This is a repository copy of *The feasibility of parametric approaches to predictive control when using far future feed forward information*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113755/

Version: Accepted Version

Proceedings Paper:
Dughman, S.S. and Rossiter, J.A. orcid.org/0000-0002-1336-0633 (2017) The feasibility of parametric approaches to predictive control when using far future feed forward information. In: 2017 13th IEEE International Conference on Control & Automation (ICCA). 13th IEEE International Conference on Control and Automation, 03/07/2017 - 06/07/2017, Ohrid, Macedonia. Institute of Electrical and Electronics Engineers.

https://doi.org/10.1109/ICCA.2017.8003215

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The feasibility of parametric approaches to predictive control when using far future feed forward information

S. S. Dughman
Department of Automatic Control
and Systems Engineering
University of Sheffield
Sheffield S1 3JD UK
Email: ssdughman1@sheffield.ac.uk

J. A. Rossiter
Department of Automatic Control
and Systems Engineering
University of Sheffield
Sheffield S1 3JD UK
Email: j.a.rossiter@sheffield.ac.uk

Abstract—This paper considers the tractability of parametric solvers for predictive control based optimisations, when future target information is incorporated. It is shown that the inclusion of future target information can significantly increase the implied parametric dimension to an extent that is undesirable and likely to lead to intractable problems. The paper then proposes some alternative methods for incorporating the desired target information, while minimising the implied growth in the parametric dimensions, at some possibly small cost to optimality.

Index Terms—Parametric predictive control, advance knowledge, computational efficiency.

I. INTRODUCTION

One of the most significant advances in predictive control of the past 20 years has been the recognition that one can define the solution of a quadratic programme (QP), in full, using off-line computations [1], [12]. As long as this off-line (or so-called parametric) solution is not too complex, then coding and implementing this on-line may be far simpler than implementing an on-line QP optimiser. The parametric solution offers the potential for reliability, transparency (important for validation and certification) and most importantly, very fast sample rates for some systems.

Nevertheless, parametric solutions also have their disadvantages and the literature is full of possible solutions to counter these [10]. For example: (i) in some cases the parametric solution can be difficult to compute reliably due to poor conditioning; (ii) where the parametric solution requires large numbers of regions it may not longer be computationally efficient.

This brief paper makes a minor contribution to one aspect of computational complexity. To define what this contribution will be, it is first useful to define a generic QP optimisation and its parametric solution.

$$\min w^TSz + z^TPw \quad \text{s.t.} \quad Nz + Mw \leq d \quad (1)$$

where w is a system state and z are the degrees of freedom (d.o.f.) and parameters S, P, N, M, d define the cost function and linear constraints. A parametric solution (often denoted MPQP) partitions the space into a number of non-overlapping regions for the system state such that the optimal solution for (1) is equivalent to:

$$N_i w \leq d_i \Rightarrow z = K_i w + p_i, \quad i = 1, 2, \ldots, n \quad (2)$$

for suitable N_i, d_i, K_i, p_i.

It is recognised that there is a strong link between the dimension of the state w and the required number of regions n to capture the entire solution. Hence, in general, parametric solutions are favoured for systems with a low state dimension but less likely to be useful for high state dimensions. Moreover, the higher the state dimension, the more likely one is to encounter conditioning problems in the MPQP solver. The main aim of this paper therefore is to ask the question, can we reduce the state dimension for some specific predictive control problems? In particular, the focus here is on the handling of feedforward information such as future target information which, in principle, can be embedded systematically into predictive control algorithms.

Section 2 will outline the predictive control problems to be discussed and sections 3 will demonstrate how the state dimension can be reduced using some elementary algebra and re-parametrisation for the optimisation degrees of freedom. The paper finishes with some examples and conclusions.

II. BACKGROUND ON PREDICTIVE CONTROL

This section summarises briefly the optimisation implicit in two popular predictive control algorithms, generalised predictive control (GPC) [4] and optimal predictive control (OMPC) [14], [18]; some fine details are omitted as both algorithms are well known and some details are not central to this paper. A specific and important point is to consider how set point information is incorporated [5], [6], [19] as this detail is often omitted or neglected in the mainstream literature.

