120 ppm can be applied to eliminate the unbound metal fluoride signals
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complexes of bPGM (-18.1 ppm) [53]. In general, the resonance of the fluorine

coordinated to a catalytic magnesium is always the most upfield, because of

depletion of H-bond coordination [44, 45, 50, 51, 53, 60, 62]. Proton distribution

near fluorine nuclei can be further assessed through the quantitation of 19F-1H NOEs

using perdeuterated enzyme in protonated buffer to suppress the 1H–1H spin

diffusion [49, 51], while resonance assignment of exchangeable 1H nuclei in the

protein enables unambiguous assignment of individual 19F NMR resonances. The

number of H-bond donors can also be assigned based on solvent induced hydrogen/

deuterium primary isotope shifts (SIIS) of 19F NMR resonances. For NH���F and

OH���F H–bonds to MFx moieties, the SIIS size reflects local proton densities [64],

and this has been used to assign FA, FB, and FC in a bPGM�MgF3
–
�G6P TSA

complex [62].

Scalar coupling between nuclei involved with N–H���F H-bonds is an additional

parameter that shows details of the coordination of the MFx moiety by the protein.
1JHF and

2JNF couplings have been reported for individual NH���F pairs, with values

up to 59 and 36 Hz, respectively [62]. All the effects described above, SIIS, NOE,

chemical shifts, and scalar couplings, correlate closely with H-bonding orientations

and distances obtained from high resolution crystal structure analysis. 19F chemical

shifts are invariant over the pH range 6.5–9.5, they signal that there is no

detectable change in protonation state of the enzyme in the environment of the TS

complex, but the pH dependence of 19F NMR resonances and multiplicity can

identify a switch from AlF4
– to MgF3

– complexes above pH 8, as illustrated for

cAPK (Fig. 14c) [57].

NMR measurements of 19F nuclei in the active site of MFx TSA complexes thus

provide a picture of charge distribution between the phosphoryl group mimic and

the protein. The good relationship between 19F NMR chemical shifts and SIIS

values illustrates the dominant influence that very localized H-bonds have on

shaping charge density on MFx moieties.

7 Computational Analyses of MF
x
Complexes

7.1 Balancing Accuracy of Energy/Structure and Conformational Sampling

A computational simulation of the structure and bonding of a biochemical system at

atomic resolution has two demanding features:

1. The solution of accurate molecular energies, ideally with as little parameter-

ization as possible;

2. The exhaustive consideration of relevant conformations of macromolecules.

For the simulation of biomolecules, it is unavoidable that both criteria must be

approximated to varying degrees. In practice, different computational methods put

different emphasis on one or the other of these two features. Any useful calculation

must meet both criteria adequately. Solutions of the energy of a macromolecule, and

thence its structure, should be made for each conformer of the molecule. Hence, the
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task of achieving reliable energies severely raises the cost of the computation. This

constraint therefore drives down the number of conformers to be computed, with the

risk that the program may fail to examine the specific conformation most relevant

for the reaction under investigation.

To attain a compromise between these two features, the methodology used has to

strike a balance between defining a central quantum mechanics (QM) zone and a

molecular mechanics (MM) zone dealing with the major part of the macromolecule

and environment. The combination of the two regions is called a QM/MM

calculation. A QM description is necessary to describe bond–breaking–making

processes or electronic excited states because molecular mechanics cannot describe

these phenomena. Different balances between these two features are achieved by

different choices in the apportionment of resource to the QM region. These include

Kohn–Sham density functional theory (KS-DFT) [65–69] and empirical valence

bond (EVB) [70, 71], while similar choices exist for the MM zone. However, the

QM zone is the priority region.

