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Human acute and inflammatory pain requires the expression of voltage-gated sodium channel 
nav1.7 but its significance for neuropathic pain is unknown. Here we show that nav1.7 
expression in different sets of mouse sensory and sympathetic neurons underlies distinct 
types of pain sensation. Ablating nav1.7 gene (SCN9A) expression in all sensory neurons using 
Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to 
heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in nav1.8-positive 
nociceptors. surprisingly, responses to the hotplate test, as well as neuropathic pain, are 
unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both 
sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-
free phenotype seen in humans with SCN9A loss-of-function mutations. These observations 
demonstrate an important role for nav1.7 in sympathetic neurons in neuropathic pain, and 
provide possible insights into the mechanisms that underlie gain-of-function nav1.7-dependent 
pain conditions. 
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Voltage-gated sodium channels are crucial determinants of 
neuronal excitability and signalling. Voltage-gated sodium 
channels Nav1.7, 1.8 and 1.9 are expressed in peripheral neu-

rons and have been linked to pain pathways1. The biophysical char-
acteristics of Nav1.7 suggest a role in initiating action potentials in 
response to depolarization of sensory neurons by noxious stimuli2,3. 
Nav1.8 is a major contributor to the upstroke of action potentials in 
sensory neurons and is essential for cold pain perception4. Nav1.9 
influences inflammatory pain thresholds by producing a persistent 
current that helps determine the resting membrane potential5.

Rare human genetic conditions involving Nav1.7 mutations 
demonstrate its important role in pain pathways. Dominant gain-
of-function mutations can cause primary erythromelalgia, result-
ing in burning pain and flushing6. Mutations associated with the 
condition, for example F1449V7 and L858H8, result in lower 
thresholds for action potential firing and higher-frequency firing in  
sensory neurons. Other gain-of-function Nav1.7 mutations that 
cause defective fast inactivation may cause burning pain associated 
with paroxysmal extreme pain disorder (PEPD), in which mechani-
cal stimulation triggers pain9. Loss-of-function recessive mutations 
cause congenital insensitivity to pain (CIP) and anosmia; individu-
als with this syndrome are of normal intelligence and can function 
effectively3,10. These observations highlight Nav1.7 as a potentially 
useful target for the development of novel analgesics.

Early studies on Nav1.7 function in transgenic mice focused on 
the role of this channel in Nav1.8-positive nociceptors11. Deletion 
of the SCN9A gene in these neurons results in a loss of sensitivity 
to high-threshold noxious mechanical stimuli and major deficits 
in inflammatory pain. Unlike humans with global loss-of-function 
mutations, however, there is no deficit in noxious thermosensation. 
Here we have used Cre recombinase expressed in different sets of 
sensory and sympathetic neurons to explore modality-specific pain 

sensations that are dependent on the expression of Nav1.7. Advillin 
is an actin-binding protein that is selectively expressed within all 
trigeminal and dorsal root ganglion (DRG) neurons12,13. We used 
Cre driven by the Advillin promoter to delete Nav1.7 in all sensory 
neurons14, and compared phenotypes with mice in which Nav1.7 is 
deleted using Cre driven by Nav1.8 in a subpopulation of sensory 
neurons (Nav1.7Nav1.8)11. Wnt1 is expressed in neural crest cells 
that are the precursors of sensory and autonomic neurons15. This 
has allowed us to exploit a Wnt1-Cre mouse16 to examine the con-
tribution of Nav1.7 to pain behaviour in both the sensory and sym-
pathetic neurons, where it is selectively expressed17. We have thus 
been able to define the pain modalities associated with different sets 
of peripheral neurons that express Nav1.7. We provide evidence that 
Nav1.7 may be involved at both the central as well as the periph-
eral terminals of sensory neurons in pain signalling. We also dem-
onstrate an interaction between sympathetic and primary sensory 
neurons in acute heat sensing as well as neuropathic pain, which are 
both dependent upon Nav1.7 activity. These experiments provide a 
comprehensive mouse model of human CIP for mechanistic studies 
and reinforce the significance of Nav1.7 as an analgesic drug target.

