
This is a repository copy of A New Method for tackling Asymmetric Decision Problems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113647/

Version: Accepted Version

Article:

Thwaites, PA orcid.org/0000-0001-9700-2245 and Smith, JQ (2017) A New Method for
tackling Asymmetric Decision Problems. International Journal of Approximate Reasoning,
88. pp. 624-639. ISSN 0888-613X

https://doi.org/10.1016/j.ijar.2017.03.004

© 2017 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A New Method for tackling Asymmetric Decision

Problems

Peter A. Thwaitesa,∗, Jim Q. Smithb

aSchool of Mathematics, University of Leeds, LS2 9JT, United Kingdom
bDepartment of Statistics, University of Warwick, Coventry, CV4 7AL, and The Alan

Turing Institute, United Kingdom

Abstract

Chain Event Graphs are probabilistic graphical models designed especially for

the analysis of discrete statistical problems which do not admit a natural prod-

uct space structure. We show here how they can be used for decision analysis

through designation of some nodes as decision nodes, and the addition of utili-

ties. We provide a local propagation algorithm for finding an optimal decision

strategy and maximising expected utility. We also compare CEGs with Influ-

ence diagrams, Valuation Networks, Sequential decision diagrams, Sequential

influence diagrams and Decision circuits for the representation and analysis of

asymmetric decision problems.

Keywords: Asymmetric decision problem; Chain Event Graph; Influence Dia-

gram

1. Introduction

In this paper we demonstrate how the Chain Event Graph (CEG) (see for

example [20, 27, 22, 15, 1]) can be used for tackling asymmetric decision prob-

lems.

Extensive form (EF) decision trees [21] (in which variables appear in the

order in which they are observed by a decision maker) are flexible and expressive

∗Corresponding author
Email addresses: P.A.Thwaites@leeds.ac.uk (Peter A. Thwaites),

J.Q.Smith@warwick.ac.uk (Jim Q. Smith)

Preprint submitted to International Journal of Approximate Reasoning January 18, 2017

enough to represent asymmetries within both the decision and outcome spaces,

doing this through the topological structure of the tree. They can however

become unwieldy, and are not convenient representations from which to read

the conditional independence structure of a problem.

Other graphical representations have been developed which to some extent

deal with the complexity issue associated with decision trees, and also allow

for local computation. The most commonly used of these is the Influence dia-

gram (ID). Because of their popularity, ID solution techniques have developed

considerably since their first introduction (see for example [17, 9]). However a

major drawback of the ID representation is that many decision problems are

asymmetric, with different actions resulting in different choices in the future.

IDs are not ideally suited to the representation and analysis of problems of this

type [7]. As decision makers have become more ambitious in the complexity of

the problems they address, standard ID and tree-based methods have proven to

be inadequate, and new techniques (such as those described in this paper) have

become necessary.

There have consequently been many attempts to adapt IDs for use with

asymmetric problems (see for example [16, 11]), or to develop new techniques

which use both IDs and trees [6]. There have also been several new structures

suggested, such as Sequential Decision Diagrams (SDDs) [7] and Valuation Net-

works (VNs) [14]. An overview of many of these developments is given by Bielza

& Shenoy in [4]. They note that none of the methods available is consistently

better than the others. In particular, both VNs and Smith, Holtzman & Math-

esons’ adaptations of IDs [16] require the supplementing of the graph with extra

tables and the introduction of dummy states when problem asymmetry is en-

coded, and this decreases their computational efficiency. If an ID requires fairly

detailed distribution trees for each node to encode the asymmetry adequately,

then the efficiency of an augmented ID is not much greater than that of a deci-

sion tree. Both VN & SDD-methodologies are technically challenging, and these

structures are not really accessible to non-experts. Moreover VNs are unable to

model all possible asymmetries, and SDDs cannot represent probability models

2

consistently [4]. More recently, asymmetric problems have been tackled using

Decision Circuits [3] and Sequential Influence Diagrams (SIDs) [10]. However

for the practical purposes described in this paper, the former turn out to be a

very unwieldy tool. We argue that only the SID can really be considered as a

competitor to the new methods we describe here.

CEGs are probabilistic graphical models designed especially for the represen-

tation and analysis of discrete statistical problems which do not admit a natural

product space structure. Unlike Bayesian Networks (BNs) they are functions of

event trees, and this means that they are able to express the complete sample

space structure associated with a problem. They are particularly useful for the

analysis of processes where the future development at any specific point depends

on the particular history of the problem up to that point. Such dependencies

can be thought of as context-specific conditional independence properties; and

the structure implied by these properties is fully expressed by the topology of

the CEG. This is a distinct advantage over context-specific BNs, which require

supplementary information usually in the form of trees or conditional proba-

bility tables attached to some of the vertices of the graph. Like BNs, CEGs

provide a suitable framework for efficient local computation algorithms [26].

Using CEGs for asymmetric decision analysis overcomes several drawbacks

associated with current graphs and techniques used for this purpose. They are

an advance on decision trees because they encode the conditional independence

structure of problems. They can represent probability models consistently, and

do not require dummy states or supplementing with extra tables or trees. They

can model all asymmetries, and their semantics are straightforward, making

them an appropriate tool for use by non-experts. The CEG approach is very

different from the SID approach, and the choice between them will come down

to their accessibility to individual domain experts, and their compatibility with

the way these experts describe their problems [19]. Our recent experience with

clients drawn from public health professionals, doctors, social scientists and

the military suggests that the representation of the conditional independence

structure provided by a CEG appears to be more transparent than the picture

3

provided by an SID, although we accept that this might simply be a feature of

the problems we have addressed.

Call & Miller [6] have drawn attention to the value of coalescence in tree-

based approaches to decision problems. They also point out that the difficulties

in reading conditional independence structure from trees have meant that ana-

lysts using them have not fully taken advantage of the idea of coalescence. They

remark that the ability to exploit asymmetry can be a substantial advantage for

trees. If trees could naturally exploit coalescence, the efficiency advantage is

even greater. SDDs go some way towards exploiting this [4], but decision CEGs

use coalescence both as a key tool for the expression of conditional independence

structure, and to power the analysis.

In this paper we demonstrate how CEGs can be used for decision analysis

through designation of some nodes as decision nodes, and the addition of utili-

ties. We illustrate this through a toy example in section 2, and provide a local

propagation algorithm for finding an optimal decision strategy and maximising

expected utility. In order to compare the various methods available (and to

illustrate the practical issues associated with particular methods), we provide a

more sophisticated example in section 3. In this section we also compare CEGs

with IDs, including Smith et al’s [16] augmented IDs. We show how to create

a parsimonious decision CEG (analogous to the parsimonious ID which con-

tains only those variables and dependencies which the decision maker needs to

consider when making decisions); provide a barren node deletion algorithm for

CEGs, and show how the arc reversal needed for ID-based solution is already

explicitly represented in our CEG and is not an additional requirement of the

solution technique. In section 4 we compare the use of decision CEGs with that

of VNs, SDDs, SIDs and Decision Circuits.

2. CEGs and decision CEGs

We start this section with a brief introduction to CEGs – we direct readers

to one of [20, 22] for a more detailed definition. The CEG is a function of a

4

coloured event tree, so we begin with a description of these graphs.� A coloured event tree T is a directed tree with a single root-node.� Each non-leaf-node v has an associated random variable whose state space

corresponds to the subset of directed edges of T which emanate from v.� Each edge leaving a node v carries a label which identifies a possible im-

mediate future development given the partial history corresponding to the

node v.� The non-leaf-node set of T is partitioned into equivalence classes called

stages: Nodes in the same stage have sets of outgoing edges with the

same labels, and edges with the same labels have the same associated

probabilities.� The edge-set of T is partitioned into equivalence classes, whose members

have the same colour: Edges have the same colour when the vertices from

which they emanate are in the same stage and the edges have the same

label (& hence probability).� The non-leaf-node set of T is also partitioned into equivalence classes

called positions: Nodes are in the same position if the coloured subtrees

rooted in these nodes are isomorphic both in topology and in colouring

(so edges in one subtree are coloured (and labelled) identically with their

corresponding edges in another).