7.2 Tradeoff in Accuracy of Energy/Structure: Parameterization

Simplification vs. Mathematical Complexity

Accurate molecular energies can be obtained in an unbiased, systematically

correctable manner [72–74] to get the desired accuracy. However, the computa-

tional resource required is very expensive, and is usually unacceptable because

resource must be apportioned to adequate conformational sampling. In general,

either an approximate QM method such as KS-DFT is used, or a heavily

parameterized model is designed for a specific system such as EVB. Briefly,

parameterization can tailor a QM method specifically to that molecule under

analysis—and thereby eliminate many mathematical degrees of freedom. Hence, the

calculation can be performed rapidly and can incorporate greater conformational

sampling, but it must rely on the assumption that the reduced mathematical form

faithfully represents the true quantum mechanics. By contrast, the various KS-DFT

forms have parameters which are fixed by the design of the functions, and are

completely independent of that particular biomolecule under investigation. Thus,

the application of KS-DFT to a specific biomolecule has no freedom to change

parameters to suit the target. Hence, KS-DFT deploys a more general mathematical

framework, and more faithfully echoes exact quantum mechanics within budget.

7.3 Tradeoffs in Conformational Sampling: Dynamics vs. Statics

In order to balance the budget of the computation program, a choice has to be made

between dynamics and statics. On the one hand, a dynamics description delivers an

explicit femtosecond-by-femtosecond time evolution of the atoms, boosted by

metadynamics [67]. On the other hand, a statics analysis of a few discrete critical

points along the reaction identifies TSs and/or intermediates as maxima/minima

along the reaction coordinate. Each has its strengths and weaknesses.

A dynamics computation shows the true time-evolution of the molecular system,

especially how atoms re-arrange to move along all possible reaction paths, step-by-
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step. All possible chemical reactions/conformations are sampled in due frequency

with the Boltzmann distribution of states. The computation does not ‘‘target’’ a

specific reaction path. TSs are rare-events, require long simulations or metady-

namics [67], and so demand a smaller QM zone to allow an adequately fast

calculation. This reduction of the QM zone, relative to that for statics described

below, makes possible the conformational sampling needed to find the right state. A

balance has to be struck between faithfully computing dynamics or prioritizing

accurate energy calculations.

The choice for statics in following a reaction path, selected a priori, enables easy

identification of the TSs for bond-breaking-making using standard quantum

chemistry algorithms. Mathematical properties of energy maxima (TSs) and

minima (intermediates) can be sought automatically. Users can seek out any desired

pathway, but they have to sacrifice an understanding of the relative values of each

path. This requires minimal computational resource compared to that required for a

dynamics calculation, and so can accept a much larger QM region and/or a more

accurate QM calculation. However, the a priori choice of the conformation is risky:

it depends strongly on the accuracy of choice of the true TS conformation, which

may or may not be found among existing crystal structures in the PDB.

Take for example the first mechanistic step of the hairpin ribozyme. This is

cleavage of the bond from the 30-phosphate of A-12 to the 50-oxygen of G13 to form

a 20,30-cyclic phosphate which has been modeled as a pentacoordinate vanadate

TSA structure (PDB: 1m5o, 2.2-Å resolution; Fig. 15a). The two proximate

nucleobases are G8’ and A57’ whose catalytic roles are controversial: there is good

support for protonation of A57’-N1 but some debate whether G8’ is deprotonated on

N1 or not. The computation accepted formation of an intermediate pentacoordinated

phosphorane and then posed the question: ‘‘How and when is the proton removed

from A8-O2’ and transferred to PO2A?’’ A thorough benchmark study of
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Fig. 15 a Ab initio mechanism for the first step of the hammerhead ribozyme reaction showing PT from
Ade12-O2’ to PO2 in the formation of a transient pentaoxyphosphorane species. b Crystal structure of the
hammerhead ribozyme as a tbp vanadate complex (PDB: 1m5o). c DFT computed mechanism for PT to
the anionic Gua8’ preceding bond formation from P to Ade12-O2’ (colors: carbon, green; nitrogen, blue;
oxygen, red; vanadium, grey; H-bonds, red dashes)
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comparative QM/MM methods has been applied to this mechanism [75], comparing

an ab initio method (i.e., no parameterization) with a KS-DFT method (a small

number of fixed parameters). As the energy differences for the two paths should be

comparable, a careful QM analysis was necessary. Ab initio energy barrier

prediction matched experimental estimates, giving good support to Mechanism 1

(Fig. 15b) with a direct four-center proton transfer (PT), not involving a neutral

G8’.3 However, it was observed that the flow of atoms predicted by the

parameterized method was inconsistent with benchmark calculations. The authors

therefore employed umbrella sampling in a KS-DFT analysis to achieve dynamics

convergence, and found Mechanism 2 to be preferred with the anionic G8’ acting as

a base to abstract the proton from Ado12-O2’ (Fig. 15c).

