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Zermelo navigation and a speed limit to quantum information processing
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We use a specific geometric method to determine speed limits for the implementation of quantum gates in

controlled quantum systems that have a specific class of constrained control functions. We achieve this by

applying a recent theorem of Shen, which provides a connection between time optimal navigation on Riemannian

manifolds and the geodesics of a certain Finsler metric of Randers type. We use the lengths of these geodesics

to derive the optimal implementation times (under the assumption of constant control fields) for an arbitrary

quantum operation (on a finite dimensional Hilbert space), and explicitly calculate the result for the case of a

controlled single spin system in a magnetic field and a swap gate in a Heisenberg spin chain.

DOI: 10.1103/PhysRevA.90.012303 PACS number(s): 03.67.Lx, 03.65.Aa

I. INTRODUCTION

There is much interest in establishing methods for de-

termining physical speed limits for the implementation of

quantum information processing (QIP) tasks, both for practical

engineering considerations and for determining fundamental

limits to computation. Many of these approaches employ

geometrical techniques. Here we apply geometric methods

to a specific problem, which we show to be related to the

Zermelo navigation problem. We use this method to determine

a quantum speed limit (QSL) for quantum gates, in a system

with pure state and a finite dimensional state space under the

influence of a constrained control Hamiltonian.

A. Recent work on quantum speed limits

Recent work on the QSL falls into several categories,

including: (i) bounds on orthogonality times, (ii) time optimal

quantum gates, and (iii) fundamental questions about compu-

tation. The orthogonality time (also called passage time [1])

is the optimal time for a system to evolve from one state to an

orthogonal state.

Work on bounds on orthogonality times includes

Refs. [1–11]. Specifically Refs. [1,5,6] include a role for

differential geometry in analyzing this aspect of the QSL.

Reference [7] analyzes the case of an open driven system

and obtains a bound also comparable to the Margolus-Levitin

bound for nonunitary dynamics; a specific model, the damped

Jayes-Cummings model, is analyzed. Reference [8] produces

an interesting result generalizing the Margolus-Levitin bound

to systems with nonunitary dynamics. Reference [9] illustrates

an application of the Pontryagin minimum principle to the

optimal control of SU(2) operators; closed form solutions are

obtained as are interesting diagrammatic representations of the

optimal trajectories. Reference [10] illustrates the absence of a

speed limit for quantum systems described by non-Hermitian,

PT-symmetric Hamiltonians in a situation where Hermitian

quantum mechanics is subject to a finite speed limit. Reference

[11] discusses the Margolus-Levitin bound in non-Hermitian

quantum systems. Numerical methods in quantum optimal

control are considered in Ref. [12], and the Margolus-Levitin

bound is shown to be achievable using the Krotov method

for deriving control schemes. The well-known time energy

uncertainty relation is also a bound on orthogonality time in

closed, time-independent systems; a good review of this can

be found in Ref. [13], and a geometric derivation of the bound

in Ref. [5]. A good discussion of a geometric derivation of the

time energy uncertainty relation can be found in Ref. [1].

Work on time optimal quantum gates includes

Refs. [14–19]: Reference [14] discusses time optimal imple-

mentation of a number of two qubit gates and also discusses

experimental implementations of such gates. Work on open-

dissipative systems for implementing quantum gates can be

found in Ref. [15]. Some works on this topic based on

geometry include Refs. [16,17]. Reference [16] discusses the

use of sub-Riemannian metrics on the unitary group with

application to two and three qubit systems; special focus on

NMR experiments is given. Reference [17] analyzes the use of

metric structure (in the sense of metric spaces, not differential

geometry) in determining the QSL for implementing quantum

gates. Reference [18] connects the QSL for orthogonality times

and the QSL for implementing quantum gates. Reference

[19] produces a result based on a variational principle for

a Lagrangian on U(N ); this work also shows how optimal

control schemes can be obtained via differential geometry.

For work on the wider relevance to computer science,

Refs. [20,21] are most notable. Reference [20] discusses

the role of the Margolus-Levitin bound in the context of

the ultimate physical limits to computation. Reference [21]

illustrates an application of Finsler geometry to quantum

optimal control and the design of quantum circuits.