For simplicity this paper assumes a state space model of the following form.

$$x_{k+1} = Ax_k + B\Delta u_k; \quad y_k = Cx_k \quad (3)$$
with x_k, u_k, y_k the states, input and output respectively with dimensions n_x, m, m and $\Delta u_k = u_k - u_{k-1}$. The system is subject to constraints, typically (others are possible):

$$\begin{align*}
\underline{y} \leq u_k \leq \bar{u}; & \quad \Delta u_k \leq \Delta u_k \leq \Delta \bar{u}; & \quad \underline{y} \leq y_k \leq \bar{y} \quad (4)
\end{align*}$$

Furthermore, define the future target \bar{r}_{k+1} as follows:

$$\bar{r}_{k+1} = [r_{k+1}^T, r_{k+2}^T, \ldots, r_{k+n_y}^T]^T \quad (5)$$

A. Generalised predictive control [4, 15]

GPC uses a finite horizon performance index of the following form:

$$J = \| r_{k+1} - y_{k+1} \|_2^2 + \lambda \| \Delta u_k \|_2^2$$

where the definitions of $y_{k+1}, \Delta u_k$ are analogous to (5) except that Δu_k has n_u terms with $n_u \ll n_y$ in general. The predictions can be shown to obey equations of the following form, for suitable matrices P_x, H:

$$y_{k+1} = H \Delta u_k + P_x x_k \quad (7)$$

Expanding the performance index in full using the predictions of (7) gives:

$$J = \Delta u_k^T (H^T H + \lambda I) \Delta u_k + \Delta u_k^T H^T (P_x x_k - \bar{r}_{k+1}) + \alpha \cdot \alpha = (r_{k+1} - P_x x_k)^T (r_{k+1} - P_x x_k) \quad (8)$$

Satisfaction of constraints (4) over the horizon n_y can be shown to be equivalent to a set of linear inequalities captured as follows (for suitable M, N, d):

$$N \Delta u_k + M x_k \leq d \quad (9)$$

Note, it is implicit here that the model (3) includes a state with information about u_k.

Algorithm 2.1: GPC is defined as follows. At each sample, perform the quadratic programming optimisation

$$\min \Delta u_k \text{ s.t. } N \Delta u_k + M x_k \leq d \quad (10)$$

Implement the first value of Δu_k, that is Δu_k.

Next a lemma and corollary illustrate the major difficulty which is the focus of this paper.

Lemma 1: Optimisation (10) can be recast in the same form as (1).

Proof: Removing the term α which does not depend upon the degrees of freedom, and then combining parameters which may vary with time (that is \bar{r}_{k+1}, x_k) the performance index can be reformatted as:

$$\begin{align*}
J \equiv \Delta u_k^T \left(H^T H + \lambda I \right) \Delta u_k + \Delta u_k^T H^T [P_x, -I] \left(\begin{array}{c} x_k \\ \bar{r}_{k+1} \end{array} \right) + \nu_k \quad (11)
\end{align*}$$

In a similar way, the constraints (9) can be reformatted as follows:

$$N \Delta u_k + [M, 0] \nu_k \leq d \quad (12)$$

Corollary 1: Including advance knowledge \bar{r}_{k+1} in the performance index augments the implied parametric state dimension by the dimension of \bar{r}_{k+1} to give a dimension of $n_x + m \times n_y$. This is obvious from the replacement of x_k by u_k in (11,12).

Now we are in a position to state the obvious dilemma. Where a user would like to incorporate advance knowledge of the target into their predictive control problem, this massively increases the dimension of the parametric state w_k. Even just including a fixed target and integral action [17] increases the required parameter dimension to $n_x + m$ which is already undesirable, to include more advance information could make the dimension of the parametric optimisation impractical in general.

Hence one objective of this paper is to suggest ways of modifying optimisation (11,12) so that one retains some of the benefits of including advance information while at the same time keeping the dimension of the implied parameter space small.

B. Optimal or dual-mode predictive control

GPC is a finite horizon approach which, if tuned carefully, can be effective. However, it is now well known [11] that dual-mode approaches have better properties in general. Consequently, it is worth considering how a parametric solution can be determined for a dual-mode approach. For convenience the standard OMPC algorithm of [14] is utilised.