Event trees are generally used to describe the possible histories or developments

which individuals in some population may experience. We can use this fact to

illuminate the meanings of edge probabilities, positions and stages:� An edge probability is the probability of an individual proceeding along

an edge, given that they have arrived at the node from which the edge

emanates.� Two nodes are in the same position when the sets of complete possi-

ble future developments for an individual arriving at either node are the

same, and these possible future developments have the same probability

distribution.

5

� Two nodes are in the same stage when the sets of immediate possible

future developments for an individual arriving at either node (represented

by the sets of edges emanating from the nodes) are the same, and these

immediate possible future developments have the same probability distri-

bution.

To produce a CEG C from our tree T , nodes in the same position are combined

(as in the coalesced tree), and all leaf-nodes are combined into a single sink-node.

We note that for CEGs used for decision problems it is often more convenient

to replace the single sink-node by a set of terminal utility nodes, each of which

corresponds to a different utility value. We return to this idea in Example 2 in

Section 3.

So the nodes of our CEG C are the positions of the underlying tree T . We

transfer the ideas of stage and colour from T to C, and it is this combination

of positions and stages that enables the CEG to encode the full conditional

independence structure of the problem being modelled [20]. The simplicity of

the tree-to-CEG conversion is illustrated in Example 1.

Many discrete statistical processes are asymmetric in that some variables

have quite different collections of possible outcomes given different developments

of the process up to that point. It was for these sorts of problem that the CEG

was created, and one area where they have proved particularly useful is that of

causal analysis [27, 22]. In much causal analysis the question being asked is If

I make this manipulation, what are the effects?, but graphical models set up to

answer such questions can also be readily used for questions such as If I want to

maximise my utility over this process, what are the manipulations (decisions) I

need to make?

In attempting to answer this second question, we notice that there are usually

only certain nodes or positions in the CEG which can actually be manipulated.

We concentrate in this paper on manipulations which impose a probability of

one onto one edge emanating from any such node (equivalent to making a firm

decision). Hence the probabilistic nature of these nodes is removed – they

6

become decision nodes, represented here by squares.

We draw our CEG in EF order – as with decision trees this is necessary

in order to calculate optimal decision rules. If two decision nodes in T are in

the same position, then the optimal strategy is the same for the decision maker

(DM) at each of the two decision nodes: it is conditionally independent of the

path taken to reach the decision node. A similar interpretation can be given to

two chance nodes in the same position.

The only other modification that is required to use the CEG for decision

analysis is the addition of utilities. This can be done in two ways (1) adding

utilities to edges (see Example 1 and Figure 2), or (2) expanding the sink-node

w∞ into a set of utility nodes, each corresponding to a distinct utility value (see

Example 2). We make our terminal nodes diamond-shaped whether they are

leaf nodes or a single sink-node.

Example 1 (inspired by the oil wildcatter’s problem of [12]). Note that the

description here and a modified version of Figure 1 (without probabilities) also

appear in [23], where they constitute a brief introduction to the Decision CEG,

before the narrative turns to discussion of how these graphs can be used for the

representation and analysis of Games.

We have an option on testing some ground for oil. We can either take up

this option, at a cost of 10, or pass it on to another prospector for a fee of

20. Whoever does the testing, the outcomes are good or bad, with probabilities

independent of who does the testing. If we have passed on the testing and the

test result is good then we lose the option for drilling and get nothing. If it is

bad then the other prospector will not drill and the option for drilling reverts

to us. If we do the test and the result is good, then we can either drill, for a

cost of 30, or sell the drilling rights for a fee of 40. If the result is bad, then

regardless of who does the test, we can either drill ourselves, again for a cost of

30, or sell the drilling option for a fee of 10. If we drill and find oil we gain

100.

7

To fully complete the numerical specification of the decision problem requires

various probabilities. Here we have P (oil) = 0.6, P (test result good | oil) = 0.9,

and P (test result good | no oil) = 0.3. Applying Bayes’ rule to these gives the

edge-probabilities in Figure 1.

pass
+20

test
-10

good
0.66

bad
0.34

good
0.66

bad
0.34

no drill

drill -30

no drill

drill -30

no drill

drill -30

oil
0.176

oil
0.176

no oil
0.824

no oil
0.824

oil
0.818

no oil
0.182

0

100

0

100

0

100

0 10

40

10

Figure 1: Coloured Tree for Example 1, showing conditional independence structure

Note the asymmetry in the problem when a good test result is obtained. If

we do the test then we can drill ourselves or sell the option to drill, but if we

have passed the option to test then we can do no more. The probability of there

being oil in the ground is independent of who does the test given the test result,

but if the test result is good and we have passed on the option of testing this

probability is irrelevant.

The problem can be represented by the EF tree in Figure 1 (which has both

utilities on edges and utility leaf nodes). In this tree we have already identified

the nodes which can be manipulated (by �s), and removed any probabilities

that may have been associated with their emanating edges. We have added

utilities to edges where appropriate, and represented all leaf-nodes by ♦s. Note

that there is no problem with making these adaptations at this stage rather

than after the CEG is formed.

8

In Figure 1 the first two chance nodes are in the same stage – their emanat-

ing edges have the same labels (good and bad) and the same probabilities (0.66

and 0.34). Similarly the first and third oil chance nodes are in the same stage.

Figure 1 also shows that there are some subtrees that are isomorphic in

structure, in probability distribution, and in the assignment of utilities; for

example those rooted in the first and third drilling decision nodes. These two

nodes are in the same position (as also are the first and third oil chance nodes).

pass
+20

test
-10

good 0.66

bad 0.34

good
0.66

bad
0.34

no drill +40

drill -30

drill -30

no drill +10

oil 0.818 +100

no oil 0.182

oil 0.176 +100

no oil
0.824

Figure 2: Type 1 CEG for Example 1

The CEG is constructed from the coloured tree as described above. So

nodes which are in the same position are merged into single nodes, and their

outgoing edges similarly merged (according to common colour if the nodes are

chance nodes). In Figure 1 for example the 1st & 3rd drilling decision nodes

are merged so that there is one subtree rooted in a single decision node which

succeeds edges labelled bad. The CEG resulting from applying this process

to Figure 1 is given in Figure 2 (where all utilities from the tree have been

transfered to edges of the CEG). We will call this form of CEG where utilities

are added to edges, and where there is a single sink node w∞, a Type 1 decision

CEG. Like the tree-representation in Figure 1, the CEG-representation is EF, in

9

that variables appear in the order that they are observed by the decision maker

(the result of the test is not known until the test has been done, but is known

before the decision of whether to drill is made; knowledge of whether there is

oil or not only occurs once drilling has happened).