Results
Pan-DRG neuron gene ablation with an Advillin-Cre mouse. The 
expression pattern of functional Cre was first examined by crossing 
an Advillin-Cre knock-in-positive mouse line14 with Rosa26 floxed-
stop β-galactosidase-expressing reporter mice18. X-gal staining 
of E14.5 Advillin-Cre-positive reporter (Advillin-Cre + / − ) mice 
embryos showed that Cre expression is confined to the DRG and 
trigeminal neurons (Fig. 1a,b), while no staining is seen in Advillin-
Cre-negative reporter mice. Positive X-gal staining was seen in 
all DRG cells in sections taken from 6-week-old-Advillin-Cre + / −  
reporter mice (Fig. 1c). No positive staining was seen in other 
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Figure 1 | Advillin and Wnt1 Cre expression pattern and pain behaviour of Advillin-Cre mice. (a,b) Expression pattern of Cre activity. Arrow: trigeminal, 
arrowhead: DRG (scale bar 1 mm). X-gal staining of Advillin-Cre positive (c) DRG and (d) sCG sections, and Wnt1-Cre positive (e) DRG and (f) sCG 
sections (scale bar 100 µm). Acute nociceptive responses of heterozygous Advillin-Cre (orange columns) and littermate (white columns) mice (n shown 
as littermate/AdCre + / − ). (g) motor coordination: Rotarod test (N = 15/16). (h) Light touch: von Frey (N = 15/16). (i) mechanical pain: Randall–selitto test 
(N = 13/16). (j) Thermal spinal reflex: Hargreaves’ test (N = 15/16). (k) noxious cooling: acetone test (N = 10/11). (l) supraspinal thermal: hotplate test at 
50 and 55 °C (N = 6/6). All behavioural data analysed by t-test. Results are presented as mean ± s.e.m.
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tissues sampled, including the superior cervical ganglia (SCG— 
Fig. 1d). This X-gal staining seen in Advillin-Cre + / −  reporter mice 
corroborates previous studies of expression patterns using in  situ 
hybridization and human placental alkaline phosphatase reporter 
mice12. The expression pattern of Wnt1-Cre has been reported16, 
and was confirmed by crossing Wnt1-Cre-positive mice with 
Rosa26 floxed-stop β-galactosidase reporter mice. Positive X-gal 
staining was seen in both DRG and SCG isolated from Wnt1-Cre-
positive reporter mice (Fig. 1e,f). A count of cells with positive 
staining for antibodies to neurofilament N200 protein (a marker 
of A-fibre-associated sensory neurons—Supplementary Fig. S1a,b) 
as well as peripherin (a marker of nociceptive sensory neurons—
Supplementary Fig. S1a,b) shows no neuronal loss in Advillin-
Cre + / −  mice (Supplementary Fig. S1c).

Having established that Advillin-Cre was effective in deleting 
genes in all sensory neurons, we examined the behaviour of the 
Advillin-Cre mouse line. Motor function was assessed using the 
Rotarod test19, which showed that the responses of Advillin-Cre + / −  
mice are the same as those of wild-type littermate controls (Fig. 1g). 
Mechanosensation assessed using von Frey filaments applied to the 
hindpaw and the Randall–Selitto test applied to the tail also showed 
normal responses in Advillin-Cre + / −  mice (Fig. 1h,i). Finally, pain 
behaviour in response to noxious thermal stimuli applied to the 
hindpaw(s) was also normal (Fig. 1j–l). Behavioural responses to 
both short- and long-term inflammatory pain models were also 
normal in Advillin-Cre + / −  mice (Fig. 2a–e). Similarly, mechanical 
sensitivity developed normally in response to surgically induced 
neuropathic pain (Fig. 2f). The same acute pain tests as described 
above were performed on Wnt1-Cre-expressing mice, which 
showed responses similar to wild-type littermate controls (Supple-
mentary Fig. S2a–f). Wnt1-Cre mice have previously been shown  
to have normal behavioural responses in both inflammatory and 
neuropathic pain models20. Thus, there are no background prob-
lems in interpreting behavioural phenotypes when using these mice 
for gene deletion studies.

Polymerase chain reaction (PCR) analysis showed that SCN9A 
exons 14 and 15 are deleted in cDNA isolated from DRG in 
homozygous floxed SCN9A, Advillin-Cre + / −  mice (Nav1.7Advill) 
but not in the littermate homozygous floxed SCN9A Advillin-Cre-
negative mice (Supplementary Fig. S3a). However, exons 14 and 15 
remain intact in the SCG that contain the cell bodies of sympathetic 
neurons in Nav1.7Advill mice (Supplementary Fig. S3b). In contrast, 
exons 14 and 15 are deleted in cDNA isolated from both DRG and 
SCG (Supplementary Fig. S3c,d) in the homozygous floxed SCN9A, 
Wnt1-Cre-positive mice (Nav1.7Wnt1).

Nav1.7 knockout mice define pain modality-specific neurons. 
By comparing the pain behaviour of different mouse lines, it was 
possible to examine the role of Nav1.7 expressed in Nav1.8-positive 
sensory neurons (Nav1.7Nav1.8), all sensory neurons (Nav1.7Advill) 
or sensory and sympathetic neurons (Nav1.7Wnt1). Analysis of the 
behavioural responses of Nav1.7Nav1.8 Nav1.7Advill and Nav1.7Wnt1 
mice in a number of different pain models showed that their pain 
phenotypes differ. Fig. 3a shows that all three Nav1.7 knockout 
mouse strains show pronounced analgesia in terms of noxious 
mechanosensation measured with a Randall–Selitto apparatus, when 
compared with their littermate controls. This confirms the find-
ings of Nassar et al.11, who examined the Nav1.7Nav1.8 mouse. The  
Randall–Selitto test results suggest that deleting Nav1.7 within 
Nav1.8-positive DRG neurons is sufficient to abolish responses to 
mechanical pain. However, the results of the acetone (noxious cool-
ing) test (Fig. 3b) and Hargreaves’ (thermal: spinal withdrawal reflex) 
test (Fig. 3c) show deficits in the Nav1.7Advill and Nav1.7Wnt1 mice, 
while the behavioural response of Nav1.7Nav1.8 was not significantly 
different from littermate controls (confirmed by separate behavioural 
tests—Supplementary Fig. S4a,b). Thus, noxious cooling-evoked  