OMPC uses a infinite horizon performance index of the following form:

$$J = \sum_{i=0}^\infty (x_{k+1+i} - x_{ss})^T Q (x_{k+1+i} - x_{ss})$$

along with an input parametrisation of the form:

$$u_{k+i} - u_{ss} = -K (x_{k+i} - x_{ss}) + c_{k+i} \quad i = 0, 1, \ldots, n_c - 1$$

$$u_{k+i} - u_{ss} = -K (x_{k+i} - x_{ss}) \quad i \geq n_c \quad (14)$$

so the variables c_{k+i} are the degrees of freedom and (x_{ss}, u_{ss}) are the expected steady states to track a fixed target r_{k+1}, typically [15] one can show that $x_{ss} = T_1 r_{k+1}, u_{ss} = T_2 r_{k+1}$ for suitable T_1, T_2. Substituting from (14) into (13), minimising the performance index can be shown to be equivalent [14] to minimising the following form:

$$J = c_k^T S c_k \quad (15)$$

Combining model (3), input predictions (14) and constraints (4) inequalities representing constraint satisfaction of the predictions can be reduced to:

$$N c_k + M x_k + Q r_{k+1} \leq d \quad (16)$$

for suitable N, M, Q.

Algorithm 2.2: OMPC is defined as follows. At each sample, perform the quadratic programming optimisation

$$\min c_k^T S c_k \text{ s.t. } N c_k + M x_k + Q r_{k+1} \leq d \quad (17)$$
Implement the first value of c_k in (14) to determine the current input, that is u_k.

Lemma 2: Optimisation (17) can be recast in the same form as (1). This is obvious.

Corollary 2: Extension of dual-mode strategies to take account of more future values of the target such as available in r_{k+1} is not widely discussed in the literature [5]. In aid of brevity, here it will simply be noted that the performance index and inequalities and thus required optimisation can take the following form:

$$\min \ c_k \ x_k \ S \ c_k - c_k^T S_2 c_k \ s.t. \ N c_k + [M, Q] \begin{bmatrix} x_k \\ r_{k+1} \end{bmatrix} \leq d$$ \hspace{1cm} (18)

As in the previous section, it is noted that the incorporation of advance information has vastly increased the dimension of the associated parametric optimisation. In essence, for the equivalent of optimisation (1), and exactly as in the previous subsection, the implied state is now $w = [x^T, r_{k+1}^T]^T$.

C. Summary and proposals

It has been shown that a simplistic inclusion of future target information r_{k+1} into a predictive control algorithm leads to an increase in the dimension of the parametric space for the associated multi-parametric quadratic programme. In general, for anything other than the most trivial case [17] where it is assumed that $r_{k+1} = r_{k+1}, \forall i$ so that the effective dimension of r_{k+1} reduces to that of just r_{k+1}, then this increase in dimension is likely to be unmanageable and thus a parametric approach is unlikely to be feasible. In consequence, this paper considers for which scenarios can this information be incorporated without leading to unnecessarily large dimensional increases.

III. REDUCING THE DIMENSION OF THE PARAMETER SPACE WITH FINITE HORIZON ALGORITHMS

This section will show how small changes to the formulation of a GPC optimisation can reduce the dimension of the implied parameter space. Some suggestions lead to a small degree of sub-optimality, but in fact, within parametric predictive control, the use of sub-optimality is often a key tool for reducing complexity [2], [3] and thus this may be considered an acceptable compromise in order to gain some of the benefits of using the feedforward information rather than ignoring it.

A. Reducing the amount of advance knowledge

Recent work on the use of advance information [6] within predictive control has considered questions about how much advance information is useful, that is, really makes a noticeable difference to closed-loop performance. It was established that ignoring far future (beyond n_a samples) values of the target usually led to a minimal deterioration in performance as long as $n_a < n_a < (n_a + n_f)/2$ with n_f being the notional rise time. Larger n_a were usually unhelpful as the control d.o.f. were not contemporaneous enough and therefore inappropriate control moves for the relevant target changes. Therefore, as in the context of parametric approaches some sub-optimality is accepted in the pursuit of simplicity, this section looks at what can be achieved by summarising future target information r_{k+1} into fewer values.

The most obvious and easiest way to reduce the dimension of the parameter space in vector w is the rather obvious one of reducing the dimension of r_{k+1}. It is commonplace in the predictive control field to use the following approximation, assume $r_{k+n_a+i} = r_{k+n_a}, \forall i > 0$ (here given in SISO case to simplify algebra). Then:

$$r_{k+1} = \begin{bmatrix} r_{k+1} \\ r_{k+n_a+i} = r_{k+n_a}, \forall i \end{bmatrix} \hspace{1cm} (19)$$

where L_n is a p-dimensional vector of ones. This assumption reduces the dimension of r_{k+1} from n_y components to n_a components. Moreover, it has been shown [5], [19] that in many cases using relatively small values of n_a give almost equivalent, and sometimes better, closed-loop performance compared to using values close to n_y. Thus using the approximation implicit in a choice of small n_a is reasonable for GPC.