The positions and stages of a CEG portray the conditional independence

structure of a problem (not obvious in a decision tree representation). So in

Figure 2 we can read that the optimal strategy given that the test result is bad

is independent of whether we tested or passed on the testing option. Getting

a good test result is independent of whether we tested or passed on the testing

option, but the future development of the problem from testing depends on this

earlier choice. The utility of not drilling depends on whether the test result was

good or bad, but if we drill the utilities of oil and no oil are independent of all

previous choices and outcomes of chance variables.

pass
+20

test
-10

good 0.66

bad 0.34

good
0.66

bad
0.34

no drill

drill -30

drill -30

no drill +10

oil 0.818

no oil 0.182

oil 0.176

no oil
0.824

(0)

(40)

(0)

(100)

(100)

(0)

(10)

081.8

17.6

51.8

10

3.4

37.6

27.6

Figure 3: CEG for Example 1, showing intermediate utility values associated with

positions during the local computations, and sub-optimal paths crossed out

Our propagation algorithm is illustrated in Table 1 – at the end of the local

message passing, the root node will contain the maximum expected utility, and

the optimal decision strategy will consist of the subset of edges that have not

10

been marked as being sub-optimal. In the pseudocode we use C & D for the

sets of chance & decision nodes, p represents a probability or weight, and u a

utility. The utility part of a position w is denoted by w[u], the probability part

of an edge by e(w,w′)[p] etc. The set of child nodes of a position w is denoted

by ch(w). Note that there may be more than one edge connecting two positions,

if say two different decisions have the same consequence.

Table 1: Local propagation algorithm for finding an optimal decision sequence� Find a topological ordering of the positions. Without loss of generality

call this w1, w2, . . . , wn, so that w1 is the root-node, and wn is the

sink-node.� Initialize the utility value wn[u] of the sink node to zero.� Iterate: for i = n− 1 step minus 1 until i = 1 do:

– If wi ∈ C then

wi[u] =
∑

w∈ch(wi)

[
∑

e(wi,w)

[

e(wi, w)[p] ∗ (w[u] + e(wi, w)[u])
]]

– If wi ∈ D then

wi[u] = maxw∈ch(wi)

[

maxe(wi,w)

[

(w[u] + e(wi, w)[u])
]]� Mark the sub-optimal edges.

Note that when we choose to confine utilities to terminal utility nodes, this

algorithm is much simplified since both the initializing step and the e(wi, w)[u]

components are no longer required.

The optimal decision strategy is shown on the CEG in Figure 3: We should

test; if the result is bad we should sell the drilling option, if it is good we should

drill. The value 27.6 attached to the root-node is the expected utility for pur-

suing this strategy.

11

3. Representing and solving asymmetric decision problems using ex-

tensive form CEGs

We concentrate here on how CEGs compare with IDs (and in particular the

augmented IDs of Smith, Holtzman & Matheson [16]) for the representation and

solution of asymmetric decision problems. We show that the ID-based solution

techniques of barren-node deletion [13] and parsimony have direct analogues in

the CEG-analysis, and that arc-reversal [13] is not required for the solution of

EF CEGs. The distribution trees [16] added to the nodes of IDs to describe the

asymmetry of a problem can simply be thought of as close-ups of interesting

parts of the CEG-depiction, where they are an integral part of the representation

rather than bolt-on as is the case with IDs.

We first consider what is meant by conditional independence statements

which involve decision variables.

The statement X ∐ Y | Z is true if and only if we can write P (x | y, z)

as a(x, z) for some function a of x and z, for all values x, y, z of the variables

X,Y, Z [8]. So clearly, for chance variables X,Y, Z and decision variable D,

where the value taken by X is not known to the DM when she makes a decision

at D, we can write statements such as X ∐ D | Z and X ∐ Y | D since the

expressions P (x | d, z) = a(x, z) and P (x | y, d) = a(x, d) are unambiguous in

these situations (d representing a value taken by D).

Note that P (d | y, z) has no sensible meaning, except perhaps as the proba-

bility which an external observer assigns to the event that the DM chooses the

action D = d given the observed values Y = y, Z = z. So conditional indepen-

dence is no longer a symmetric property when we add decision variables to the

mix. In the appendix we give an example of where an expression D∐R | Q has

an unambiguous meaning, but we will not make use of such expressions in the

body of the paper.

By a slight abuse of notation we can also write U ∐ (Y,D1) | (Z,D2) if

U(y, z, d1, d2) = U(z, d2) for all values y, z, d1, d2 of the chance variables Y, Z

and decision variables D1, D2.

12

3.1. Example 2 – specification and ID representation

Patients suffering from some disease are given one of a set of possible treatments.

There is an initial reaction to the treatment in that the patient’s body either

accepts the treatment without problems or attempts to reject it. After this initial

reaction, the patient responds to the treatment at some level measurable by their

doctor, and this response is independent of the initial reaction conditioned on

which treatment has been given. The patient’s doctor has to make a second

decision on how to continue treatment.

There is also the possibility of the patient having some additional condi-

tion which affects how they will respond to the treatment. Whether or not they

have this condition will remain unknown to the doctor, but she can estimate the

probability of a patient having it or not (conditioned on their response to their

particular treatment) from previous studies.

The doctor is concerned with the medium-term health of the patient following

her decisions, and knows that this is dependent on whether or not the patient

has the additional condition, how they respond to the first treatment, and the

decision made regarding treatment continuation.

Table 2 summarises this information in the form of a list of variables and rela-

tionships.

Table 2: Variables & relationships; plus U as a function of C3,D2 and C2

D1: Choice of treatment

C1: Initial reaction

C2: Response to treatment – C2 ∐ C1 | D1

D2: Decision on how to continue treatment

C3: Condition affecting response to

treatment and medium-term health

Can estimate P (C3 | D1, C2)

U : Medium-term health, a function of

C2, D2 and C3

C3 C2 D2 U

1 1 1 A

1 1 2 A

1 2 1 B

1 2 2 C

2 1 1 A

2 1 2 A

2 2 1 D

2 2 2 E

13

To avoid making the problem too complex for easy understanding we let all

variables be binary except U , and introduce only two asymmetric features: So

suppose that if a patient fails to respond to the first treatment (C2 = 1), then

the patient will inevitably have the lowest medium-term health rating (U = A).

We can express this as U ∐ (C3, D2) | (C2 = 1) (see Table 2). Suppose also that

if D1 = 2 (Treatment 2 is given) then C1 takes the value 1 (the patient’s body

always accepts the treatment).

D
1

C
2

C
3

C
1

D
2

U

Figure 4: Influence Diagram for Example 2

The problem can be represented by the ID in Figure 4. The doctor knows

the values taken by the variablesD1, C1 and C2 before making a decision on how

to continue treatment (D2), but does not know the value taken by C3. Hence

there are information arcs from D1, C1 and C2 into D2, but not one from C3

into D2. C3 does however affect C2 and so there is an arrow from C3 to C2.

To express the asymmetry of our problem we can add distribution trees to the

nodes C1 and U as in Figure 5. These have been drawn in a manner consistent

with the other diagrams in this paper, rather than with those in [16].

The ID in Figure 4 is not the most parsimonious representation of the prob-

lem. If we can partition the parents of a decision node D (those nodes with

arrows into D) into two sets QA(D), QB(D) such that U∐QB(D) | (D,QA(D)),

then the set QB(D) can be considered irrelevant for the purposes of maximising

utility, and the edges from nodes in QB(D) into D can be removed from the

14

C1

D1

C1

1

1

21

2

D2

C2

D2

C3

C2

A

B

C

D

E

1

1

2

2

D2

D2

1

2

1

2

1

2

1

2

1

2

Figure 5: Distribution trees for nodes C1 and U

ID [18]. Here we find that C1 ∈ QB(D2), and so the edge from C1 to D2 can

be removed from the ID. The node C1 is now barren, so it can also be removed

(together with the edge D1 → C1).

IDs, like decision trees (and indeed BNs and CEGs) can be constructed in

different ways. Graphs used simply to describe a situation can be drawn in

temporal order, so in Example 1 the oil is actually in the ground (or not) before

we start testing and drilling, so we could draw a tree or an ID with this as our

first variable. The ID in Figure 4 gives some idea of the temporal ordering of

the problem, but does not tell us that C3 precedes D1 in this ordering. We can

see that C3 affects C2, and that the outcome of C2 is known by the doctor when

they make a decision at D2, but the doctor does not know the outcome of C3.