behaviour and spinal withdrawal reflexes to noxious heat require 
Nav1.7 expression in Nav1.8-negative sensory neurons. How-
ever, this is not true for supraspinal responses to the hotplate test  
(Fig. 3d—discussed below). Other work supports the view that 
Nav1.7 expressed within Nav1.8-positive DRG neurons contrib-
utes little to thermal nociceptive processing. Abrahamsen et  al.21 
showed that behavioural responses to noxious thermal stimuli (with 
the exception of extreme cold) remain intact in mice in which all 
Nav1.8-positive neurons have been ablated with diphtheria toxin 
(Nav1.8DTA). Additionally, in  vivo electrophysiological record-
ings from spinal lamina V wide dynamic range (WDR) neurons 
in Nav1.7Advill Nav1.7Nav1.8 and Nav1.8DTA mice corroborate the  
behavioural data. Critically, WDR responses in Nav1.7Advill mice 
show that both noxious heat and mechanical stimuli are attenuated 
(Fig. 3e,f). In contrast, only mechanically evoked and not heat-
evoked WDR responses are attenuated in both Nav1.7Nav1.8 mice11 
and Nav1.8DTA mice21. This demonstrates clearly that Nav1.7 
expressed in Nav1.8-positive DRG neurons is essential for process-
ing noxious mechanical stimuli while Nav1.7 in Nav1.8-negative 
DRG neurons is essential for processing noxious thermal stimuli.
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Figure 2 | Advillin-Cre does not affect inflammatory or neuropathic 
pain behaviour. Advillin-Cre + / −  (orange boxes/columns), littermates 
(white boxes/columns). (a,b) Behavioural responses of Advillin-Cre + / −  
(N = 12) wild-type littermate (N = 8) mice following intraplantar injection 
of 20 µl of 5% formalin. (c) von Frey 50% threshold response of Advillin-
Cre + / −  (N = 9) and wild-type littermate (N = 8) mice following intraplantar 
injection of 20 µl of complete Freund’s adjuvant. (d) Hargreaves’ test 
responses of Advillin-Cre + / −  mice (N = 9) and wild-type littermate 
(N = 8) mice following intraplantar injection of 20 µl of complete Freund’s 
adjuvant. (e) Hargreaves’ test response of Advillin-Cre + / −  mice (N = 12) 
and wild-type littermates (N = 10) mice following intraplantar injection 
of 20 µl of carrageenan. (f) von Frey 50% threshold response of Advillin-
Cre + / −  mice (N = 12) and wild-type littermates (N = 10) mice following  
L5 snT. All data analysed by two-way analysis of variance followed by  
the Bonferroni post hoc test. Results are presented as mean ± s.e.m.
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Nav1.7 is expressed in sympathetic as well as sensory neurons2,17. 
By using the Wnt1 promoter to drive Cre expression it is possible 
to delete genes in neural crest derivatives including autonomic and 
sensory neurons. Therefore, we could identify any role for Nav1.7 in 
sympathetic neurons by comparing the phenotype of Nav1.7Advill 
and Nav1.7Wnt1 mice. Interestingly, only Nav1.7Wnt1 mice have  
an attenuated response to the hotplate test (Fig. 3d), which is a 
measure of supra-spinal responses22 to damaging thermal stimuli 
rather than a spinal reflex involving only cells in the spinal cord23. 
In contrast, Nav1.7Advill (as well as Nav1.7Nav1.8) mice show nor-
mal hotplate pain behaviour (Fig. 3d). However, this does not mean 
that Nav1.7 in sympathetic neurons alone confers sensitivity to the  
hotplate test. Chemical sympathectomy using 6-hydroxydopamine 
(6-OHDA)24 in wild-type mice has no effect on behavioural 
responses to the hotplate test (Fig. 3g) or any other acute pain thresh-
olds tested (Supplementary Fig. S5a–f). However, when chemical 
sympathectomy is combined with the deletion of sensory neuron 
Nav1.7 in Nav1.7Advill mice, the hotplate response is diminished 
(Fig. 3h). Thus, only when Nav1.7 expression is lost in both sensory 
and sympathetic neurons do mice become unresponsive (Fig. 3d). 
Despite the role of the sympathetic nervous system in thermoregu-
lation, the core temperature and skin temperature of Nav1.7Wnt1  
(Fig. 4a) and 6-OHDA-treated mice (Supplementary Fig. S5g) were 
found to be normal.

We next examined the responses of the three Nav1.7 knockout 
lines to noxious cold stimuli, and compared them with a global 
Nav1.8 knockout mouse that is known to lose sensitivity to nox-
ious cold4. Interestingly, the Nav1.8 knockout mouse responded  
to acetone-induced cooling in the same way as littermate control 
mice (Fig. 4b), but showed an attenuated response to extreme cold 
(Fig. 4c). In contrast, all three Nav1.7 conditional knockout mouse 

lines that showed attenuated responses to acetone-induced cool-
ing (Fig. 3b) avoided extreme cold like their littermate controls  
(Fig. 4d). Thus, noxious cold sensation is not Nav1.7 depend-
ent. Finally, all three Nav1.7 knockout mouse lines showed nor-
mal responses to light touch and motor coordination (Fig. 4e,f),  
reinforcing the link between Nav1.7 and pain rather than innocuous 
somatosensation.