7.4 KS-DFT as a QM Region Description

The most commonly chosen methodology for describing the QM portion is KS-

DFT4 functionals. This makes a practical compromise between precision and cost of

computation (Sect. 7.2). KS-DFT dispersion-corrected functionals can now describe

molecular geometries to within 0.02 Å [76–78], and are particularly valuable

because their description of energies and geometries is unbiased. They have been

shown to describe basic bond-breaking behavior, H-bonding, and energetics

[77–81]. In a QM/MM calculation, the boundary region at the interface between the

QM zone and the MM zone can be problematic because the energies on the QM side

need not be the same as those on the MM side. Any mismatch between kinetic and

potential energies across the boundary leads to un-physical behavior. This boundary

problem can be eliminated by depriving large portions of the macromolecule of an

MM force field, which calls for a tradeoff between:

1. A more faithful representation of long-range chemical interactions and a

potentially problematic boundary between zones introducing artifacts; and

2. Neglect of long-range chemical interactions altogether, with no un-physical

artifacts introduced by the QM/MM boundary.

Either choice is problematic, and a case-by-case decision must be made. In

some cases, to avoid boundary complexities exclusively QM calculations have

been used, usually KS-DFT. They usually rely wholly on experimental data from

the structure of a TS mimic, thereby obviating the need for a conformational

search, and allowing full investment of the computational resource to maximize

the size of the QM zone. For example, a recent study of GTP hydrolysis by RhoA/

GAP to identify the reaction mechanism employed a large QM calculation [44].

The KS-DFT zone was large enough to embrace the reacting methyl triphosphate,

its coordinating magnesium and nucleophilic water, and also residues from some

3 NB In other computational studies, such four-center PTs for phosphoryl reactions have been deemed to

be very high energy.
4 In literature meant for using DFT in organic, biological, or inorganic applications, ‘‘KS-DFT’’ and

‘‘DFT’’ are used largely interchangeably. Theoreticians draw a distinction between these terms; KS-DFT

is a subset of DFT for the given selection of expressing the kinetic energy in terms of orbitals.
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18 additional amino acids that contribute to the stability of a network of 21

H-bonds which deliver the conformation of the TS for water attack on PG.

Successive rounds of DFT computing established that contributions from atoms in

the third solvation shell of the transferring phosphoryl group were required to

deliver stability. The result was a QM region of 91 heavy atoms (181 total atoms)

(Fig. 16). Because the starting TSA structure (PDB: 1ow3) was of sufficiently

high resolution (1.8 Å) to give confidence that the study was based on a reliable

model of the TS, the addition of an MM contribution was bypassed, obviating the

need for a QM/MM boundary. However, this limited the computational output to

geometric and spectroscopic features. The absence of conformational sampling,

sacrificed because of the large and very expensive QM region, also limits

comment on activation energies.

The iterative computational procedure delivered a mechanism in which the

nucleophilic water is doubly protonated with H-bonds to carbonyl oxygens of both

T37 and Q63 residues until after the TS for bond making/breaking, thereby

orientating the nucleophilic water for good orbital overlap with the antibonding

O3B-PG r* orbital. PTs are not seen in the TS, but occur subsequently.

7.5 EVB as a QM Region Description

The Empirical Valence Bond method deploys a simplified mathematical

framework to achieve the most rigorous possible conformational sampling. In

essence, the EVB framework is largely a molecular mechanics based method,

with the exception of its representation of a single ‘‘orbital’’ for each molecule,

identified as involved in the bond–breaking–making reaction. No other electrons/

orbitals are represented explicitly. This framework thus imposes the presumption

that only a single orbital is involved in the bond-reorganization for a reaction.

The EVB parameterization process is fundamentally chemistry-imposed: it

identifies, a priori, what orbitals are involved and dictates chemistry-based

molecular mechanics energy functions. This is in sharp contrast to a KS-DFT

prescription of a QM region, which is fundamentally agnostic of chemistry, not

defining bonds or selecting orbitals targeted for reaction, but merely defining a

total number of electrons and nuclei involved, with no presumption of chemistry.