Remark 1: Even though one can reduce the overall parameter dimension of $w = [x^T, r_{k+1}^T]^T$ to $n_a + n_a \times m$ with $n_a < n_y$, one might still argue that anything much beyond $n_a = 2$ is likely to increase the parameter space beyond normally accepted limits for parametric solutions. While $n_a = 2$ usually gives better closed-loop performance than $n_a = 1$, nevertheless it may still be significantly worse performance than achievable with an even larger n_a and thus such a solution may not be sufficient in general.

B. Reducing the amount of advance knowledge further

Existing literature has largely focussed on the structure of (19) and argued that $n_a < n_y$ often leads to improved closed-loop behaviour [5], [19]. However, there is another alternative that has not been explored carefully and is the subject of a current investigation. Another interesting avenue is the extent to which transient values such as r_{k+1}, r_{k+2} are really useful as most systems cannot respond significantly within a few samples, hence having a particular target during fast transients may not be meaningful. The proposal here therefore is to ignore specific information about the targets for the next few samples and instead assume that $r_{k+i} = r_{k+n_a}, i \leq n_a$ and
thus use a structure such as the follows.

\[
\begin{bmatrix}
 r_{k+n_2} \\
 \vdots \\
 r_{k+n_a} \\
 r_{k+n_a} + 1 \\
 \vdots \\
 y_{k+n_a} \\
 y_{k+n_a} + 1 \\
 \vdots \\
 y_{k+n_a} + 2 \\
 \vdots \\
 r_{k+n_a} \\
 L_{n_2} r_{k+n_2} \\
 \vdots \\
 r_{k+n_2} + 1 \\
 r_{k+n_2} + 1 \\
 \vdots \\
 L_{n_y} r_{k+n_a} + 1 \\
 L_{n_y} r_{k+n_a} + 2 \\
\end{bmatrix}
\]

It is clear that the dimension of the corresponding vector \(r_{k+1} \)
has now been reduced to having \(n_a - n_a + 1 \) independent
components, which is a significant reduction compared to \(n_y \)
components.

C. Using insights from reference governors and PFC

Reference governors [8] are primarily focussed on highly
efficient constraint handling whereby one ensures that the
target to the feedback loop changes slowly enough not to cause
the internal signals to violate constraints. To some extent,
performance takes second place to computational efficiency
and simplicity so some sub-optimality is accepted. In the
context of this paper, a key observation is the use of small
amounts of feed forward information of the target rather than
the entire trajectory. Specifically, this paper notes one possible
simplification which is implicit in PFC [13], that is assume
the future target trajectory takes the following form (a smooth
transition from current output to long term target):

\[
r_{k+1} = (r_{k+n_a} - y_k)(1 - \lambda^i) + y_k; \quad r_{k+1} = W_1 r_{k+n_a} + W_2 y_k
\]

where the definitions of \(W_1, W_2 \) are obvious and \(r_{k+n_a} \) is the
best representation of the long term target value.

Clearly, this suggestion has close analogies to the previ-
ous two subsections in that the future target information is
approximated in some fashion to reduce the dimension of the
implied parameter space. The proposal here has the advantage
that the parametric space is the same dimension as would be
needed for routine inclusion of integral action [17], although
of course the use of the feedforward information is now much
less precise than it could be due to the approximation implicit
in (21).

Remark 2: All three suggestions in the previous subsections
reduce to the following generic approximation.

\[
r_{k+1} = W_1 \gamma + W_2 x_k
\]

where \(\gamma \) constitutes the degrees of freedom to encapsulate
future values of \(r_{k+i} \) and \(W_1, W_2 \) are defined appropriately.
In consequence, the parametric dimension required to include
future target information is exactly the dimension of \(\gamma \). As
noted earlier, to include integral action [17], at the very least
this must match the output dimension.

D. Utilising the unconstrained optimal

A key observation with finite horizon algorithms such as
GPC is that the target values \(r_{k+1} \) do not appear in the
constraint set (12). Consequently, if one can reduce the implied
dimension of \(w \) in the cost function \(J \), then this reduction in
parameter space will apply for the QP as a whole.