Substance P release from DRG neurons is Nav1.7 dependent. The 
functional consequences of deleting Nav1.7 in DRG neurons were 
further examined electrophysiologically. Nav1.7Advill DRG neurons 
showed a significant average reduction in tetrodotoxin (TTX)- 
sensitive sodium current amplitude, whereas TTX-resistant sodium 
currents were unchanged (Fig. 5a). Complete current–voltage rela-
tionships are shown in Fig. 5b,c. Approximately 30% of small DRG 
neurons have been shown to be electrically silenced by the deletion 
of Nav1.7 in Nav1.8-positive DRG neurons25. We found that elec-
trically stimulated polysynaptic peripheral input into spinal lam-
ina V WDR neurons no longer resulted in wind-up (Fig. 5d)—an  
N-methyl-D-aspartate receptor-mediated form of long-term sensi-
tization that requires substance P release from sensory neurons26. 
Substance P release from sensory neurons was therefore measured 
in Nav1.7Advill mice. Strikingly, electrical stimulation of isolated  
sciatic nerve roots failed to induce increased substance P release 
into the dorsal horn of Nav1.7Advill mice (Fig. 5e).

The deficits in sensory neuron function and lack of wind-up 
may be related to pain behaviour assessed using the formalin test. 
This comprises a first phase of paw licking driven by nociceptor 
activation followed by a second phase associated with spinal cord 
hypersensitivity mediated by chemical messengers including sub-
stance P27. Nav1.7Advill mice show a striking ~75% decrease in 
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Figure 3 | Nociceptive responses of different tissue-specific Nav1.7 KO mice. Littermate (white columns), nav1.7nav1.8 (blue columns), nav1.7Advill  
(red columns) and nav1.7Wnt1 (green columns), n shown as littermate/nav1.7nav1.8/nav1.7Advill/nav1.7Wnt1. (a) Randall–selitto test (noxious  
mechanical stimulus; N = 23/6/13/5). (b) Acetone cooling test (noxious cooling stimulus; N = 29/6/7/5). (c) Hargreaves’ test (spinal noxious heat 
stimulus; N = 22/6/7/7). (d) Hotplate test (supraspinal noxious heat stimulus; N = 37/8/19/10): in vivo electrophysiological spinal cord recording from 
nav1.7Advill (red boxes) and littermate (white boxes) mice. (e) Thermally evoked WDR responses (N = 6 per group). (f) mechanically evoked WDR 
responses (N = 6 per group). (g) Hotplate test following 6-oHDA treated (purple column, N = 10) and untreated (white column, N = 12) C57/Black6 
mice. (h) Hotplate test of nav1.7Advill (red column, N = 7) and littermate mice (white column, N = 12) following chemical 6-oHDA treatment. (a–d) Data 
analysed by t-test, (e–h) data analysed by two-way analysis of variance followed by the Bonferroni post hoc test. Results are presented as mean ± s.e.m. 
**P < 0.01 and ***P < 0.001 (individual points).
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behavioural responses during phase II of the formalin test (Fig. 5f), 
which is similar to the phase II phenotype of both Nav1.7Nav1.8 and 
Nav1.8DTA mice11,21.

Interestingly, Nav1.7Advill mice show a large phase I behav-
ioural deficit (~50% decrease in behavioural responses) whereas 
Nav1.7Nav1.8 mice11 and Nav1.8DTA mice21 do not. This suggests 
an important role for Nav1.7 expressed in Nav1.8-negative DRG  
neurons during the initial nociceptive phase of the formalin test26.

Neuropathic pain requires Nav1.7 in sympathetic neurons.  
Previously Nassar et  al.11 showed that Nav1.7Nav1.8 mice 
develop neuropathic pain normally. Thus, Nav1.7 expressed in 
Nav1.8-positive neurons, while making a major contribution to  
inflammatory pain, does not contribute to neuropathic pain11. 
Importantly, Nav1.8DTA mice also develop neuropathic pain nor-
mally, showing that Nav1.8-positive neurons are not required 

for the development of neuropathic pain28. However, recently a 
blocker of inactivated Nav1.7 has been claimed to reverse mechani-
cal hyperalgesia associated with neuropathic pain models28. This 
suggests a possible contribution to neuropathic pain of Nav1.7 
expressed in Nav1.8-negative DRG neurons, which remain intact 
within Nav1.7Nav1.8 mice. Therefore, Nav1.7Advill mice in which 
Nav1.7 is lost in all sensory neurons were examined. Nav1.7Advill 
mice developed mechanical hypersensitivity to the same extent as 
normal littermates, following spinal nerve transection (SNT) at the 
fifth lumbar segment—a model of neuropathic pain29–31 (Fig. 6a). 
Thus, Nav1.7 in sensory neurons is not required for the develop-
ment of neuropathic pain. In contrast, Nav1.7Wnt1 mice show a  
pronounced attenuation in the development of mechanical sensi-
tization and return to baseline behaviour ( ± 10%) within 10 days  
following surgery (Fig. 6b). This set of observations demonstrate 
that Nav1.7 expression in sympathetic neurons is essential for the 
establishment of neuropathic pain. An important role for sympa-
thetic neurons in neuropathic pain is further demonstrated by the 
ability of a chemical sympathectomy to partially alleviate mechani-
cal hypersensitivity in Nav1.7Wnt1 littermate mice following SNT 
(Fig. 6c). In these experiments, neuropathic pain was established 
for 28 days, followed by chemical sympathectomy. A substantial, if 
incomplete, reversal of mechanical hypersensitivity was observed 
consistent with a sympathetic sensory interaction contribu-
tion to the establishment of neuropathic pain. These results may 
help explain the apparent utility of Nav1.7 antagonists in treating  
neuropathic pain27.

