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THE SUPPORT OF LOCAL COHOMOLOGY MODULES

MORDECHAI KATZMAN AND WENLIANG ZHANG

Abstract. We describe the support of F -finite F -modules over a poly-
nomial ring R of prime characteristic. Our description yields an algo-
rithm to compute the support of such local cohomology modules of R;
the complexity of our algorithm is also analyzed. To the best of our
knowledge, this is the first practical algorithm regarding local cohomol-
ogy modules in prime characteristic. We also use the idea behind this
algorithm to prove that the support of Hj

I (S) is Zariski closed for each
ideal I of S where R is noetherian commutative ring of prime character-
istic with finitely many isolated singular points and S = R/gR (g ∈ R).

1. Introduction

Local cohomology is a powerful tool introduced by Alexander Grothendieck
in the 1960’s ([Har67]) and it has since yielded many geometric and al-
gebraic insights. From an algebraic point of view, given an ideal I in
a commutative ring R, local cohomology modules Hi

I(−) (i ≥ 0) arise
as right-derived functors of the torsion functor on R-modules given by
ΓI(M) = {a ∈ M | Ika = 0 for some k ≥ 0}. A central question in the
theory of local cohomology is to determine for which values of i does the
local cohomology module Hi

I(M) vanish. This question is both useful and
difficult even in the case where R is a regular local ring and M = R, and this
case has been studied intensely since the introduction of local cohomology
(e.g., cf. [Har68], [PS73] and [Ogu73]).

The aim of this paper is to describe the support of local cohomology mod-
ules in prime characteristic. Specifically, we first study the support of F -
finite F -modules over a regular ring R and show a computationally feasible
method for computing these without the need to compute generating roots.
To the best of our knowledge, this is the first computationally feasible algo-
rithm for calculating the support of these modules in prime characteristic.
We then apply this to the calculation of supports of local cohomology mod-

ules and of iterated local cohomology modules Hi1
I1

(
Hi2

I2

(
. . .Hin

In
(R) . . .

))

thus, for example, giving an effective method for determining the vanishing
of Lyubeznik numbers.
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Our methods are interesting both from theoretical and practical points
of view. A careful analysis of the algorithms resulting from these methods
(see Section 4 below) shows that

(a) the degrees of the polynomials appearing in the calculations have a
low upper bound, and, furthermore,

(b) when the method is applied to the calculation of supports of local
cohomology modules, if the input is given by polynomials with in-
teger coefficients, then the calculation of supports modulo different
primes p involves polynomials whose degrees can be bounded from
above by a constant times p, that constant being independent of p.

In [Lyu97]) Gennady Lyubeznik described an algorithm for computing
the support of F -finite F -modules. That algorithm requires the calculation
for roots of these modules, and this relies on the calculation of Grobner
bases; these are often too complex to be computed in practice. Crucially,
our algorithm does not involve Gröbner bases, and consists essentially of
matrix multiplications together with the listing of terms of polynomials of
degrees of order p. It is this that makes our algorithm a practical tool for
computing F -finite F -modules.1

The reason why we are able to compute and analyze in characteristic p the
support of F -finite F -modules is the existence of the eth iterated Frobenius
endomorphism f e : R → R, taking a ∈ R to ap

e
(e ≥ 0). The usefulness of

these lies in the fact that given an R-moduleM , we may endow it with a new
R-module structure via f e: let F e

∗M denote the additive Abelian group M
denoting its elements {F e

∗m |m ∈ M}, and endow F e
∗M with the R-module

structure is given by aF e
∗m = F e

∗ a
pem for all a ∈ R and m ∈ M .

This also allows us to define the eth Frobenius functors from the category
of R-modules to itself given by F e

R(M) = F e
∗R ⊗R M and viewing this as

a R-module via the identification of F e
∗R with R: the resulting R-module

structure on F e
R(M) satisfies a(F e

∗ b ⊗ m) = F e
∗ ab ⊗ m and F e

∗ a
pb ⊗ m =

F e
∗ a⊗ bm for al a, b ∈ R and m ∈ M .
We will be interested in this construction mainly for regular rings and

henceforth in this paper R will denote a regular ring of prime characteristic
p.