If we now wish to solve our decision problem we need to reorder the variables

so that only those whose outcomes are known to the doctor before making any

decision occur before this decision in our sequence of variables. This requires

C3 to come after D2, which in turn requires a couple of further modifications to

the graph, described in the next paragraph. As we have changed the ordering of

the variables, some form of Bayesian updating of probabilities is inevitable. For

decision trees and IDs (and indeed CEGs) such updating can be automated.

Once we have our parsimonious ID we can use one of the standard solution

methods to produce an optimal decision strategy and expected utility for this

15

strategy. We use Shachter’s method [13] for transparency. If we do this we

find that we cannot remove D2 first because there exists an edge from C3 to

U , but C3 is not a parent of D2. We cannot immediately remove C3 either

because there exists a path C3 → C2 → D2 → U . To get around this we do arc-

reversal on C3 → C2. C3 then inherits the parents of C2, and solution proceeds

straightforwardly to give an expression for the maximum expected utility of:

max
D1

[

∑

C2

P (C2 | D1)
[

max
D2

[

∑

C3

P (C3 | D1, C2) U(C2, C3, D2)
]]]

which does not however reflect the asymmetries in the problem. These can be

built into the solution technique, but since the principal asymmetry concerns

U(C2, C3, D2), a term embedded at the heart of the expression, any advantage

conveyed by the compactness of the ID is lost in the messy arithmetic.

3.2. Example 2 – CEG representation

We now turn our attention to a CEG-representation of the problem. As was

the case with the ID, we could construct our CEG in several different orders. For

example we could put the variables in a temporal order C3, D1, C1, C2, D2, U ,

or in any order consistent with the direction of the edges in Figure 4. If we did

so, we could read off these CEGs the same conditional independence properties

that we can read off the ID in Figure 4. This is discussed further in section 3.3.

However, as we wish to solve the decision problem, we construct the CEG in

EF order.

There are two EF orderings of the variables: D1, C2, C1, D2, C3, U and one

where C1 & C2 are interchanged. Note that D2 precedes C3 since the value of

C3 is not known to the doctor when she comes to make a decision at D2. The

first ordering leads to a slightly more transparent graph.

As we are comparing CEGs and IDs here, we do not put any utilities onto

edges, but restrict them to terminal utility nodes. We also separate out our

single utility node into distinct utility nodes for each value taken by U . In more

complex decision problems this can lead to greater transparency. We call this

form of CEG without utilities on edges, and with separated utility nodes, a

16

Type 2 decision CEG. The Type 2 CEG for the ordering D1, C2, C1, D2, C3, U

is given in Figure 6, where we have also coloured chance nodes in the same stage

for illustrative convenience.

1

2

1

2

1

2

1

2

1

2 1

2

1

1

2

1

wa

wb

wc

wd

we

wf

wg

wh
D1 C2 C1 D2 C3

wi

wj

wk

wl

wm

wn

wo

wp

wq

wr

ws

U

A

B

C

D

E

Figure 6: Initial EF CEG for Example 2

Conditional independence structure in a CEG can be read from individual

positions, from stages, and from cuts through these [20]. Recall that nodes

in the underlying tree are coalesced into positions when the sets of complete

future developments from each node are the same and have the same probability

distribution. So for example, the position wn yields the information that

(C3, U) ∐ (C1, D2) | (D1 = 1, C2 = 1) (3.1)

The position wp similarly yields (C3, U) ∐C1 | (D1 = 1, C2 = 2, D2 = 1).

Recall also that chance nodes in a CEG are in the same stage if their sets of

outgoing edges carry the same labels and have the same probability distribution.

The positions wp & wq are in the same stage (indicated by the colouring), and so

the probabilities on the edges leaving these positions have the same distibution,

and hence

C3 ∐ (C1, D2) | (D1 = 1, C2 = 2) (3.2)

17

The expressions (3.1) & (3.2) result from the fact that in our EF CEG

ordered D1, C2, C1, D2, C3, U , the variable C3 is dependent on D1 and C2. This

cannot be read from the ID in Figure 1, but is reflected in the expression for

Ufinal. Now the form of this expected utility expression is a consequence of the

arc-reversal required for successful ID-based solution of our problem. So this

arc-reversal is already explicitly represented in the original EF CEG, and is not

(as with IDs) an additional requirement of the solution technique.

A cut through a CEG is a set of positions or stages which partitions the set

of root-to-sink/leaf paths. So the set of positions {wn, wo, wp, wq, wr, ws} is a

cut of our CEG. A conditional independence statement associated with a cut

is the union of those statements associated with the component positions (or

stages) of the cut. So the cut through {wn, wo, wp, wq, wr , ws} gives us that

U ∐ C1 | (D1, C2, D2)

which is clearly of the form U ∐ Q(DB
2) | (D2, Q(DA

2)), and tells us that C1 is

irrelevant to D2 for the purposes of maximising utility.

We can read the cuts of the CEG in Figure 6 to give us those conditional inde-

pendence properties readable off the ID produced by reversing the arc C3 → C2

and adding an arcD1 → C3. In general, cuts of a CEG provide statements read-

able from the equivalent ID, and more context-specific properties can be read

from individual positions and stages.

For a Type 2 CEG drawn in EF order, two (or more) decision nodes are in

the same position if the sub-CEGs rooted in each decision node have the same

topology, equivalent edges in these sub-CEGs have the same labels and (where

appropriate) probabilities, and equivalent branches terminate in the same utility

node. So in Figure 6, the nodes wh & wi are in the same position, as are the

nodes wk & wl. Decision nodes in the same position can simply be coalesced,

giving us the first graph in Figure 7.

For a Type 2 EF decision CEG with all positions coalesced (as in this graph),

a barren node is simply a position w for which ch(w) (defined as in section 2)

contains a single element. Barren nodes can be deleted in a similar manner to

18

D1 C2 C1 D2 C3 U

A

B

C

D

E

D1 C2 D2 C3 U

A

B

C

D

E

1

1

2

2

Figure 7: First and second simplifications

those in BNs – see Table 3 (where pa(w) denotes the set of parent nodes of w).

Table 3: Barren node deletion algorithm (Type 2 decision CEGs)� Choose a topological ordering of the positions excluding the terminal

utility nodes: w1, w2, . . . , wm, such that w1 is the root-node.� Iterate: for i = 2 step plus 1 until i = m do:

If ch(wi) contains only one node then

Label this node w≻i

For each node w≺i ∈ pa(wi)

Replace all edges e(w≺i, wi) by a single edge e(w≺i, w≻i)

Delete all edges e(wi, w≻i) & the node wi.

Four iterations of the algorithm applied to the first graph in Figure 7 yield

the second graph in Figure 7. Further iterations will remove the first two D2

nodes and the first two C3 nodes to give the parsimonious CEG in Figure 8.

We can clearly see that C1 is irrelevant for maximising U , and moreover if

C2 = 1 then both D2 and C3 are also irrelevant for this purpose (so the DM

actually only needs to make one decision in this context). This latter property of

the problem is not one that can be deduced directly from an ID-representation,

although it could be worked out from the second distribution tree in Figure 5.

19

1

2

1

2

1

2

w1

w2

w3

D1 C2 D2 C3

w4

w5

w6

w7

w8

w9

U

A

B

C

D

E

Figure 8: Parsimonious CEG

It is however obvious in the parsimonious CEG.