B. Our geometric approach

Here we apply geometric methods, specifically meth-

ods of Finsler geometry, to the problem of determining

the QSL for quantum gates. We impose the constraint

Tr(Ĥ 2
c ) = 1/α (where α is a positive constant) on the control

Hamiltonian in a controlled quantum system; this constraint

is also considered in Ref. [19]. Note that our approach is not

restricted to this particular constraint, however: It would be

possible to reformulate the analysis performed here if the set

of allowed control Hamiltonians was the unit ball of any norm

arising from an inner product on su(N ). The bounds obtained

here are bounds on physical times, not on any notion of circuit

complexity.

Our method is based specifically on the known exact

correspondence between navigation data for the problem of
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Zermelo navigation and Randers metrics [22] (in contrast to

other work applying Finsler geometry to QIP). We provide

a general solution and then evaluate the speed limit in the

specific cases of a single spin system in a magnetic field and

a swap gate in a Heisenberg spin chain with time-independent

control fields.

II. ZERMELO NAVIGATION AND RANDERS METRICS

Mathematically, the relevant form of the Zermelo naviga-

tion problem (Ref. [23], as cited in Ref. [22]) considered here

comprises the following:

(1) A Riemannian manifold (M,g), which is taken to be

compact and connected.

(2) A vector field W on M such that W is “small” according

to the metric g, that is, gp(Wp,Wp) < 1 for all points p on

M . In local coordinates, gij (x)W i(x)W j (x) < 1, for all points

with local coordinates given by x.

The navigator on the manifold M is taken to move with

unit speed according to the metric g. W is interpreted as a

“wind” that is “pushing” the navigator around, thus altering

their speed (according to g) in a way that may depend on the

location of the navigator (that is, the wind need not be the

same everywhere). The constraint on W ensures that progress

can always be made: The wind can never blow the navigator

backwards. The requirement to move with unit speed can be

interpreted as “full speed ahead” at all times. The problem of

time optimal navigation then is to determine the direction in

which to navigate at each point on the manifold, in order to

reach some given point in minimal time.

Shen [24] illuminates a deep connection between this

problem of time optimal navigation on a Riemannian manifold

and a specific class of Finsler metrics [25], namely, the Randers

metrics. A Randers metric is a Finsler metric that can be cast

as the sum of a Riemannian metric and a linear term [26].

Shen [22,24] shows that, under the influence of a “wind,”

the time optimal trajectories are given by the geodesics of the

following Randers metric:

‖X‖ = − gp(X,Wp)

1 − gp(Wp,Wp)

+

√

gp(X,Wp)2 + (1 − gp(Wp,Wp))gp(X,X)

1 − gp(Wp,Wp)
,

(1)

where this formula defines the length of any tangent vector

X ∈ TpM . Shen also shows that these geodesic lengths are

the optimal times for making a journey between any two

points on M . For physical clarification: The unit sphere of

the Riemannian metric encodes all the information about how

quickly the navigator can move in a given direction (in the

absence of any wind) at a point on M by singling out the

allowed tangent vectors to trajectories. The metric is time

independent throughout this work.

III. NAVIGATION ON THE SPECIAL UNITARY GROUP

We take Shen’s result, and apply it to the case of QIP, to

derive quantum speed limits. In order to implement a certain

QIP task in a controlled quantum system, we consider the

dynamics of the system (more precisely, the time evolution

operator Ût ) as given by the Schrödinger equation

dÛt

dt
= −iĤt Ût = −i(Ĥ0 + Ĥc(t))Ût . (2)

Here Ĥt is the time-dependent Hamiltonian, decomposed

into the sum of Ĥ0, a “drift” time-independent Hamiltonian,

representing the system’s dynamics in the absence of external

influences, and Ĥc, the control Hamiltonian that represents the

effect of the (potentially) time-dependent influence of control

fields on the dynamics. For more details see Ref. [27].

In order to implement a desired computation in such a

system, Ût (the time evolution operator acting on the system’s

states) must be driven from the identity Î at t = 0 to Ô, the

operator representing the desired time evolution (that is, the

desired transformation of the state space). As Ût contains

the information about the dynamics of every state of the

system, physically achieving a desired transformation of all

states of a system is tantamount to achieving the Ût which

represents this transformation.