One obvious mechanism for altering a QP optimisation is
to re-parametrise relative to the unconstrained optimal [14],
[16], [18]. Consequently, define the unconstrained optimal as
follows:

\[
\Delta u_{\mathrm{nom}} = -((H^T H + \lambda I)^{-1} H^T [P_x, -I] w_k
\]

Next, write the actual future inputs as deviations from the
unconstrained optimal.

\[
\Delta u_k = \Delta u_{\mathrm{nom}} + \Delta \hat{u}
\]

Finally, substitute (24) into (11) and hence:

\[
J = (\Delta u_{\mathrm{nom}} + \Delta \hat{u})^T S(\Delta u_{\mathrm{nom}} + \Delta \hat{u}) + (\Delta u_{\mathrm{nom}} + \Delta \hat{u})^T P w_k
\]

Lemma 3: The minimisation of \(J \) in (25) is equivalent to
the minimisation of the following performance index.

\[
J = (\Delta \hat{u})^T S(\Delta \hat{u})
\]

Proof: This follows directly from \(\Delta u_{\mathrm{nom}} \) being the uncon-
strained optimal. Therefore in the unconstrained case, the
optimal value of \(\Delta \hat{u} = 0 \), and therefore a cost written in
terms of \(\Delta \hat{u} \) cannot have a linear term as this would imply
a non-zero unconstrained optimum.

Lemma 4: The parametrisation of (24) modifies the inequalities
of (12) as follows. Proof omitted as obvious.

\[
N \Delta \hat{u} + [N, M] \left[\begin{array}{c} \Delta u_{\mathrm{nom}} \\ x_k \end{array} \right] \leq d
\]

Theorem 1: Using parametrisation (24) changes the dimen-
sion of the parameter space from \(n_x + n_y \times m \) to \(n_x + n_a \times m \).

Proof: This is obvious from (25,27) as the parameter
\(\Delta u \) has dimension \(n_a \times m \) and the constraints also include
parameter \(x_k \).

Remark 3: Because the future target information can be
subsumed into the unconstrained optimal, if \(n_u < n_a \) then
one can reduce the implied parameter space for a MPQP
solution below that suggested in subsection III-A. Nevertheless
it is still transparently clear that the inclusion of advance
knowledge will inevitably lead to a larger increase in the
implied parameter space than is likely to be desirable as
common advance guidance suggests that both \(n_u \gg 1 \) and
\(n_a \gg 1 \). Of course, any form of offset free tracking must
as a minimum deploy \(n_a = 1 \) so all parameter dimensions are
relative to that baseline.

E. Re-parametrisating the input degrees of freedom

The previous subsections accepted the GPC algorithm in its
basic form and asked questions about the implications of the
advance knowledge of targets into an MPQP solver. A key
observation was that the dimension of the parameter
space can be linked directly to the number of d.o.f. in the optimisation, while still including all far future feedforward information.

This section pursues the alternative route of changing the algorithm at the outset in the hope that this will lead to a simpler MPQP problem and specifically, asks the question whether the number of optimisation d.o.f. can be reduced, thus benefiting from the insights gained in theorem 1. Specifically, consider the potential benefits of orthonormal parametrisations [9], [16], [20] as these have been shown to effective at enabling a reduction in the number of optimisation d.o.f. while retaining good performance.

The basic suggestion [20] is to write the future control moves as follows:

$$
\Delta u_{\rightarrow k} = \begin{bmatrix}
 l_{i,0} & l_{i,1} & \cdots & \eta_i \\
 l_{i,1} & l_{i,2} & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 \eta_{i,n-1} & \eta_{i,n-2} & \cdots & \eta_i
\end{bmatrix}
$$

(28)

where $l_{i,k}$ are coefficients of the expansion of the ith orthonormal function, for example:

$$
l_i(z) = l_{i,0} + l_{i,1}z^{-1} + l_{i,2}z^{-2} + \cdots
$$

(29)

The conjecture is that in many cases, with appropriate choices of orthonormal functions, one can use $n_\eta < n_u$ and still obtain similar performance and thus reduce the computational complexity of the MPC algorithm.

Lemma 5: Using (28) in the cost function (11) one can derive the unconstrained optimal as:

$$
\eta_{nom} = -(H_L^T H_L + \lambda I)^{-1}H_L^T P_x - I]w_k
$$

(30)

This is obvious so not proved.

Theorem 2: One can formulate a performance index and constraint inequalities based on deviation variables for η as follows:

$$
J = (\bar{\eta})^T S_L(\bar{\eta}); \quad NH_L\bar{\eta} + [NH_I, M] \begin{bmatrix}
 \eta_{nom} \\
 x_k
\end{bmatrix} \leq d
$$

(31)

Proof: This is exactly analogous to the derivations in lemmata (3,4).