Solution follows the method described in section 2 (the process obviously

being simpler as there are no rewards or costs on the edges), and results in an

expression for the maximum expected utility of:

max
[

P (C2 = 1 | D1 = 1)UA + P (C2 = 2 | D1 = 1)×

max
[

P (C3 = 1 | D1 = 1, C2 = 2)UB + P (C3 = 2 | D1 = 1, C2 = 2)UD,

P (C3 = 1 | D1 = 1, C2 = 2)UC + P (C3 = 2 | D1 = 1, C2 = 2)UE

]

,

P (C2 = 1 | D1 = 2)UA + P (C2 = 2 | D1 = 2)×

max
[

P (C3 = 1 | D1 = 2, C2 = 2)UB + P (C3 = 2 | D1 = 2, C2 = 2)UD,

P (C3 = 1 | D1 = 2, C2 = 2)UC + P (C3 = 2 | D1 = 2, C2 = 2)UE

]]

.

This expression is obviously more complex than that given for the ID, but

it is much more robust since it has been produced using the asymmetry of the

problem to power the analysis, rather than treating it as an added complication.

3.3. CEGs and IDs

Theorem 1. Any (discrete) ID can be represented as a decision CEG.

20

A proof of this for the case where the ID has only one (terminal) utility node

is given in the appendix. Not all decision CEGs can be represented adequately

as an ID. There are a number of reasons for this, mainly stemming from the fact

that many decision problems are asymmetric, with different actions resulting in

different choices in the future. We list the principal reasons here. There are par-

tial solutions to each drawback, but as our problems become more asymmetric,

the compromises necessary become ever more cumbersome.

1. Decision CEGs may have root-to-leaf paths of different lengths. This oc-

curs when certain outcomes of some chance variables and/or certain deci-

sion strategies lead to possible developments where the DM will encounter

fewer future chance variables and/or fewer occasions on which he/she will

be required to choose an action.

• A partial solution to this when using IDs involves the addition of

extra nodes to paths in the underlying tree to make them all the

same length. This has the effect of introducing dummy values to

some vertex-variables of the ID.

2. Decision CEGs may have different numbers of edges emanating from nodes

in the same cut: Given different partial histories a chance variable may

have fewer possible outcomes or a DM have fewer possible actions to choose

from.

• A partial solution to this when using IDs involves adding extra out-

comes/actions at some vertex-variables of the ID, but giving these

zero probability.

3. Decision CEGs may have paths on which one encounters a totally different

set of variables to those encountered on some other paths. Or they may

have paths where the variables are encountered in a different order.

• A partial solution to the former when using IDs is to add extra nodes

to paths in the underlying tree as above, which again has the effect

of introducing dummy values to vertex-variables of the ID. Solution

of the latter problem is more problematic.

21

The augmented ID of Smith et al [16] is an attempt to overcome the many

drawbacks, by supplementing the graph of the ID with additional information

to represent the asymmetric aspects of the model.

Theorem 1 has a number of immediate consequences, some of which are

described in the remainder of this section.

Any probability manipulation required when using a CEG (such as Bayesian

updating when changing the order of variables) would also be necessary when

using an ID. And as with IDs, these manipulations do not need to be done man-

ually. Automatable algorithms exist for these purposes (see for example [26]),

based on those existing for decision trees and analogous to algorithms used with

BNs and IDs. Since this is the case, there is no extra work (compared with

BNs/IDs) when we move to larger models. That there may appear to be so is

simply a consequence of CEGs being used to analyse (often highly) asymmetric

problems, with more context-specific conditional independence structure than

is possible with BNs and IDs.

CEGs represent conditional independence structure explicitly in their topol-

ogy [20, 25]. And any structure represented in an ID will always be depicted in

the equivalent CEG. So, in particular, if a CEG is drawn in EF order, then it

will depict all structure represented by the equivalent EF ID or BN, plus any

extra context-specific structure. Similarly if a CEG is drawn in temporal or

causal order. This follows from the ID-to-CEG construction given in the proof

of Theorem 1.

It can happen that the operations on an ID required to change the order

of variables to allow for solution will decrease the number of conditional in-

dependence statements readable from the graph. As any (discrete) ID can be

represented by a decision CEG which encodes the same conditional indepen-

dence properties in its topology, this decrease will also happen with CEGs, but

the effect of this on solution will be no worse than with an ID, and may actually

be better since context-specific properties evident in the CEG may alleviate (but

not exacerbate) the problem. In particular, if an ID-representation of a prob-

lem is soluble, so is the CEG-representation. This follows from the ID-to-CEG

22

construction given in the proof of Theorem 1.

The DAG and conditional probability tables of a BN can be used to represent

the full joint distribution of the BN’s vertex-variables, and similar can be done

with an ID, conditional on the set of decision strategies that a DM might employ.

It is in the nature of highly asymmetric problems that their context-specific

Markov structure results in a full joint distribution which is not expressible in

such a neat and tidy form. However, the CEG expresses this distribution in a

remarkably transparent manner: The full joint distribution of the variables of

a non-decision CEG is explicit in the topology of the CEG, since the root-to-

leaf/sink paths are precisely the atoms in the event space, and the probabilities

of these atoms are the products of the probabilities of their component edges [25].

This idea transfers automatically to decision CEGs, so in Figure 6 for example,

the first root-to-leaf path equates to the atom (D1 = 1, C2 = 1, C1 = 1, D2 =

1, C3 = 1), and has the probability

P (C2 = 1, C1 = 1, C3 = 1 | D1 = 1, D2 = 1)

= P (C2 = 1 | D1 = 1)× P (C1 = 1 | D1 = 1)× P (C3 = 1 | D1 = 1, C2 = 1)

There are 24 root-to-leaf paths equating to the atoms for which the variables

{D1, C2, C1, D2, C3} take different values. The probabilities of these paths are

given by similar expressions to the one above. These paths can be partitioned

by the values taken by D1 and D2. For each combination of decisions at D1

and D2, there is a set of atoms whose conditional probabilities add up to 1, so

the decision CEG encodes the full joint probability distribution of its chance

variables conditioned on its decision variables.

Although it is possible to construct a decision CEG from an ID, the decision

CEG is a function of a decision tree. Decision trees are easily elicited from

clients and are easy for clients to understand. So users of decision CEGs need

no expertise in BNs or IDs in order to use their chosen graphical tool, just a

familarity with trees (and this is easily gained).

Once we have represented our problem as a decision tree, all we need to do

is identify those sets of edge probabilities that are the same, and those decision

23

nodes which will be indistinguishable to the DM. Conversion to a decision CEG

then follows the steps described in section 2.

4. Comparing CEGs with other graphical methods for tackling asym-

metric decision problems

In chapter 3 we saw how the CEG compares with IDs. In this chapter we

look at how CEGs compare with Valuation Networks (VNs) [14], Sequential

Decision Diagrams (SDDs) [7], and Sequential Influence Diagrams (SIDs) [10].

We also look briefly at Decision Circuits [3].

4.1. CEGs and Valuation Networks

Even for simple problems (such as that described in section 3.1) it is not

always transparent what a VN-representation will look like, and construction

takes some time and thought. Figure 9 gives a possible VN-representation of

the problem presented in chapter 3. The decision and chance nodes are laid

out in an essentially EF ordering along the spine of the graph – the lack of a

directed edge connecting C1 and C2 reflects the existence of two possible EF

orderings.

The qualitative constraint that if D1 = 2 then C1 = 1 is represented by

a double-triangle node a, connected by undirected edges to both D1 and C1.

Note that the choices available at D2 do not depend on the choice made at

D1, nor the values taken by C1 or C2. Moreover the values available at C2 are

not constrained by the choice made at D1; and although the value taken by C3

probabilistically influences the value taken by C2, there are no constraints on

the values taken by C2. Hence there are no further double-triangle nodes.