Recall that an F -finite FR-module M is an R-module obtained as a direct
limit of a direct limit system of the form

M
U
−→ F 1

R(M)
F 1
R(U)

−−−−→ F 2
R(M)

F 2
R(U)

−−−−→ . . .

whereM is a finitely generated module and U is anR-linear map (cf. [Lyu97]).
The main interest in F -finite F -modules follows from the fact that local co-
homology modules are F -finite F -modules, as we now explain.

1The various algorithms in this paper have been incorporated in the “FSing” package
of Macaulay 2[GS].
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The jth local cohomology module of M with support on an ideal I ⊂ R is
defined as

(1) Hj
I(M) = lim

→
e

ExtjR(R/I [p
e],M)

where maps in the direct limit system are induced by the surjections R/I [p
e+1] →

R/I [p
e]. If we apply this with M = R, we obtain

Hj
I(R) = lim

→
e

ExtjR(R/I [p
e], R)

∼= lim
→

e

ExtjR(F
e
R(R/I), F e

RR)

∼= lim
→

e

F e
R

(
ExtjR(R/I,R)

)

were we use the facts that F e
R(R) ∼= R, F e

R(R/I) ∼= R/I [p
e], and that, since R

is regular, the Frobenius functor F e
R(−) is exact and thus commutes with the

computation of cohomology. This shows that Hj
I(R) are F -finite F -modules,

and we may apply our F -finite F -module machinery to them.
Finally, in section 6 we turn our attention to hypersurfaces and describe

the support of their local cohomology modules, which turn out to be closed.2

Given a fixed g ∈ R, one can ask for the locus of primes P ⊆ R for which
the multiplication by g map g : Hi

I(RP ) → Hi
I(RP ) is injective and the

locus of primes for which this is surjective. We show that these two loci are
Zariski closed by describing explicitly the defining ideals of these loci, and
we use these to describe the defining ideal of the (Zariski closed) support for
Hi

I(R/gR). We also extend the Zariski-closedness of Hi
I(R/gR) to the case

when R has finitely many isolated singular points.
The methods used for the various calculations in this paper are described

in section 2.

2. Prime characteristic tools

Definition 2.1. Let e ≥ 0. Let T be a commutative ring of prime charac-
teristic p.

(a) Given any matrix (or vector) A with entries in T , we define A[pe]

to be the matrix obtained from A by raising its entries to the peth
power.

(b) Given any submoduleK ⊆ Tα, we defineK [pe] to be theR-submodule

of Tα generated by {v[p
e] | v ∈ K}.

Henceforth in this section, T will denote a regular ring with the property
that F e

∗T are intersection flat T -modules for all e ≥ 0, i.e., for any family of

2The fact that the support is closed was simultaneously and independently also discov-
ered by Mel Hochster and Luis Núñez-Betancourt in [HNB] using a different method.
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T -modules {Mλ}λ∈Λ,

F e
∗T ⊗T

⋂

λ∈Λ

Mλ =
⋂

λ∈Λ

F e
∗T ⊗T Mλ.

These include rings T for which F e
∗T are free T -modules (e. g. , poly-

nomial rings and power series rings with F -finite coefficient rings,) and
also all complete regular rings (cf. [Kat08, Proposition 5.3]). These rings
have that property that for any collection of submodules {Lλ}λ∈Λ of Tα,(⋂

λ∈Λ Lλ

)[pe]
=
⋂

λ∈Λ L
[pe]
λ : indeed, the regularity of T implies that for

any submodule L ⊆ Tα, L[pe] can be identified with F e
T (L) and and the

intersection-flatness of F e
∗T implies

F e
T (
⋂

λ∈Λ

Lλ) = F e
∗T ⊗T

⋂

λ∈Λ

Lλ =
⋂

λ∈Λ

F e
∗T ⊗T Lλ =

⋂

λ∈Λ

F e
T (Lλ).