In the case of a closed finite dimensional quantum system,

the physical states can be identified with the set of rays in C
N

(for some N ∈ N); these form a complex projective space [28].

Furthermore, the set of all possible time evolutions (ignoring

global phases; for more clarification of this, and a discussion

of a common mathematical error, see the footnote in Ref. [29])

is the Lie group SU(N ), see Ref. [30] for details. That is, the

set of all possible time evolution operators acting on C
N is

SU(N ).

We now pose the question: When can the problem of finding

optimal implementation times and trajectories on SU(N ) be

posed as a special case of the Zermelo navigation problem

solved by Shen?

Up to a constant multiple, there is only one bi-invariant Rie-

mannian metric on SU(N ) [31], the left (or right) translation

of the Killing form on su(n), which is given by α Tr(Â†B̂)

∀Â,B̂ ∈ su(N ) (for some fixed α ∈ R
+) [30]. There is no

freedom to choose this aspect of the problem, except for the

constant multiple α, if bi-invariance is desired. We use the

bi-invariant metric here because of its familiarity, and because

this constraint has been treated before [19]. Other, right only,

invariant metrics could be considered. (See Sec. IX for further

discussion.)

One must also consider which vector field plays the role

of the non-time-dependent “wind.” We set ŴÛ = −iĤ0Û by

examining the Schrödinger equation and observing that this

vector field on SU(N ) describes the dynamics of the system in

the absence of control fields. This is the right translation of a

vector at the identity and is thus a right invariant vector field.

The form of this Ŵ is in fact simplifying when substituted into

Eq. (1). In order to meet the small wind premise of the theorem

(that is, gp(Wp,Wp) < 1 for all points p), we require

α Tr
(

Ĥ 2
0

)

< 1. (3)

In order to meet the premise that g is the metric with respect

to which the navigator (when not affected by the wind) has a

velocity of exactly 1, we impose the following on the control
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Hamiltonian:

α Tr
(

Ĥ 2
c (t)

) = 1 (for all t). (4)

Hence the constant α is determined by Ĥc(t). It is in this sense

that the metric arises from a physical constraint on the system’s

Hamiltonian; that is, an allowed set of Hamiltonians which are

permitted to serve as tangent vectors to trajectories of the time

evolution operator on SU(N ). The unit ball of the metric at

each point on the group is the set of allowed tangent vectors

to curves, and the tangent vector to a trajectory of Ût which

solves the Schrödinger equation is given by −iĤt Ût as per the

Schrödinger equation.

Not all physical constraints need to correspond to some

Riemannian metric: The set of allowed Hamiltonians (which,

when multiplied by i could serve as tangent vectors to

trajectories of the time-evolution operator) may simply not

correspond to the unit balls of any Riemannian metric. In

such a case this method of Zermelo navigation would not be

applicable. Further work is needed before we can extend such a

method to scenarios in which the manifold under consideration

initially possesses a Finsler metric rather than a Riemannian

one. This would require a generalization of Shen’s theorem to

Finsler manifolds. Here we stay with the original formulation.

To summarize, we set up a navigation problem with the

following elements:

(1) the special unitary group SU(N ) playing the role of the

differentiable manifold M

(2) the metric arising (by right translation) from the Killing

form as the Riemannian structure of this manifold

(3) the time evolution operator Ût playing the role of the

navigator whose tangent vectors are unit vectors according to

the Riemannian structure of M

(4) the drift Hamiltonian Ĥ0 playing the role of the

wind W .

The tangent vector to any curve on SU(N ) at the point

Û is given by iÂÛ for some Â satisfying Â† = Â. That is,

the tangent vector is the right translation by Û of some iÂ ∈
su(N ). Thus, in the special case of navigation on SU(N ) with

W as described, the relevant Randers metric can be shown

(after some algebra) to be

‖iÂÛ‖opt = 1

ρ − 1

Tr(ÂĤ0)

Tr
(

Ĥ 2
0

)

×
(

1 ±
√

1 + (ρ − 1)
Tr

(

Ĥ 2
0

)

Tr(Â2)

( Tr(ÂĤ0))2

)

, (5)

where iÂÛ ∈ TÛ SU(N ),

ρ := Tr
(

Ĥ 2
c (t)

)

Tr
(

Ĥ 2
0

) > 1, (6)

and the choice of ± is made to ensure positivity. Equation (5)

depends on Ĥc(t) only through ρ [ρ is not time dependent as

Tr (Ĥ 2
c (t)) is not time dependent, see Eq. (4)]. Equation (5)

has no dependence on Û ; this metric is right invariant. This

is a simple consequence of the fact that both g and W are

right invariant in this application.