We note that C1∐C2 | D1 and C1∐C3, so C1 is connected to a single triangle

node b. C3 is a parent of C2 (in the probabilistic sense), so is also connected to a

triangle node d, and both C2 and C3 are connected to a further triangle node c.

It is debatable whether we should have one or two utility nodes here. We opt

for two, noting that if C2 = 1 then our utility is independent of D2 and C3.

24

a b c d

D1

C1

C2 D2 C3

v1 v2

Figure 9: VN-representation of the problem described in Example 2

The VN in Figure 9 has 11 nodes (of five different types) and 15 edges (some

directed, some not), compared with the 14 nodes (of three types) and 18 edges

(all directed) of our parsimonious CEG, so is not much simpler in topology.

Moreover the depiction of the underlying conditional independence structure is

not apparent, which it is with the CEG (through the colouring and coalescence).

Solution using the VN is carried out via a complex fusion algorithm, which

sequentially reduces the VN in a process similar to that method of ID solution

which progresses via a sequence of pruning operations.

An advantage claimed for VN-representations is that they distinguish be-

tween informational and structural edges entering decision nodes. This dis-

tinction is not explicit in CEG-representations, but is implicitly used in the

simplification process described in section 3.2. The principal disadvantages of

VNs are the complexity of the solution technique and the lack of transparent

interpretability of the graph. Bielza & Shenoy in [4] also note that a major issue

of VNs is their inability to model some asymmetry, not a problem with CEGs.

Lastly, VNs suffer from the same drawback as Smith et als’ IDs [16] in that

the graphs have to be supplemented with extra tables (here the indicator val-

uations, which capture the asymmetry) before solution can commence. Again,

25

this is not necessary with CEGs, where the full dependence level specification [4]

is encoded in the topology.

4.2. CEGs and Sequential Decision Diagrams

Sequential Decision Diagrams [7] are most useful when there exist paths of

different lengths in the underlying decision tree of a problem. Where this is not

obviously the case, as in our Example 2, the SDD graph can be particularly

unilluminating. A valid initial SDD here could simply be the set of nodes and

directed edges D1 → C1 → C2 → D2 → C3 → U (or the alternative EF

ordering D1 → C2 → C1 → D2 → C3 → U). One could argue that the property

U ∐ (C3, D2) | (C2 = 1) can be established before solution is attempted, in

which case the edge C2 → D2 would be labelled 2, and an extra edge C2 → U

added, labelled 1. If we are drawing our SDD simply from the description of

the problem, it is not apparent which diagram should be used.

Users of SDDs also require an ID-representation of the problem, and very

probably also an ID after appropriate arc-reversal, in order to construct the

Formulation Table. But then this table is all that is necessary for solution,

and it replicates the information present in the topology of the CEG in a less

transparent manner. In fact it is arguable whether SDDs are a graphical tool

at all, given that it is the Formulation Table that is used for solution.

The lack of direction as to how to draw our initial SDD has consequences for

the construction of the Formulation Table. If we assume that we do not know

the property U ∐ (C3, D2) | (C2 = 1), then the first three sections of the table

are as in Table 4. But if we know this property, then the Next Node function

entries for C2 are all U,D2; and this ambiguity continues in further sections of

the table.

The solution of SDDs relies on the identification of relevant and minimal

histories of its nodes. These ideas are related to the stages and positions of

CEGs. However, because they are only represented in the Formulation Table,

their interpretation and their relationship to the underlying graph are not (in

our opinion) as transparent as the stages and positions of a CEG.

26

Table 4: SDD Formulation Table for Example 2

Node Histories State Space Next Node function

D1 φ 1, 2 C1, C1

C1 D1 = 1 1, 2 C2, C2

D1 = 2 1 C2, C2

C2 D1C1 = 11 1, 2 D2, D2

D1C1 = 12 1, 2 D2, D2

D1C1 = 21 1, 2 D2, D2

However, SDDs enjoy many useful properties. Like CEGs but unlike IDs and

VNs, they do not require the addition of dummy states to variables. SDDs list

the nodes’ state spaces in a table (whereas in a CEG the state spaces are explicit

in the topology). SDD solution is local, relying on the relevant and minimal

histories, and hence, like CEGs, they do what Call & Miller [6] requested, and

exploit coalescence. Like with CEGs and IDs, one can, when working with SDDs

identify barren nodes, and use this to advantage in solution. However, CEGs

have the advantage over SDDs in that there are not two distinct representations

of the probability model, and in CEGs arc-reversal is, as already noted, explicitly

represented in the original graph, and is not a requirement for producing a

Formulation Table.

4.3. CEGs and Sequential Influence Diagrams

Jensen et al in [10] state that a Sequential Influence Diagram can be thought

of as two diagrams superimposed on each other, each diagram encoding different

aspects of the problem structure. As such they are similar in concept to VNs,

but in appearance they are closer to SDDs. As a result of this superimposition it

is not immediately obvious how to read the conditional independence structure

of a problem from its SID-representation.

SIDs depict asymmetry using a combination of dashed and solid directed

edges connecting nodes, which may also carry annotations describing conditions

on the edge being utilised. Two nodes may have both a dashed and a solid edge

27

connecting them, and SIDs may contain cycles consisting of a mix of dashed

and solid edges, so they are not necessarily DAGs. Nodes may also be clustered,

giving the SID a superficial resemblance to some types of OOBN (examples of

each of these occur in [10] Figures 3 and 4).

Solution is accomplished via decomposing the graph/problem into a collec-

tion of (symmetric) subproblems, with an associated propagation of probability

and utility potentials, similar to CEGs.

Like SDDs, they are most useful when the modelled problem exhibits the

types of asymmetry where different actions lead to different choices in the fu-

ture, and where different paths in the underlying decision tree have different

lengths. For this reason we have created an SID for Example 1 rather than Ex-

ample 2. This is given in Figure 10, where we have followed Jensen et al’s lead in

separating decision node outcomes where this makes the graph easier to follow.

So the possible outcomes of the Test decision node are distinct nodes Self (we

take up the option) and Other (we pass the option on to another prospector).

Test
t, p

Drill
d, nd

Self
g, b

Other
g, b

Oil
o, no

u3 | nd

u4 | d

u2 | g

u1 | t

t

p
b

g

d

Figure 10: SID-representation of the problem described in Example 1

The meaning of most edges is reasonably clear – dashed edges encode struc-

ture (in the form of precedence information and sometimes asymmetry), and

28

solid edges encode probabilistic and utility dependencies, and reflect how this

information could be represented in an ID of the problem. So here, the oil is (or

isn’t) in the ground before we do the test (our original probabilities were given

in the form P (oil), P (test result good | oil) etc), and a temporally or causally

ordered ID-representation of the problem would have an edge from the chance

node Oil to the chance node Test result. This is reflected in the solid edges from

our Oil node in Figure 10 to the nodes Other and Self.

The reason for the edge from Self to u3 may not be immediately obvious,

but is a consequence of the utility information in Figure 1. The SID depiction is

not fully expressive in some situations. For our example here, some indication

that u3 depends on Self when the outcome of the node is good (and when Drill

takes the outcome not drill) would be helpful.

The graph in Figure 10 has 9 nodes and 13 edges (solid and dashed) compared

with the 8 nodes and 14 edges in the CEG, so the two graphs are of similar

complexity. The conditional independence structure which is transparent in an

ID-representation (and is there in the topology of the CEG in Figure 2) is not

transparent in the SID.

We have not described the SID solution of this problem, but it is more

straightforward than some of its competitors. Overall, in our view the relative

merits of CEGs and SIDs are fairly well balanced, but the two methods approach

problems from very different directions, and the choice of which method should

be used is one that would typically depend on the familiarity of a user with

decision trees as opposed to IDs. For example, public health professionals are

increasingly familiar with processes expressed as trees (see for instance the NICE

Pathways produced by the National Institute for Health and Care Excellence in

the UK), and so CEG-representations are likely to fit more naturally into their

analyses.