The theorem below extends the Ie(−) operation defined on ideals in
[Kat08, Section 5] and in [BMS08, Definition 2.2] (where it is denoted

(−)[1/p
e]) to submodules of free R-modules.

Theorem 2.2. Let e ≥ 1. Given a submodule K ⊆ Tα there exists a
minimal submodule L ⊆ Tα for which K ⊆ L[pe]. We denote this minimal
submodule Ie(K).

Proof. Let L be the intersection of all submodules M ⊆ Tα for which K ⊆
M [pe]. The intersection-flatness of T implies that K ⊆ L[pe] and clearly, L
is minimal with this property.

�

When F e
∗T is T -free, this is a straightforward generalization of the calcu-

lation of Ie for ideals. To do so, fix a free basis B for F e
∗T and note that

every element v ∈ Tα can be expressed uniquely in the form v =
∑

b∈B u
[pe]
b b

where ub ∈ Tα for all b ∈ B.

Proposition 2.3. Let e ≥ 1.

(a) For any submodules V1, . . . , Vℓ ⊆ Rn, Ie(V1 + · · · + Vℓ) = Ie(V1) +
· · · + Ie(Vℓ).

(b) Let B be a free basis for F e
∗T . Let v ∈ Rα and let

v =
∑

b∈B

u
[pe]
b b

be the unique expression for v where ub ∈ Tα for all b ∈ B. Then
Ie(Tv) is the submodule W of Tα generated by {ub | b ∈ B}.

Proof. The proof of this proposition is a straightforward modification of the
proofs of propositions 5.2 and 5.6 in [Kat08] and Lemma 2.4 in [BMS08].

Clearly, Ie(V1+· · ·+Vℓ) ⊇ Ie(Vi) for all 1 ≤ i ≤ ℓ, hence Ie(V1+· · ·+Vℓ) ⊇
Ie(V1) + · · ·+ Ie(Vℓ). On the other hand

(Ie(V1) + · · ·+ Ie(Vℓ))
[pe] = Ie(V1)

[pe] + · · · + Ie(Vℓ)
[pe] ⊇ V1 + · · ·+ Vℓ
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and the minimality of Ie(V1 + · · · + Vℓ) implies that Ie(V1 + · · · + Vℓ) ⊆
Ie(V1) + · · ·+ Ie(Vℓ) and (a) follows.

Clearly v ∈ W [pe], and so Ie(Tv) ⊆ W . On the other hand, let W be a

submodule of Tα such that v ∈ W [pe]. Write v =
∑s

i=1 riw
[pe]
i for ri ∈ T and

wi ∈ W for all 1 ≤ i ≤ s, and for each such i write ri =
∑

b∈B rp
e

bi b where
rbi ∈ T for all b ∈ B. Now

∑

b∈B

u
[pe]
b b = v =

∑

b∈B

(
s∑

i=1

rp
e

bi w
[pe]
i

)
b

and since these are direct sums, we compare coefficients and obtain u
[pe]
b =(∑s

i=1 r
pe

bi w
[pe]
i

)
for all b ∈ B and so ub = (

∑s
i=1 rbiwi) for all b ∈ B hence

ub ∈ W for all b ∈ B. �

The behavior of the Ie operation under localization and completion will
be crucial for obtaining the results of this paper. To investigate this we need
the following generalization of [LS01, Lemma 6.6].

Lemma 2.4. Let T be a completion of T at a prime ideal P . Let α ≥ 0 and
let W be a submodule of Tα. For all e ≥ 0, W [pe] ∩ T = (W ∩ T )[p

e].

Proof. If T is local with maximal ideal P , the result follows from a straight-
forward modification of the proof of [LS01, Lemma 6.6].

We now reduce the general case to the previous case which implies that
W [pe] ∩ TP = (W ∩ TP )

[pe]. Intersecting with T now gives

W [pe] ∩ T = (W ∩ TP )
[pe] ∩ T = (W ∩ TP ∩ T )[p

e] = (W ∩ T )[p
e].

�

Lemma 2.5 (cf. [Mur13]). Let T be a localization of T or a completion at
a prime ideal.