As a result of the EVB simplifications, larger-scale changes in molecular

conformation can be observed. In this way, the initial conditions of the

experimental crystal structure are not a trap; the computational protocol allows

the biomolecule to move freely.

A study of the mechanism of DNA polymerase b provides a good example of the

application of the EVB methodology [82]. The questions under examination were

(i) the destination and timing of PT from the nucleophilic 30-OH, with three

aspartates and water as potential acceptors, and (ii) the concerted or stepwise nature

of phosphorus migration.5 The starting structure was native DNApolb (PDB: 2fms,

2.0 Å resolution) and some 70 heavy atoms were included in the QM zone (Fig. 17),

linked to the assumption that the reaction takes place in the three steps: a PT from

5 A previous study favored a concerted reaction path (Lin et al. [83]).
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the primer 3’OH, followed by in-line nucleophilic attack of 3’O– on the dUTP a-

phosphate, with reaction completed by departure of pyrophosphate. Particular

attention was paid to the electrostatic role of the two catalytic magnesium ions

through the course of the reaction. The computations were guided by consideration

of the pH-rate profile for wt and mutant polymerases and focused on seven EVB

states. This led to the conclusion that PT from the nucleophilic hydroxyl group is to

bulk water via a chain of water molecules that extends into the active site, rather

than to any of the three neighboring aspartates (as favored in previous studies) and

precedes P–O bond formation. The phosphorylation process was found to be

Fig. 16 Atoms in the QM zone for KS-DFT computation of the TS for GTP hydrolysis by RhoA/
RhoGAP showing the 21 H-bonds in the catalytic network (red dashes) with ligands coordinated to Mg
(green dashes). Amino acid residues are numbered according to RhoA sequence plus Arg85’ from
RhoGAP (Figure taken from Ref. [44])

Fig. 17 EVB analysis of
DNApolb showing atoms used
in the QM region, augmented by
additional water oxygens
(magenta) and the focal
hydrogen undergoing transfer
(white sphere), and taken from
PDB: 4fms
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associative with a pentacovalent intermediate,6 though the investigation warned that

extensive sampling is essential for EVB analysis of reaction mechanisms.

7.6 The Use of MF
x
in Computational Studies of Enzyme Mechanisms

As has been described above, protein trifluoroberyllate complexes are fundamen-

tally different from those involving metal fluorides of aluminum and magnesium.

They have closely similar tetrahedral geometry and net charge to the parent

phosphate, their macromolecular structures have folds and atomic organization

that relate to the ground state structures they mimic. On the other hand, AlF4
–,

‘‘AlF3
0’’, and MgF3

– complexes have geometries that bring two axial ligands into

alignment and proximity typical of the TS for concerted phosphoryl transfer, and

this results in protein folds and atom coordination that resembles the TS for

reaction. Computational enterprises have taken up both of these opportunities for a

plethora of purposes. The growth in such studies is illustrated in the

chart (Fig. 18). In practice, the three MFx categories converge for the majority

of computer purposes as they are usually transposed into PO3
– at an early stage in

the computation. Therefore, the major part of the following description of

computational studies on mechanisms of phosphoryl transfer will be focused on

the target protein.

7.6.1 Validation of MFx as a TSA for Phosphoryl Transfer

Relatively few computational studies have been directed at the structural identity of

the MFx complex per se. A contentious 1.8 Å resolution structure (PDB: 1o03)

focused on a six-atom tbp complex for bPGM, initially described as a pentaoxy-

phosphorane [84]. They have converged on identification of (a) the observed crystal

structure as a five-coordinate trifluoromagnesate complex rather than a five-

coordinate phosphorus [24], (b) an active site stabilized by an extensive H-bonding

network, and (c) a concerted transfer of the phosphoryl group without a

stable phosphorane or metaphosphate intermediate [85–87]. They concluded that

MgF3
– is a good TSA that can give insight into the geometry of the phosphoryl

transfer TSs. A second example is a QM/MM analysis of the atomic nature of an

MFx moiety in a TSA complex for the key kinase, cAPK [61]. The structure of a tbp