Note that Tr(Ĥ 2
0 ) has a fairly clear physical interpretation.

We denote the eigenvalues and corresponding eigenstates of

Ĥ0 by En and |n〉, respectively. The physical meaning of this

quantity can be extracted via the following derivation:

Tr(Ĥ 2
0 ) =

∑

n

En
2. (7)

Setting |ψun〉 = 1√
N

∑

n |n〉, the uniform superposition state,

one observes the following:

〈ψun|Ĥ 2
0 |ψun〉 = 1

N

∑

n

En
2 = 1

N
Tr

(

Ĥ 2
0

)

and thus

Tr
(

Ĥ 2
0

)

= N〈ψun|Ĥ 2
0 |ψun〉,

which is a multiple of the expectation of Ĥ 2
0 in the uniform

superposition state. Thus the requirement that α Tr(Ĥ 2
0 ) <

1 corresponds to constraining this physical quantity (and

similarly for the control Hamiltonian).

IV. THE SPEED LIMIT

The geodesic lengths of the metric in Eq. (5) provide the

speed limit for implementing a desired quantum gate in any

quantum system meeting the premises above. The minimal

time to traverse a path from the identity Î to some desired

operator Ô is the length of the geodesics of Eq. (5) connecting

the two points on SU(N ).

As Eq. (5) is a right-invariant (but not bi-invariant) Finsler

metric on a compact connected Lie group, its geodesics

(through the identity) are not necessarily the one-parameter

subgroups [32]. By Stone’s theorem [33], the one-parameter

subgroups are exactly the curves of the form Ût = exp(−itÂ)

for some constant Â such that Â† = Â. There may be some

situations where such a curve is a geodesic; such geodesics

are called homogeneous geodesics. A necessary and sufficient

condition for a vector in the Lie algebra of a connected Lie

group with a left (or right, but not both) invariant Finsler metric

to exponentiate to a geodesic is known [34]; investigating

applications of this to QIP is the focus of further work.

A. Time-independent control Hamiltonians

In the derivation so far, the control Hamiltonian Ĥc(t)

is time dependent [although Tr(Ĥ 2
c ) is time independent,

Eq. (4)]. From now on, we restrict ourselves to cases where

the control Hamiltonian is not a function of time. This

results in the total Hamiltonian being time independent;

thus all possible trajectories of the time evolution operator

are one-parameter subgroups (generated by Â say), since

these solve the Schrödinger equation: dÛt/dt = −iÂÛt .

Suppose our desired operator Ô is reached at time T .

Setting Ô = exp(−iT Â), taking logs, and rearranging yields

Â = i
T

ln(Ô). The tangent vector to a geodesic connecting the

identity Î to Ô is given by i
T

ln(Ô). To evaluate the length

L[ÛT ] of a curve Ût on SU(N ) according to the Finsler metric

of Eq. (5), ‖iÂÛt‖, one integrates the length of the tangent

vector to the curve along the length of the curve. As curve

lengths are independent of parametrization, one can find the
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length of this curve by evaluating

L[ÛT ] =
∫ T

t=0

∥

∥

∥

∥

dÛt

dt

∥

∥

∥

∥

opt

dt

=
∫ T

t=0

‖ − iÂÛt‖optdt, (8)

from which one obtains the optimal time

Topt = 1

ρ − 1

i Tr (Ĥ0 ln(Ô))

Tr
(

Ĥ 2
0

)

×
(

1 ±
√

1 + (ρ − 1)
Tr

(

Ĥ 2
0

)

Tr(( ln(Ô))2)

(Tr (Ĥ0 ln(Ô)))2

)

. (9)

Tr (Ĥ0 ln(Ô)) is always purely imaginary, and thus the expres-

sion evaluates to a real result, despite the presence of i. Again,

the choice of ± is made to ensure positivity. Note that this is

an equality on the optimal time, not an inequality, under the

assumptions of the problem.