Discussion
The apparently normal phenotype of humans with SCN9A loss-of-
function mutations, apart from anosmia and loss of pain sensation, 
has focused attention on Nav1.7 as a plausible analgesic drug target. 
Ablation of the channel using the Cre-loxP system in mice leads to 
silencing of a significant set of sensory neurons25. We found that 
TTX-sensitive current densities were reduced in sensory neurons 
that no longer express Nav1.7. More surprisingly, we found that 
substance P release into the dorsal horn of the spinal cord evoked 
by electrical stimulation was completely abolished in the absence 
of Nav1.7, leading to a loss of wind-up and centrally mediated pain 
sensitization. In the olfactory system, Weiss et al.10 have shown that 
while olfactory neurons support action potential propagation in 
the absence of Nav1.7, the release of neurotransmitter from olfac-
tory neurons is completely abolished, leading to anosmia. A simi-
lar deficit may occur in DRG sensory neurons. Thus, Nav1.7 may 
contribute to pain signalling by DRG neurons in three ways: (1) by 
recruiting Nav1.8 to transmit noxious input into the spinal cord1,2; 
(2) by supporting action potential propagation25,32 and (3) by regu-
lating neurotransmitter release at central terminals10.

In terms of responses to innocuous stimuli and motor function,  
the ablation of Nav1.7 in all sensory and sympathetic neurons  
is without effect (Fig. 4e,f). However, threshold withdrawal behav-
ioural responses to noxious pressure require Nav1.7 in a set of  
sensory neurons that express Nav1.8. This corroborates previ-
ous findings in Nav1.7Nav1.8 mice11 and Nav1.8DTA mice21. Reflex 
threshold withdrawal responses to noxious heat are dependent on 
Nav1.7 expression in a different set of sensory neurons that do not 
express Nav1.8, an observation consistent with cell ablation studies21. 
Noxious cold is the sole pain modality that is Nav1.7 independent 
(Fig. 4d), confirming a previously described role for Nav1.8, which 
is sensitized at low temperatures4 (Fig. 4c). Responses to noxious 
cooling associated with the application of acetone, however, are not 
dependent on Nav1.8 (Fig. 4b), but depend upon Nav1.7 expression 
in Nav1.8-negative sensory neurons.

Acute pain has a clear survival function. Inflammatory pain has 
a positive role in enhancing self-protection and wound healing,  
but may cause considerable suffering in chronic inflammatory 
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Figure 4 | Behavioural responses of different tissue-specific Nav1.7 and 
Nav1.8 KO mice to cooling and extreme cold. n shown as littermate/ 
nav1.7Wnt1. (a) nav1.7Wnt1 (green columns) and littermate (white columns)  
core (N = 12/13) and skin temperature (N = 12/9). (b) Behavioural response 
of nav1.8 Ko (turquoise column, N = 5) and littermate (white column, 
N = 7) mice to the acetone cooling test. (c) Behavioural response of 
nav1.8 Ko (turquoise columns, N = 8) and littermate (white columns, 
N = 6) thermal place preference test. (d–f) Littermate (white columns), 
nav1.7nav1.8 (blue columns), nav1.7Advill (red columns), nav1.7Wnt1 (green 
columns) n shown as littermate/nav1.7nav1.8/nav1.7Advill/nav1.7Wnt1.  
(d) Behavioural response of all three nav1.7 tissue-specific knockout mice 
to thermal place preference test (N = 15/8/8/8). (e) Behavioural response 
of all three nav1.7 tissue-specific knockout mice to the von Frey test.  
(f) Behavioural response of all three nav1.7 tissue-specific knockout  
mice to the Rotarod test (N = 23/8/13/9). (a,b) Data analysed by t-test, 
(c–f) data analysed by two-way analysis of variance followed by the 
Bonferroni post hoc test. Results are presented as mean ± s.e.m. **P < 0.01 
(individual points).
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conditions such as arthritis. It has been established that Nav1.7 
expressed in Nav1.8-positive neurons has an essential role in inflam-
matory pain. Interestingly, thermal hyperalgesia, but not threshold 
noxious heat sensing, is mediated by Nav1.7 in the Nav1.8-positive 
population. This observation confirms that distinct cells and wir-
ing patterns are associated with acute and sensitized thermosensa-
tion21. Figure 7 summarizes the relationship between different types 

of pain sensation and the expression patterns of sodium channels 
Nav1.7 and Nav1.8.