complex for cAPK�ADP�MFx was originally described as AlF3
0 (PDB: 1l3r) but QM/

MM simulations suggest that MgF3
– is the correct description of the tbp moiety

rather than AlF3
0, and that MgF3

– is a near isosteric fit to PO3
– in the computed TS

for the hydrolysis of ATP [61, 88]. This result agrees with a 19F NMR analysis, have

been directed at MFx complexes for cAPK [50]. The computations conclude that

this kinase prefers a monoanionic analog (MgF3
- or AlF4

-) over a neutral analog

(AlF3
0) to match the -ve charge on the phosphoryl group.

6 It should be added that recent structural studies suggest that one of the catalytic magnesiums is lost

from its pre-TS location during the bond-making-breaking process and then appears in a new location

(PDB: 4klf and 4klg).
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7.6.2 Studies Linking Reaction Mechanisms from Model Systems to MFx Enzyme

Complexes

Early QM studies on phosphoryl transfer analyzed the hydrolysis of methyl

phosphate [89] and methyl pyrophosphate [90], added magnesium [91], and then

transposed the results into the context of the Ras GTPase active site. The result does

not match well to the MFx structure for Ras�RasGAP (PDB: 1wq1) because (i) the

computed OA—OD separation lies in the region 4.7–5.5 Å and in the MFx structure

is 4.4 Å. (ii) The computation calls for a second water to facilitate PT [92], however,

in those (few) instances where a second water is seen in high-resolution MFx
structures for Ras, it occupies the site vacated by a displaced or missing Gln61

residue, and is in no position to deliver the proposed catalysis (Fig. 7a).

7.7 Computations Transposing GDP�MF
x
into GTP Enzyme Complexes

7.7.1 Ras Family and GTP Hydrolysis

The use of MFx TSA structures to identify the TS for hydrolysis of GTP by Ras

proteins has been the basis of many computations. Several studies have used PDB:

1wq1 [22], the 2.5 Å-resolution structure of Ras�RasGAP�GDP�AlF3
0 as starting

point, and have employed both QM/MM [92–99] and EVB approaches [100, 101].

Some of these have aroused expert criticism of limitations inherent in the QM/MM

approach [102]. The results have varied widely, from a two-step reaction

mechanism with bond breaking preceding bond making (i.e. a dissociative process;

Scheme 1a) [100], to exclusion of water by the arginine finger [98], tautomeric

catalysis [17], electrostatic catalysis [101], a two-water mechanism [92], and sundry

rationalizations of the adverse effects of mutations [97, 99, 101]. The QM zone has

generally been limited to 30–40 heavy atoms and, in consequence, has not examined

the role of the function of several amino acids in contact with the reactants, most

Fig. 18 Growth of computational publications since 1994 showing QM results on AlF4
– leading with

[AlF3
0
? MgF3

–] comparable to studies based on BeF3
- complexes
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especially the extensive H-bonding network (as in Fig. 16). By contrast, an

alternative computational approach using Kohn–Sham DFT analysis for RhoA�R-

hoGAP hydrolysis of GTP employed a QM zone of 91 heavy atoms, embracing a

network of 21 H-bonds, and has attributed catalysis to orbital orientation determined

by protein control of H-bonds donated by the nucleophilic water (Fig. 16) [44]. The

same study validated the high relevance of MgF3
– as a TSA by back-computing its

structure from that of the calculated structure for the true TS complex for GTP

hydrolysis.

7.7.2 Other GTPases and GTP Hydrolysis

A study on the structures of a GMP�AlF3
0 complex (PDB: 2b8w) and a GDP�AlF4

-

complex (PDB: 2b92) for hGBP1, has linked a mechanism for the hydrolysis of

methyl triphosphate (MTP) to the two-step hydrolysis of GTP to GDP and thence to

GMP by this interferon-activated human GTPase (Fig. 7b). The computation

employed dated ab initio QM/MM molecular dynamics to simulate the hydrolysis of

both GTP and of MTP as a reference system [103]. The study proposes that GTP

hydrolysis involves an indirect, substrate-assisted catalysis mechanism, identifying

the nearest general base as Glu99, which is 6.2 Å from the nucleophilic water in the

TSA complex. This separation problem was resolved by invoking transmission of

base catalysis via one water to Ser73, and thence via a second water to the

nucleophilic water. These bridging waters are not present in the substantive (3.2 Å

resolution) TSA complex but appear to be imported from a structure of hGBP1 with

b, c-imino-GTP that is clearly an NAC complex (PDB: 2bc9; 2.8 Å resolution).