4.4. CEGs and Decision Circuits – a brief discussion

Decision Circuits [3] are a relatively recent addition to the collection of graph-

ical models used for the representation and analysis of discrete decision prob-

29

lems. Like CEGs they can be used to model asymmetries explicitly, but they

are much more unwieldy even than decision trees, and focus on representation

of the necessary calculations needed for a problem, rather than on the prob-

lem itself. In [2] there is an example where there is an ID equivalent to the

nodes D2, C3 and U (and connecting edges) in Figure 4 (our Example 2 ID).

The authors also provide a Decision Circuit representation of this ID (where

all variables are binary), which contains 39 nodes and 48 edges. Although the

methods have since been streamlined, Decision Circuits still remain a rather

impractical representational-level tool for all but the tiniest of problems.

5. Discussion

In this paper we have concentrated on how CEGs compare with IDs, VNs,

SDDs and SIDs for the analysis of asymmetric decision problems. It is how-

ever worth pointing out two advantages of CEGs over coalesced trees: Firstly,

the ability to read conditional independence structure from CEGs enabled us

to create an analogue of the parsimonious ID, and secondly, the explicit rep-

resentation of stage structure in CEGs gave rise to our barren node deletion

algorithm.

A paper on the use of decision CEGs for multi-agent problems and games

has already been written [23], where we show how the methods outlined in this

paper can easily be adapted to the case where there is more than one decision

maker. Under the assumptions that the structure of the game and the crude

structure of each player’s utility function are common knowledge, modelling

for example an adversarial two-player game is straightforward. A parsimonious

CEG representation of the game is produced by considering each decision in

order (irrespective of who makes the decision), and discarding irrelevant infor-

mation. The optimal strategies for each player are then found using a single

rollback, provided that when each cut of decision nodes is reached, the decisions

made are those which increase the utility of the player making these decisions.

We intend to continue development of the theory of decision CEGs as part

30

of the EPSRC project Modelling decision and preference problems using CEGs.

There is clearly scope for addressing complexity/efficiency issues relating to

decision CEGs. It would be useful to have an efficient ID-to-CEG algorithm.

Can we use modern lazy evaluation [5] techniques to increase the efficiency of our

solution technique? First indications suggest that there might be a benefit from

retaining some information from the unsimplified CEG, which in turn suggests

that the simplification and solution processes might not be best considered as

distinct. We aim to address these and other questions in a future paper.

Acknowledgements: This research is being supported by the EPSRC (project

EP/M018687/1), and by The Alan Turing Institute under the EPSRC grant

EP/N510129/1. We would also like to express our thanks to Robert Cowell

for his input into the early development of the theory of decision CEGs, and

to earlier versions of Example 1. This is an extended and revised version of a

paper [24] that appeared in the proceedings of WUPES’15.

Appendix

Proof of Theorem 1

We consider here the case where the ID has only one (terminal) utility node. A

proof of the more general case is somewhat longer, but not significantly more

complex.

1. A BN with N vertex-variables can be completely specified by N con-

ditional independence/Markov statements (dictating the topology of its

DAG), and N conditional probability tables. An ID can be completely

specified by

(i) a partition of its N vertices into chance, decision and utility nodes,

(ii) conditional probability tables for each chance node, and lists of pos-

sible actions for each decision node,

(iii) utilities associated with each possible sequence of decision-node-actions

and chance-variable-outcomes,

31

(iv) a set of N conditional independence/Markov statements (reflecting

the topology of the ID), as described in bullet 3 below.

2. Let our ID have vertex-variables V1, . . . , VN , such that if i < j then there

cannot exist a directed edge from Vj to Vi.

From bullet 1, the set {V1, . . . , VN} consists of subsets of chance nodes

(which we will label Xi), decision nodes (which we will label Dj), and one

terminal utility node (which we will label UN).

3. (a) Each chance node Xm encodes a property of the form

Xm ∐Rm | Qm,

where Qm is the set of parents of Xm, and

Rm ∩Qm = φ,

Rm ∪Qm = {V1, . . . Vm−1},

and whereRm andQm can contain both chance and decision nodes/variables.

(b) Each decision node Dm encodes a property of the form

Dm ∐Rm | Qm,

where Qm is the set of parents of Dm, and

Rm ∩Qm = φ,

Rm ∪Qm = {V1, . . . Vm−1}.

We interpret these statements for decision nodes as the DM does not

know the outcome of the variables in Rm when he/she comes to make

a decision at Dm.

Note that if an ID is drawn in EF order, then there are directed edges

from all vertices V1, . . . , Vm−1 to Dm, so Qm contains all preceding

chance and decision nodes. In general Qm consists of all the variables

whose outcomes are known to the DM when making his/her decision

atDm, and which therefore he/she can use to inform his/her decision.

32

(c) The utility node UN encodes a property of the form

UN ∐RN | QN ,

where QN is the set of parents of UN , and

RN ∩QN = φ

RN ∪QN = {V1, . . . VN−1}.

We interpret this statement for the utility node as the utility of a

particular sequence of decision-node-actions and chance-node-values

does not depend on the outcome of the variables in RN (both decision-

node-actions and chance-node-values), but only on the outcomes of

those in QN .

4. Any (discrete) ID (with one terminal utility node as described in bullet 1)

can be drawn as a decision tree, whose root-to-leaf paths are all of equal

length, and which respects the partition of vertices into chance, decision

and utility nodes. Any decision tree can be represented as a decision CEG,

which also retains the partition of vertices into chance, decision and utility

nodes.

Moreover, the probabilities on the edges emanating from chance nodes in

the decision tree replicate those in the conditional probability tables of

the ID (bullet 1(ii)); and the CEG retains all edge-probabilities from the

tree, by construction. The edges emanating from decision nodes in the

decision tree represent the possible actions available to the DM at the

equivalent decision node in the ID (bullet 1(ii)); and the CEG replicates

these features of the topology of the decision tree, by construction. The

utilities associated with each root-to-leaf path in the decision tree are

equal to the utilities associated with each possible sequence of decision-

node-actions and chance-variable-outcomes in the ID (bullet 1(iii)); and

the CEG retains this information by construction.

So it suffices to show that the conditional independence/Markov structure

33

encoded in the N conditional independence statements (bullet 1(iv)) is

also present in the CEG.

5. The root of our decision tree corresponds to V1, and the edges emanating

from the root to possible values taken by V1. Nodes one edge from the

root correspond to V2 etc. Our leaf nodes are utility nodes associated with

the terminal (utility) variable UN .

6. All nodes in our decision tree which are the same distance (number of

edges) from the root (and also the edges emanating from these nodes)

correspond to one vertex-variable of the ID. We call such a set of nodes

a cut of the tree.

Consider the cut corresponding to Vm ∈ {V2, . . . , VN−1}. Each node in

this cut correponds to a unique vector of values (v1, . . . , vm−1) of the

preceding variables {V1, . . . , Vm−1}, and each edge emanating from one of

these nodes corresponds to a unique value vm of Vm.

If Vm is a chance variable (Xm), then the probability associated with such

an edge will be

P (Xm = vm | V1 = v1, . . . , Vm−1 = vm−1).

If Vm is a decision variable (Dm), then the DM will have a choice of actions

determined by the variable outcomes up to that point

(V1 = v1, . . . , Vm−1 = vm−1).

Each node in the cut corresponding to VN = UN has an attached utility

for the root-to-leaf path associated with this node, of the form

U(V1 = v1, . . . , VN−1 = vN−1).