One of the least understood and most problematic aspects of 
pain remains neuropathic pain. This may be because a variety of 
different mechanisms sensitize pain pathways after nerve damage. 
Nav1.7 expressed in Nav1.8-positive nociceptors is not required 
for the development of neuropathic pain in mouse models11, and 
the studies reported here show that Nav1.7 deletion in all sensory 
neurons also does not significantly impair the development of  
neuropathic pain. As the number of CIP patients is very limited, 
there is no information on the importance of Nav1.7 for the devel-
opment of neuropathic pain in humans. We wondered if Nav1.7 in 
the sympathetic nervous system contributed to neuropathic pain, 
as early studies in rodents33 had made a compelling case for a sym-
pathetic contribution to this type of pain. Interestingly, ablation of 
Nav1.7 in both sensory and sympathetic neurons markedly dimin-
ished neuropathic pain in the SNT model investigated here29,30. 
This observation demonstrates an interaction between sympathetic 
and sensory neurons to produce neuropathic pain that is repre-
sented schematically in Fig. 7. Interestingly, pain behaviour evoked 
by the hotplate test is also dependent on Nav1.7 in sympathetic and 
sensory neurons. Behavioural responses to the hotplate test have 
been shown to be supraspinally integrated22,23,34. A number of 
experimental manipulations specifically affect the hotplate behav-
ioural response, but not reflex heat-evoked behaviour (typically 
tail-flick)34–37. Animals in which nerve growth factor (NGF) deple-
tion leads to loss of sensory and sympathetic neurons also show  
a loss of hotplate sensitivity while mechanical thresholds and ther-
mal reflex behaviour are unaffected38. NGF is not required for the 
survival of parasympathetic neurons39. This is consistent with a role 
for sympathetic neurons rather than other autonomic neurons in 
this pain behaviour. Silencing sympathetic and some sensory neu-
rons by deleting VGLUT2 with Cre recombinase driven by the tyro-
sine hydroxylase promoter also causes a loss of hotplate sensitivity 
while acute mechanical pain remains intact40. In contrast, selectively 
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deleting VGLUT2 using Nav1.8-Cre results in a behavioural pheno-
type where mechanical pain behaviour is lost while thermal pain 
remains intact41. These findings directly mirror the behavioural 
phenotypes associated with selective deletion of Nav1.7 within  
different neuronal subpopulations (Fig. 7).

The role of the sympathetic nervous system in pain pathways has 
been confirmed in some rat models of neuropathic pain33. Clinical 
studies have also shown a role for the sympathetic nervous system in 
acute human pain, for example, post-surgical pain42. General inter-
est in the role of the sympathetic nervous system in pain pathways 
has diminished because sympathetic block has little effect in many 
human studies26. Our results suggest that a combination of sensory 
and sympathetic block may prove to be more effective in treating 
some pain states than a sensory block alone, perhaps because com-
plete sensory block may be hard to achieve. How sympathetic and 
sensory neurons interact to enhance pain sensations is unclear; 
interactions at nerve terminals, cell bodies and centrally have  
all been invoked as possible mechanisms43. Interactions between 
sympathetic neurons and the neuronal somata of DRG neurons 
(Dogiel’s arborizations) have been described in normal animals 
since the era of Ramón y Cajal44. Sprouting and specific interactions 
with sensory neurons by sympathetic neurons have been observed in 
several chronic pain models and recently quantitated with reporter 
mice45. Complex regional pain syndrome characterized by chronic 
burning pain and flushing in limbs supports the view that sympa-
thetic input may contribute to pain, although the role of Nav1.7 has 
not been explored in this condition26.

How do these findings relate to known human Nav1.7-dependent  
pain pathologies? It is striking that the principal sensation associ-
ated with all gain-of-function Nav1.7 mutations is burning pain. 
A possible explanation for this is that the heat-sensing subset of 
Nav1.7-expressing (Nav1.8 negative) sensory neurons show lower 
thresholds of activation than the Nav1.7-expressing Nav1.8-positive  
set of classical nociceptors linked to noxious mechanosensation. 
Interestingly, sympathetic block is effective in the treatment of some 

erythromelalgia cases, consistent with a contribution by sympathetic 
neurons to acute heat sensing (Bang et al.46 and references therein). 
Overexpression studies of gain-of-function Nav1.7 erythromela-
lgia-associated mutant channels in SCG neuronal somata have 
shown diminished excitability of sympathetic neurons, although 
it is unclear if lower physiological levels of Nav1.7 expression also 
silence sympathetic neurons.8

PEPD is also characterized by a burning pain evoked principally 
by mechanical stimuli. The association of PEPD with paroxysms  
of rectal, ocular or sub-mandibular pain with flushing could be 
related to the sympathetic contribution to this condition.2 The  
Harlequin-like nature of flushing also implicates the autonomic 
nervous system (see, for example, Drummond and Lance47).  
Age-related alterations in autonomic nervous system function  
could also be a factor in time of onset of primary erythromelalgia, 
which is remarkably variable in different patients48. Finally, the abil-
ity to abolish all pain modalities in mice that fail to express Nav1.7 
in the periphery provide a useful model of CIP for mechanistic 
studies, and confirms the utility of mouse models of human disease 
for mechanistic studies. These data confirm the potential of Nav1.7 
as an analgesic drug target not only for acute and inflammatory pain 
but also for neuropathic pain.

Methods
Cre expression. Cre expression was visualized using Rosa26 floxed-stop 
β-galactosidase reporter mice18. Tissues were removed and stained as described 
previously49. Briefly, animals were terminally anaesthetized using sodium pento-
barbitone (Rhône Mérieux), before the thoracic cavity was opened, the right atrium 
nicked and the animal perfused, via the left ventricle, with 20 ml of ice-cold PBS 
followed by 20 ml of ice-cold 4% paraformaldehyde (PFA) in PBS. Organs were 
removed from their surrounding tissue, rinsed in PBS and fixed in ice-cold 4%  
PFA for 10–60 min. All tissues were stored in 30% sucrose + 0.02% sodium azide  
at 4 °C before sectioning. Slides were washed in PBS before overnight staining  
with X-gal solution (5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 
2 mM MgCl2 and 0.5 mg ml − 1 X-gal in dimethyl formamide in PBS) at 35 °C.  
Slides were washed three times in PBS before mounting.