This investigation merits a cautionary comment on the frailties of a computational

analysis based on structures of poor resolution, under-informed by an adequate

grasp of mechanisms of phosphoryl transfer.

7.8 Computations Transposing ADP�MF
x
into ATP Enzyme Complexes

7.8.1 ATP Hydrolysis by Myosin

Myosins are a family of ATP-dependent motor proteins whose role in muscle

contraction is driven by ATP hydrolysis. Multiple structures of Mg�ADP�MFx exist,

including BeF3
– (PDB: 1w9i and 1mmd) and AlF4

– (PDB: 1w9l and 1wj9). These

structures have been used to identify the catalytic amino acids and locate key water

molecules, especially the nucleophilic water that attacks in-line at PG (Fig. 8a). A

recent QM/MM computation of the hydrolysis of ATP used a DFT method with

B3LYP functional and a 6–31G(d,p) basis set to treat 84 atoms in the active site for

the Mg�ADP�BeF3
– structure of the myosin II head group (PDB: 1mmd), with ATP

modeled by replacing BeF3 with a phosphate (cf. Fig. 4a) [104]. Although the

starting structure for the computation (Fig. 19a) has the nucleophilic water (Wa) in a

NAC, as defined by its H-bond proximity to F
2 (2.7 Å) and out-of-line angle for the

attack on Be (152̊), the simulations delivered a H-bond network that lead to the final

product, H2P
GO4

-. The proposed mechanism involves formation of a
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stable metaphosphate intermediate prior to the TS followed by a series of PTs

(Fig. 19b).

7.8.2 ATP Hydrolysis by F1 ATPase

F1-ATPase (ATP synthase) is a membrane-bound protein that uses a proton gradient

to drive ATP synthesis. There are three prime MFx complexes for the a3b3 assembly

at resolutions from C2.0 Å (PDB: 1w0j, 1h8e, and 1e1r). These have been starting

points for multiple computational studies, of which the majority are concerned with

energetics of the chemical step, coupling between the subunits and the rotor, and

rotational behavior of the synthetic complex [102, 105–107]. More recent studies

involve the juxtaposition of several structures from the PDB. One of these builds a

visual comparative structural approach that emphasizes pivotal roles for Mg2? and

protein P-loop residues in synthesizing ATP (159–163). It uses four structures,

including the ATPase�Mg�ADP�AlF4
– complex (PDB: 1h8e; Fig. 20) [108].

7.8.3 Phosphoryl Transfer in Kinases

The catalytic subunit of cAPK is a serine/threonine kinase responsible for many of

the effects of cAMP signaling. It is a prototype for the kinase family that uses two

catalytic magnesiums, and has become the most widely studied of all kinases. Many

computations have focused on the phosphorylation of a serine in the target peptide

by ATP, but recent advances in high-resolution structures of an NAC complex with

b,c-imino-ATP and the products from its slow reaction during crystallization

combined with an MgADP�AlF3
0 TSA, (PDB: 1rl0) [109] have given new

opportunities for computational analysis. One of these, using MP2/aug-cc-pVTZ/

CHARMM//B3LYP/6-31 ? G(d)/CHARMM electronic structure calculations with

Fig. 19 Mechanism of ATP hydrolysis by myosin. a Myosin complex with Mg�ADP�BeF3
- (PDB:

1mmd) at 1.95 Å, with beryllium (lemon sphere) trifluoride bonded to O2B of ADP (cyan). Amino acids
in network (silver, blue, red) shown with H-bonds to TSA complex (red dashes). Nucleophilic water (red
sphere) is in a NAC. b The key feature of the metaphosphate state is the extreme polarization of waterWa,
due to two H-bonds with the Ser237–C=O and water. Attack of Wa on PG involves attendant PTs via the
helper water, Wh (red arrows) [104]
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a completely solvated model of the cAPKcat–ATPMg2–SP20 system finds that a

dissociative concerted mechanism involving two consecutive steps is more

favorable than an associative mechanism [110, 111] or a concerted loose

mechanism [112] (Scheme 1b). In step 1, phosphoryl transfer involves a dissocia-

tive TS with an O–PG–O distance of 4.7 Å. Then, step 2 follows with back-

protonation of the serine phosphate.