7. Nodes in a cut can be partitioned into equivalence classes called stages

(see section 2). So consider the cut corresponding to Vm. All nodes in this

cut which have the same vector of values qm for Qm belong to one stage,

and to a different stage from any node for which at least one value in this

vector is different.

34

(a) If Vm is a chance variable (Xm), then the conditional probability

distribution of Xm is the same for every node in the same stage,

and the probabilities on the edges leaving any node in this stage are

expressible in the form

P (Xm = xm | Qm = qm),

for some vector of values qm of Qm.

(b) If Vm is a decision variable (Dm), then Qm are the variables whose

outcomes are known to the DM at Dm, and qm are these outcomes.

Nodes in the same stage have the same qm, so the DM has exactly

the same evidence at each node in the same stage. Hence these nodes

are indistinguishable, and the DM must necessarily make the same

decision.

(c) QN are the variables whose outcomes affect the utility UN , and qN

are these outcomes. Nodes in the cut associated with VN = UN that

have the same vector of values qN for QN correspond to root-to-leaf

paths which result in the same reward or loss. We can extend the

definition of stages from section 2 to terminal utility nodes, and call

the equivalence classes of this cut stages also.

8. So the set of stages in the cut associated with Vm encode the conditional

independence property that

Vm ∐Rm | Qm,

whether Vm is a chance variable, decision or utility.

9. Certain nodes in the same cut of the decision tree are coalesced into the

same position in a decision-CEG-representation (see section 2), but no

position will be created from nodes belonging to different stages. So the

stage-structure of the decision tree is preserved in the decision CEG.

10. From bullets 3, 7, 8 & 9 we see that the conditional independence/Markov

structure of the ID is preserved in the decision-CEG-representation thereof.

35

Remark: We know from section 3.1 that if Xm is a decision variable (Dm),

then there may be elements of Qm which are in some sense irrelevant to the

DM. Let QA
m ⊆ Qm be the parents of Dm relevant for the purposes of maximis-

ing expected utility. Then there is a coarser partition of the nodes of the cut

associated with Dm, than that into stages, for which the DM has exactly the

same relevant evidence qAm at each node in the same equivalence class. These

nodes will not be indistinguishable. An example of two decision nodes not in

the same stage, but in the same relevant evidence equivalence class, is the 1st

and 3rd drill nodes in Figure 1.

Note that the 1st and 3rd drill nodes are however in the same position, so

unlike chance nodes, decision nodes can be in the same position without being

in the same stage. This is a consequence of the fact that for decision nodes, qm

gives the information known to a DM, rather than (as is the case for chance

nodes) that part of the history of the node which determines the probability

distribution of its emanating edges.

References

[1] L. M. Barclay, J. L. Hutton, and J. Q. Smith. Refining a Bayesian Net-

work using a Chain Event Graph. International Journal of Approximate

Reasoning, 54:1300–1309, 2013.

[2] D. Bhattacharjya and R. D. Shachter. Evaluating influence diagrams with

decision circuits. In Proceedings of the Twentythird Conference on Uncer-

tainty in Artificial Intelligence, pages 9–16, Vancouver, 2007.

[3] D. Bhattacharjya and R. D. Shachter. Formulating asymmetric decision

problems as decision circuits. Decision Analysis, 9:138–145, 2012.

[4] C. Bielza and P. P. Shenoy. A comparison of graphical techniques for

asymmetric decision problems. Management Science, 45:1552–1569, 1999.

[5] R. Cabanas, A. Cano, M. Gomez-Olmedo, and A. L. Madsen. On SPI-

Lazy evaluation of Influence Diagrams. In Proceedings of the 7th Euro-

36

pean Workshop on Probabilistic Graphical Models (PGM), pages 97–112,

Utrecht, 2014.

[6] H. J. Call and W. A. Miller. A comparison of approaches and implementa-

tions for automating Decision analysis. Reliability Engineering and System

Safety, 30:115–162, 1990.

[7] Z. Covaliu and R. M. Oliver. Representation and solution of decision prob-

lems using sequential decision diagrams. Management Science, 41(12),

1995.

[8] A. P. Dawid. Conditional independence in statistical theory. Journal of

the Royal Statistical Society, Series B, 41:1–31, 1979.

[9] F. Jensen, F. V. Jensen, and S. L. Dittmer. From influence diagrams to

junction trees. In Proceedings of the 10th Conference on Uncertainty in

Artificial Intelligence, pages 367–373, San Francisco, 1994.

[10] F. V. Jensen, T. D. Nielsen, and P. P. Shenoy. Sequential influence dia-

grams: A unified asymmetry framework. International Journal of Approx-

imate Reasoning, 42:101–118, 2006.

[11] R. Qi, N. Zhang, and D. Poole. Solving asymmetric decision problems with

influence diagrams. In Proceedings of the 10th Conference on Uncertainty

in Artificial Intelligence, pages 491–499, 1994.

[12] H. Raiffa. Decision Analysis. Addison-Wesley, 1968.

[13] R. D. Shachter. Evaluating Influence diagrams. Operations Research,

34(6):871–882, 1986.

[14] P. P. Shenoy. Representing and solving asymmetric decision problems using

valuation networks. In D. Fisher and H-J. Lenz, editors, Learning from

Data: Artificial Intelligence and Statistics V. Springer-Verlag, 1996.

37

[15] T. Silander and T-Y. Leong. A Dynamic Programming Algorithm for

Learning Chain Event Graphs. In Discovery Science, volume 8140 of Lec-

ture Notes in Computer Science, pages 201–216. Springer, 2013.

[16] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring conditional

relationships in influence diagrams. Operations Research, 41:280–297, 1993.

[17] J. Q. Smith. Influence diagrams for Bayesian decision analysis. European

Journal of Operational Research, 40:363–376, 1989.

[18] J. Q. Smith. Plausible Bayesian games. In J. M. Bernardo et al., editors,

Bayesian Statistics 5, pages 387–402. Oxford, 1996.

[19] J. Q. Smith. Bayesian Decision analysis: Principles and Practice. Cam-

bridge, 2010.

[20] J. Q. Smith and P. E. Anderson. Conditional independence and Chain

Event Graphs. Artificial Intelligence, 172:42–68, 2008.

[21] J. Q. Smith and P. A. Thwaites. Decision Modelling, Decision Trees and

Influence Diagrams. In E. L. Melnick and B. S. Everitt, editors, Ency-

clopedia of Quantitative Risk Analysis and Assessment, volume 2, pages

459–462, 462–470, 897–910. Wiley, 2008.

[22] P. A. Thwaites. Causal identifiability via Chain Event Graphs. Artificial

Intelligence, 195:291–315, 2013.

[23] P. A. Thwaites and J. Q. Smith. A Graphical method for simplifying

Bayesian games. Submitted to Reliability Engineering and System Safety,

2015.

[24] P. A. Thwaites and J. Q. Smith. A New Method for tackling Asymmet-

ric Decision Problems. In Proceedings of the 10th Workshop on Uncer-

tainty Processing (WUPES’15), pages 179–190, Moninec, 2015. Available

at arXiv:1510.00186 [stat.ME].

38

[25] P. A. Thwaites and J. Q. Smith. A separation theorem for Chain Event

Graphs. Available at arXiv:1501.05215 [stat.ME], 2015.

[26] P. A. Thwaites, J. Q. Smith, and R. G. Cowell. Propagation using Chain

Event Graphs. In Proceedings of the 24th Conference on Uncertainty in

Artificial Intelligence, pages 546–553, Helsinki, 2008.

[27] P. A. Thwaites, J. Q. Smith, and E. M. Riccomagno. Causal analysis with

Chain Event Graphs. Artificial Intelligence, 174:889–909, 2010.

39