Genotyping. Genomic DNA was isolated from ear or DRG. Nav1.7 was detected 
by PCR as described previously11. The primers used were the following:

Advillin wild-type (480 bp) and Advillin-Cre (180 bp) fragments 
  5′-CCCTGTTCACTGTGAGTAGG-3′ (Advillin forward)
  5′-AGTATCTGGTAGGTGCTTCCAG-3′ (Advillin wild-type reverse)
  5′-GCGATCCCTGAACATGTCCATC-3′ (Advillin-Cre reverse).

Wnt1-Cre fragment (629 bp)
  5′-ATCCGAAAAGAAAACGTTGA-3′ (forward)
  5′-ATCCAGGTTACGGATATAGT-3′ (reverse).

Nav1.7 wild-type fragment (317 bp), Nav1.7 floxed fragment (461 bp) and Nav1.7 
knockout fragment (395 bp)

  5′-CAGAGATTTCTGCATTAGAATTTGTTC-3′ (Nav1.7 forward)
   5′-AGTCTTTGTGGCACACGTTACCTC-3′ (Nav1.7 wild-type/floxed 

reverse)
  5′-GTTCCTCTCTTTGAATGCTGGGCA-3′ (Nav1.7 knockout reverse).

Behavioural experiments. All tests were approved by the United Kingdom  
Home Office Animals (Scientific Procedures) Act 1986. Experiments were  
conducted using both male and female wild-type littermate and knockout mice,  
all of which were at least 6 weeks old when tested. Observers who performed  
behavioural experiments were blind to the genotype of the animals. The produc-
tion of the SCN9A floxed mice has been described earlier11; Nav1.8-Cre mice  
are described in Stirling et al.49; Wnt1-Cre mice are described in Danielian et al.16 
Advillin reporter mice are described in Hasegawa et al.12 and Advillin-Cre  
mice in Zhou et al.14 Nav1.8 global knockout mice were described in  
Akopian et al.50

Motor coordination, thermal and mechanical nociceptive, was assessed as 
described previously11,51. Briefly, animals were acclimatized to the test chambers 
before testing.Rotarod: Animals were placed onto the Rotarod at 4 r.p.m., which 
was then accelerated to a maximum of 40 r.p.m. within 90 s, with a cutoff of 120 s. 
Hargreaves’ thermal test: The animal’s hindpaw was exposed to an intense light 
beam and the withdrawal latency recorded. Hotplate: Animals were exposed to 
either a 50°C or a 55°C chamber floor and the withdrawal latency recorded.  
Thermal Place Preference (BioSeb, France) was used to assess cold avoidance.  
Von Frey: The up-down method described by Chaplan et al.52 was used to  
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Figure 7 | The neuron-specific role of Nav1.7 in different pain states. 
nav1.7 expressed in nav1.8-positive sensory neurons (blue) is required 
for mechanical pain as well as inflammatory thermal and mechanical 
hyperalgesia11,21. nav1.7 expressed in nav1.8-negative neurons (red) is 
required for thermal acute pain sensing (but not extreme cold, which is 
dependent on nav1.84,21). A contribution of both sensory and sympathetic 
(grey) nav1.7-mediated signalling is required for neuropathic pain and 
responses to the hotplate test.
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determine a 50% response threshold. Randall–Selitto test: A blunt probe was used 
to apply force approximately midway along the tail.

Formalin test. Twenty microlitres of 5% formalin was injected into the hindpaw 
(intraplanter). Spontaneous nocifensive behavioural responses were recorded for 
60 min post injection.

Neuropathic pain model. A modified version of the Kim and Chung31 model of 
peripheral neuropathy was adapted for use on mice29,30. Thermal and mechanical 
thresholds were recorded at baseline and up to 28 days post surgery.

Chemical sympathectomy. 6-OHDA (Sigma) was dissolved in sterile saline  
containing 0.01% (w/v) ascorbic acid (vehicle) and was injected intraperitoneally  
at a concentration of 200 mg kg − 1 (ref. 53). Control mice received an equivalent  
volume of vehicle alone. To verify the effectiveness of this treatment in depleting 
norepinephrine, spleens were collected and analysed for the presence of  
norepinephrine by mass spectrometry.

Spinal cord electrophysiology. In vivo electrophysiological recordings were 
obtained from single WDR neurons in lamina V within the L3–L5 region of the 
spinal cord of anaesthetized mice54. Neuronal activity in response to a train of  
16 electrical stimuli (2 ms wide pulses at 0.5 Hz), delivered transcutaneously by 
means of pins inserted into the hindpaw, was recorded. Von Frey filaments and 
heated water jets were applied to the hindpaw for a period of 10 s to evoke  
mechanical and thermal nociceptive responses, respectively.

The release of substance P from dorsal horn slices was measured as described 
previously55. Briefly, the lumbosacral spinal cord was excised and longitudinally 
hemisected, producing a horizontal slice with L4 and L5 dorsal roots attached. 
One slice was obtained from each animal, mounted in the central compartment 
of a three-compartment chamber and continuously superfused (1 ml min − 1) 
with oxygenated (95% O2 + 5% CO2) Krebs’ solution (in mol l − 1: NaCl, 118; KCl, 
4; MgSO4, 1.2; KH2PO4, 1.2; NaHCO3, 25; CaCl2, 2.5 and glucose, 11) contain-
ing 0.1% BSA, 20 µg ml − 1 bacitracin, 100 µM captopril, 1 µM phosphoramidon 
and 6 µM dithiothreitol (Sigma, UK). BSA and protease inhibitors were added to 
minimize loss of detectable substance P through surface adhesion and to prevent 
degradation. The dorsal roots were then electrically stimulated (20 V, 0.5 ms, 1 Hz 
for 8 min). Superfusates were concentrated using C18 Sep-Pak reverse phase silica 
gel cartridges (Waters Associates, Watford, UK) and substance P measured by 
radioimmunoassay.