We have

lim
ρ→∞

Topt = 0.

Recall that ρ = Tr (Ĥ 2
c (t))/ Tr(Ĥ 2

0 ) > 1, and that Ĥ0 is given

(it is prescribed by the physics of the system) before any

choice of Ĥc can be made. So as ρ → ∞, Tr (Ĥ 2
c (t)) → ∞

necessarily. Intuitively, as the radius of the set of allowed

control Hamiltonians Ĥ 2
c (t) diverges, all Hamiltonians become

allowed. With no limitations on which control Hamiltonians

are allowed, there is no speed limit.

Note that the constraint on the control Hamiltonian does not

allow us to take the limit that the control Hamiltonian tends to

zero without violating the assumption that the “wind” is small

relative to control, so we cannot use it to find optimal times in

the drift-only case.

Explicit comparison of this limit to existing known bounds

is difficult, since the premises used to obtain Eq. (9) are not

exactly those of any of the other known bounds cited above.

However, one can deduce what the relationship must be. The

length of any curve on SU(N ) gives the optimal time for

traversal by Ût of a system subject to the aforementioned

premises. Thus we have found the optimal time [Eq. (9)]

for traversing any trajectory achievable with time-independent

controls. Thus any other correct, comparable bound (i.e., for

the same system with the same premise) must be equal to

ours, or less tight. The same goes for any bound obtained

for any other trajectory of Ût by using Eq. (5) and any other

comparable bound as the length gives the optimal time. This

shows that Randers geometry can be used to produce exact

speed limit results in driven systems; it is unknown to the

authors whether or not such a bound (applying to arbitrary

curves) can be obtained without the use of Randers geometry.

V. EXAMPLE I: A SINGLE SPIN IN A MAGNETIC FIELD

The result in Eq. (9) can be used to calculate bounds on

orthogonality times in specific time-independent controlled

quantum systems and thus assess their capacity for QIP, as in

Ref. [2]. For concreteness, the case of a single spin in a mag-

netic field is used as an example. Setting Ĥ0 = Bxσ
x + Byσ

y

represents the effects of an external magnetic field outside

the control of an experimenter. Setting Ĥc = Dxσ
x + Dyσ

y +
Dzσ

z represents the effects of another external magnetic field

that an experimenter can control.

The requirement that α Tr(Ĥ 2
c ) = 1 [Eq. (4)] can be

evaluated by applying the Clifford algebra (of R
3 with the

standard euclidean metric) property of the Pauli matrices σ k

[35], that (Dkσ
k)2 = ( 
D · 
D)Î . This implies

Tr
(

H 2
c

)

= Tr(Dkσ
k)2

= Tr (( 
D · 
D)Î ) = 2 
D · 
D

= 2
(

D2
x + D2

y + D2
z

)

= 1

α
. (10)

Let D2 := D2
x + D2

y + D2
z . Then D2 = 1/2α.

Similarly, the requirement that α Tr(Ĥ0
2) < 1 [Eq. (3)] can

be evaluated:

Tr
(

H 2
0

)

= Tr ((Bxσ
x + Byσ

y)2) = 2B2 <
1

α
, (11)

where B2 := B2
x + B2

y . Equations (10) and (11) give B2 < D2;

the control field overcomes the drift field.

We choose some particular operation Ô and calculate its

optimal implementation time. Setting Ô = (
0 −1

1 0 ) gives a gate

that sends each of the two computational basis states to an

orthogonal state. We then find the optimal implementation

time thus:

(1) ρ = D2/B2

(2) ln(Ô) = ln (
0 −1

1 0 ) = (
0 − π

2
π
2

0 ) = −i π
2
σ y

(3) Tr ( ln(Ô)Ĥ0) = −πiBy

(4) Tr(( ln(Ô))2) = −π2/2.