In summary, the dimension of the corresponding parameter space in an MPQP problem of (31) is $n_x + m \times n_\eta$ and thus, in cases where $n_\eta < n_u$, this could be advantageous as compared to the approach in section III-D.

IV. DUAL-MODE APPROACHES

The QP optimisations for dual mode approaches have one notable difference from those for finite horizon approaches which is evident from viewing the inequalities of (12,16). In one case the values of r_{k+1} appear explicitly within the constraint inequalities whereas in the other they do not. The consequence of this is that while one can do a reparameterisation in the finite horizon case (see section III-D) to capture the impact of future targets on the cost function within a lower dimensional optimal input trajectory, this is not the case in the dual-mode case because r_{k+1} still exists in its entirety in the constraints.

In consequence, the main options available to a dual-mode approach correspond to those detailed in sections (III-A to III-C). In aid of brevity, these developments are not restated as they will be exactly equivalent, that is one can use an approximation of the form:

$$
r_{k+1} = W_1\gamma + W_2x_k
$$

(32)

where γ constitutes the number of degrees of freedom used to approximate target information, with W_1, W_2 defined appropriately.

V. NUMERICAL EXAMPLES

This section will give a few numerical examples to demonstrate the impact on parametric complexity of including advance knowledge, using OMPC approach.

Consider example with 2 states.

$$
A = \begin{bmatrix}
 0.8 & 0.1 \\
 -0.2 & 0.9
\end{bmatrix}; \quad B = \begin{bmatrix}
 0.3 \\
 0.8
\end{bmatrix}:
$$

$$
C = [1 \quad 0], \quad D = [0]
$$

(33)

$$
-0.2 \leq u \leq 0.5; \quad \begin{bmatrix}
 1 & 0.2 \\
 -0.1 & 0.4 \\
 -1 & -0.2 \\
 0.1 & -0.4
\end{bmatrix} x_k \leq \begin{bmatrix}
 8 \\
 8 \\
 1.6 \\
 5
\end{bmatrix}
$$

The parametric solutions are computed with a range of values of n_{η}, and the following information is captured:

- Number of inequalities.
- Number of parametric regions in solution.

1) Algorithm in section (III-B). Table I shows the impact of the dimension of the reduced future information (γ) on the parametric solution for different R, using Algorithm in section (III-B).

It is clear from the result that the number of regions and inequalities increase as the the dimension of the reduced future information (γ) increases.

2) Algorithm in section (III-C). Table II shows the impact of the dimension of the reduced future information (γ) on the parametric solution for different R, using Algorithm in section (III-C).

Similarly, It is clear from the result that the number of regions and inequalities increase as the the dimension of the reduced future information (γ) increases.

VI. CONCLUSIONS AND FUTURE WORK

First and foremost it is clear that including advance information about targets (and equivalently measurable disturbances) increases the dimension of the parameter space for an MPQP algorithm to predictive control. It is recognised that MPQP is often impractical for large parameter spaces and thus one may infer that usually MPQP would be difficult to use in conjunction with advance knowledge scenarios.

Nevertheless, this paper has introduced some reformulations of a typical finite horizon MPC algorithm which can, to a
limited extent, overcome problems with dimension growth. In the case of finite horizon approaches, one can exploit the fact that target information appears only in the cost function, but not the constraints. Hence, it is shown that even where a moderately large advance information is used, by reformulating the optimisation in terms of deviation variables about the unconstrained optimal input trajectory, the parameter space increase can be limited to the control horizon or equivalently the number of optimisation variables. However, a second and perhaps more helpful observation is to exploit the ‘added value’ in the future target information and capture this value in fewer variables; in essence the increase in the parameter space is linked to the number of variables needed to capture the useful information in the target trajectory and, if needed, one can capture this with very few variables and thus reduce the dimension to that required for incorporating integral action (section III-C). Obviously any simplification of the target information results in some suboptimality, but that is likely to be a price worth paying for improvements in the simplicity of the MPQP solution.

While finite horizon MPC algorithms still dominate industrial practice, nevertheless, it is recognised that dual-mode approaches have significant theoretical and potentially performance advantages and thus it is important to consider the extent to which advance target information can be included in parametric solutions for these. However, it is immediately clear that some of the simplifications possible for finite horizon approaches are no longer possible because the embedding of terminal control laws into dual-mode predictions means that the target information appears in both the cost function and the constraints, and thus one cannot exploit the unconstrained optimal, thus the options of sections III-D, III-E are not available. Hence, in this case, the main option is the approximation of \(r_{k+1} \) to the number of variables used to capture the future target information.

REFERENCES