The range of analyses to be found in such computations has to be set against

recent structural work. The superposition of well-resolved complexes of cAPK with

reactant, MgADP�MgF3
– TSA analog (PDB: 1l3r), and a product complex

(PDB:1rdq) [113] shows structurally that the overall reaction is defined by the

geometry of active site residues and involves migration of phosphorus only 1.1 Å

from start to finish with OA–OD separation *4.5 Å in the TS (Fig. 21). Other

kindred analyses have shown similar results [26].

Fig. 20 F1ATPase�Mg�ADP�AlF4
- TSA complex for ATP hydrolysis (PDB: 1h8e) showing in-line

water attack on aluminum (red sphere) (color: phosphorus, orange; amino acids, gray; adenosine, cyan;
waters, red sphere)

Fig. 21 Superposition of the active site of cAPK for 55% reactant and 45% product (PDB: 1rdq, red
sticks), TSA (PDB: 1r3l, gray sticks), and product (PDB: 4hpt) after conformational change post-
reaction. Alignment of invariant amino acids (silver) and adenosine residues shows the high quality of fit
(aligned for all Ca). The inset shows an orthogonal view of the threefold overlay of PGO3 and its mimic
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7.9 Thoughts from Computations

The first phase of computational studies for phosphoryl transfer was largely focused

on finding a close match between computed activation energies and the

experimental ones. However, recent advances in computational methodology have

cast a shadow on earlier methods, where the energy error might easily lie in the

range of 2–10 kcal mol-1, with error spreading as large as 30 kcal mol-1

[78, 114, 115]. Current protocols enable a much larger number of heavy atoms to

be embraced in the QM zone, leading to computer results that hinge on geometry of

the TS and the H-bond network that it embraces [44, 108, 111]. Such analyses have

identified the propensity of nucleotide analogs, particularly b,c-iminoATP, b,c-

methyleneATP, and their GTP counterparts, to deliver NACs for phosphoryl

transfer processes, which is now recognized in recent computational studies as

capable of generating small but highly significant conformational changes in kinases

and GTPases [44, 108]. Lastly, the belief that enzymes work by optimizing reaction

mechanisms that work slowly in solution, as Knowles put it ‘‘Not different, Just

better’’ [116], is proving to be wide of the mark for phosphate reactions. There is

growing evidence that phosphoryl transfer takes place in a desolvated environment

to enable full protein control of the catalytic region. Water is rigorously excluded to

avoid disruption of H-bond networks that are essential for the organization of

catalysis.

8 Conclusions

Trifluoroberyllate, tetrafluoroaluminate, and trifluoromagnesate are the primary

anionic MFx species that can mimic the phosphoryl group. Structural, spectroscopic,

and computational methods have combined to validate their use as surrogates for

PO3
– in ground state and transition state analog complexes for many enzymes. Their

use has delivered details of phosphoryl transfer at atomic resolution and supported

investigations of protein folding and aggregation for tertiary structure problems. In

particular, their analysis has confirmed existing concepts, introduced new ideas, and

set new goals, of which the following comprise a brief summary:

• In-line stereochemistry and concertedness for SN2(P) reactions has been

established at atomic resolution;

• Relative priority of charge over geometry in transition state organization is well

supported;

• Subtle conformational differences between NAC and TS conformations of

amino acid functions are increasingly apparent;

• The role of H-bond networks to give structural coherence to proteins in

transition states is burgeoning;

• The propensity of anionic phosphate oxygens to H-bond to ROH nucleophiles

explains the need for solvent exclusion from the TS, while its impedance offers a

new interpretation of general base catalysis.
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