Combining these terms and substituting into Eq. (9) yields

Topt = π

2

By

(D2 − B2)

(

1 ±
√

1 + D2 − B2

B2
y

)

. (12)

When By < 0, the drift field is helping the desired operation

Ô; the −ve root is chosen. When By > 0, the drift field

is opposing the desired operation; the +ve root is chosen,

resulting in a larger Topt. The optimal time depends on D2,

the strength of the control field, and B2, the strength of the

external magnetic field. The specific values of Dx , Dy , and Dz

(the orientation of the control field) that achieve this optimum

time need to be calculated separately.

The metric of Eq. (5) could have been used to calculate

optimal times for traversing any curve in SU(N ), not just the

time-independent trajectories (i.e., one-parameter subgroups)

of Eq. (9). These trajectories were chosen for simplicity and

for their physical relevance as piecewise constant controls are

frequently adopted in optimal control theory [27]. To find a

speed limit for Ût to traverse some other curve on SU(N ), one

would find the length of the curve according to Eq. (5).

VI. EXAMPLE II, A SWAP GATE IMPLEMENTED IN A

HEISENBERG SPIN CHAIN

Another example of using Eq. (9) to extract a QSL is the

speed limit for implementing a swap gate in a Heisenberg

model spin chain. Again the speed limit formula here refers
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to the optimal implementation time obtainable with constant

control functions.

The matrix for a swap gate, re-phased to make it special

unitary, is [36]:

Ô = eiπ/4

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

. (13)

This gate acts (up to a phase) by swapping two one qubit states:

Ô|ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉. The drift Hamiltonian for a two

spin “chain” with (arbitrary spin coupling) is [37]

Ĥ0 = λxσ
x ⊗ σ x + λyσ

y ⊗ σ y + λzσ
z ⊗ σ z. (14)

One easily computes the required quantities:

ln(Ô) = πi

4

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

(15)

and thus

Tr(( ln(Ô))2) = −3π2

4
(16)

Tr
(

Ĥ 2
0

)

= 4
λ · 
λ =: 4λ2 (17)

Tr
(

Ĥ 2
c

)

= 1/α (18)

and thus

ρ = 1

4αλ2
. (19)

One can also compute

Tr (Ĥ0 ln(Ô)) = πi(λx + λy + λz). (20)

From these it follows that

Topt =−πα(λx + λy + λz)

1 − 4αλ2

(

1±
√

1+ 3(1−4αλ2)

4α(λx +λy + λz)2

)

,

(21)

where the ± is chosen, as before, to ensure the positivity of

the time.

These calculations provide some evidence that this method

could be extended to three qubit gates, and perhaps higher,

before intractable computations are incurred. For three qubit

gates in a similar spin chain, calculations would all be of simi-

lar length to those performed here, except for the calculation of

the matrix logarithm. Also, many good numerical algorithms

exist for performing such calculations [38] for when they

become intractable symbolically, allowing the method to be

applied to much larger systems.

VII. ACHIEVING THE LIMIT IN LARGE SPIN CHAIN AND

SPIN LATTICE SYSTEMS

The method described in this paper assumes that any control

Hamiltonian Ĥc(t) satisfying the constraint Tr (Ĥc(t)2) = 1/α

can be implemented. For large quantum systems, specifically

larger spin chains and lattices, this will almost never be the

case. For example, in the three spin chain case, consider the

term σ x ⊗ Î ⊗ σ x . This term represents the spin-spin coupling

of non-neighboring spins, an interaction term that produces

dynamics not equivalent to that produced by any external field.

Thus any optimal times for such a model calculated using

this approach would be theoretical optimal times only. They

would provide only a bound on speed limits achievable by

physically possible control Hamiltonians. The authors do not

know of a driven, finite dimensional quantum system for which

σ x ⊗ Î ⊗ σ x is a plausible term in the control Hamiltonian.

(See the future work section for discussion of modifications of

the method taking into account systems that are not completely

controllable.)

VIII. SUMMARY

We have obtained a closed form expression Eq. (9) for

the optimal implementation times for an arbitrary quantum

operation on a finite dimensional Hilbert space in the presence

of a specific constraint on the time-independent control

Hamiltonian: that it is constant in size (in the specific sense

above) and stronger than the drift Hamiltonian. We have done

this by finding a Randers metric with a special property. The

metric of Eq. (5) has the property that the length of any

curve on SU(N ) is the optimal traversal time (for Ût ) for a

quantum system subject to the constraints discussed. This is in

contrast to other methods that typically compute the optimal

time for the optimal trajectories, or for only the trajectories

achievable with time-independent Hamiltonians. Our method

applies to all trajectories whose lengths can be computed.