Statistics. Data were analysed using the GraphPad Prism 4. Student’s t-test  
(two-tailed) was used for comparison of difference between two distributions. 
Multiple groups were compared using one-way or two-way analysis of variance 
with the Bonferroni post hoc test.

Immunocytochemistry. DRGs were excised from animals, fresh frozen in optimal 
cutting temperature compound (OCT), sectioned and post-fixed in 4% PFA for 
5 min and then washed in PBS containing 30% sucrose. Serial 10-µm sections 
were mounted on sequential slides and air-dried for at least 2 h at room tempera-
ture. Slides were washed in PBS + 0.3% Triton X-100, blocked in 10% goat serum 
in PBS + 0.3% Triton for 1 h at room temperature and incubated in the primary 
antibody, diluted in the same blocking solution, overnight at 4 °C. After washing in 
PBS + 0.3% Triton X-100, bound primary antibodies were detected by incubating 
with the secondary antibody at room temperature for 2 h. The slides were then 
washed in PBS + 0.3% Triton X-100 and mounted using aqueous mounting  
solution. The following primary antibodies were used:

   Peripherin, immunoglobulin G (IgG) mouse monoclonal anti-peripherin 
(Sigma, UK, P-5117), 1:1,000 dilution.

   N200, IgG rabbit anti-neurofilament 200 (Sigma, UK, N4142), 1:200  
dilution.

The following secondary antibodies were used:
   Alexa594, monoclonal goat anti-rabbit IgG (Invitrogen, UK, 11037), 1:1,000 

dilution.
   Alexa488, monoclonal goat anti-mouse IgG (Invitrogen, UK, A11017), 

1:1,000 dilution.

PCR analysis of mRNA. Total RNA was isolated from DRG. Reverse transcription 
was performed with 1 µg of RNA by using the iScript Select cDNA synthesis kit 
(Bio-Rad, catalogue #170–8896). The Nav1.7 wild-type fragment (1007 bp)  
and knockout fragment (478 bp) were detected by PCR with the following  
primers:

  5-CCATGGTGGTACAGATTTGCT-3 (forward)
  5-CTTATCTCCGCAAGGGTACG-3 (reverse).

Cell culture. DRGs from all spinal levels were dissected from adult mice killed by 
CO2 asphyxiation and prepared using a standard enzymatic dissociation procedure 
as described49. Briefly, following incubation in a Dispase (Gibco)/collagenase (type 
XI, Sigma) mix for 40 min the ganglia were mechanically triturated using a 1-ml 

Gilson pipette. The ganglia were centrifuged and resuspended in Dulbecco’s  
modified Eagle’s media supplemented with 10% fetal bovine serum, 1% Glutamax, 
1% penicillin/streptomycin and 125 ng ml − 1 NGF. For electrophysiological record-
ing, dissociated neurons were plated on 35-mm plastic dishes (Nunc, Denmark) 
coated with poly-l-lysine and laminin and used up to 24 h after plating.

For electrophysiological recording, dissociated neurons were plated on 35-mm 
plastic dishes (Nunc, Denmark) coated with poly-l-lysine and laminin and used  
up to 24 h after plating.

Whole-cell recording. Experiments were performed blind to genotype. The  
external solution contained (in mM): 35 NaCl, 105 CholineCl, 3 KCl, 1 MgCl2,  
1 CaCl2, 10 glucose and 10 HEPES, pH adjusted to 7.3 and osmolarity to 
320 osM l − 1 with NaOH and glucose, respectively. Pipettes were filled with a  
solution containing (in mM): 140 CsF, 10 NaCl, 2 MgCl2, 0.1 CaCl2, 1.1 EGTA,  
10 HEPES, pH adjusted to 7.2 and osmolarity to 310 osM with CsOH and glucose, 
respectively. Pipette resistances were 1.8–2.5 MΩ when filled with internal solution 
and pipette tips were coated in Sylgard to reduce capacitance. Recordings were 
made at room temperature (20–22 °C).

Data acquisition and analysis. Data were acquired and analysed using the 
pClamp software (version 8.0; Axon Instruments). Currents were recorded  
from small cells ( < 25 µm) using an Axopatch (200 series) patch clamp amplifier, 
filtered at 5 kHz and sampled at 20 kHz. The series resistance was compensated 
(60–75%).

Cells were depolarized to a variety of potentials ( − 80 to  + 40 mV) from a  
holding potential of  − 120 mV. The TTX-sensitive sodium current was determined 
as the current that was sensitive to block by 500 nM TTX and was obtained by  
digitally subtracting the TTX-resistant component from the total inward current. 
The current density was obtained by dividing the peak current by the cell capaci-
tance as read from the amplifier. Current densities were obtained by dividing the 
current at each potential by the cell capacitance as read from the amplifier. 
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