Finding the geodesics of Eq. (5) would find the globally

(over all paths with fixed endpoints) time optimal trajectories:

However, these curves may not be trajectories achievable with

time-independent Hamiltonians.

IX. FURTHER WORK

The examples illustrate the method in the case of constant

controls. It appears that the calculations, at least in the case of

constant controls, are tractable by hand for a variety of two and

three qubit gates. The obstacle to applying the result to a much

larger system will be the calculation of matrix logarithms of

large matrices, especially in cases when there are interaction

terms in the Hamiltonian.

We plan to solve the geodesic equation for the metric in

Eq. (5) in order to determine speed limits for traversing more

general curves than the time-independent trajectories alone.

This would produce an explicit QSL formula for any trajectory

of Ût with a time-dependent Hamiltonian as the length of any

curve according to Eq. (5) gives the optimal time for Ût to

traverse it in the presence of the constraint discussed. Finding

the geodesic vectors and thus the homogeneous geodesics

of Eq. (5) would determine exactly when time-independent

controls are in fact time optimal, and we hope to do this using

the results in Ref. [34] and elsewhere.

We also intend to generalize to navigation problems on

SU(N ) where the metric representing the constraint is a Finsler

metric rather than a Riemannian one. This work will be based
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on the general formalism in Ref. [24], particularly §3: Eq. (12)

and following results. We will also investigate using a different

Riemannian metric to start with, that is, a different physical

constraint. The right translation of any inner product on su(N )

would produce such a metric, so there is a rich source of exam-

ple quadratic constraints that can be studied this way. The in-

vestigation of the geodesics of general right invariant Randers

metrics on SU(N ) can be approached by applying the Euler-

Poincaré equation [39], which should provide a first order dif-

ferential equation satisfied by the optimal Hamiltonian (the one

that drives the Ût along a geodesic). Lagrange multiplier meth-

ods can be used to further constrain the control Hamiltonian

so that some terms in the control, i.e., the ones that physically

cannot be implemented, are set to zero along trajectories.

We are also investigating the use of Koprina metrics [40],

which provide other solutions to the navigation problem under

different assumptions. These metrics correspond to the case

of the drift and control Hamiltonians being equal is size and

thus could facilitate an analysis of the potential of low power

quantum devices.
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[15] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser,

J. Phys. B 44, 154013 (2011).

[16] N. Khaneja, S. J. Glaser, and R. Brockett, Phys. Rev. A 65,

032301 (2002).

[17] K.-Y. Lee and H. F. Chau, J. Phys. A 46, 015305 (2013).

[18] B. Russell and S. Stepney, in UCNC 2012, LNCS, Vol. 7956

(Springer, Berlin, 2013), pp. 198–208.

[19] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev.

Lett. 96, 060503 (2006).

[20] S. Lloyd, Nature (London) 406, 1047 (1999).

[21] M. A. Nielsen, Quant. Info. Comp 6, 213 (2006).

[22] D. Bao, C. Robles, and Z. Shen, J. Diff. Geom. 66, 377

(2004).

[23] E. Zermelo, Z. Angew. Math. Mech. 11, 114 (1931).

[24] Z. Shen, Canad. J. Math. 55, 112 (2003).

[25] Handbook of Finsler Geometry, Vol. 1, edited by P. L. Antonelli

(Kluwer Academic Publishers, Dordrecht, 2003).

[26] X.-Y. Cheng and Z.-M. Shen, J. Aust. Math. Soc 87, 359 (2009).

[27] J. Werschnik and E. K. U. Gross, J. Phys. B: At. Mol. Opt. Phys.

40, R175 (2007).

[28] B. Jia and X.-G. Lee, arXiv:math-ph/0701011.

[29] B. Russell and S. Stepney, International Journal of Foundations

of Computer Science (to be published).

[30] A. W. Knapp, Lie Groups Beyond an Introduction (Birkhäuser,
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