For all e ≥ 1, and all submodules V ⊆ Tα, Ie(V ⊗T T) exists and equals
Ie(V )⊗T T.

Proof. Let L ⊆ Tα be a submodule, such that L[pe] ⊇ V ⊗T T. We clearly
have L[pe] ∩ Tα = (L ∩ Tα)[p

e] when T is a localization of T and when T is
a completion of T this follows from the previous Lemma. We deduce that
(L ∩ Tα) ⊇ Ie(V ⊗T T ∩ Tα) and hence L ⊇ (L ∩ Tα) ⊗T T ⊇ Ie(V ⊗T T ∩
Tα)⊗T T.

But since Ie(V ⊗T T ∩ Tα)⊗T T satisfies

(Ie(V ⊗T T∩α)⊗T T)[p
e] = Ie(V⊗TT∩T

α)[p
e]⊗TT ⊇ (V⊗TT∩T

α)⊗TT ⊇ V⊗TT

we deduce that Ie(V ⊗T T ∩ Tα) ⊗T T is the smallest submodule K ⊆ Tα

for which K [pe] ⊇ V ⊗T T. We conclude that Ie(V ⊗T T) equals Ie(V ⊗T T ∩
Tα)⊗T T.

We always have

Ie(V ⊗T T) = Ie(V ⊗T T ∩ Tα)⊗T T ⊇ Ie(V )⊗T T.
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On the other hand

(Ie(V )⊗T T)[p
e] = Ie(V )[p

e] ⊗T T ⊇ V ⊗T T

hence Ie(V ⊗T T) ⊆ Ie(V )⊗T T and thus Ie(V ⊗T T) = Ie(V )⊗T T.
�

3. Calculation of supports of FR-finite FR-modules

We begin by recalling the following result from [Lyu97, Proposition 2.3].

Remark 3.1 (Vanishing of γt). Let M be an FR-finite FR-module with a
generating homomorphsim γ : M → FR(M). Let γt denote the com-
position M → FR(M) → · · · → F t

R(M). We may assume that M has

a presentation: Rα A
−→ Rβ → M → 0 and write the generating homo-

morphism as Coker(A)
U
−→ Coker(A[p]). Then γt is the composition of

Coker(A) → · · · → Coker(A[pt]). Note that M = 0 if and only if there
is a t such that γt = 0. We have

γt = 0 ⇔ Im(U [pt−1] ◦ · · · ◦ U [p] ◦ U) ⊆ Im(A[pt])

⇔ It(ImU [pt−1] ◦ · · · ◦ U [p] ◦ U) ⊆ ImA

⇔ I1(UI1(· · · I1(UI1(ImU))) ⊆ ImA

⇔
I1(UI1(· · · I1(UI1(ImU))) + ImA

ImA
= 0

where we made repeated use of the facts that for any submodule W ⊆ Rβ

we have Iℓ+1(M) = I1(Iℓ(M)) and also Iℓ(U
[pℓ]M) = UIℓ(M).

Theorem 3.2.

(a) If

Ie(ImU [pe−1] ◦ · · · ◦ U [p] ◦ U) = Ie+1(ImU [pe] ◦ · · · ◦ U [p] ◦ U)

then

(2) Ie(ImU [pe−1] ◦ · · · ◦ U [p] ◦ U) = Ie+j(ImU [pe+j−1] ◦ · · · ◦ U [p] ◦ U)

for all j ≥ 0.
(b) There exists an integer e such that (2) holds.

Proof. Write Ve = Ie(ImU [pe−1] ◦ · · · ◦ U [p] ◦ U). First we claim that if
Ve = Ve+1 then Ve = Ve+j for all j ≥ 0; we proceed by induction on j ≥ 0.

Using again the facts that for any submodule W ⊆ Rβ we have Iℓ+1(M) =

I1(Iℓ(M)) and that Iℓ(U
[pℓ]M) = UIℓ(M), we deduce that, if j ≥ 1, then

Ve+j = I1(Ie+(j−1)(ImU [pe+j−1] ◦ · · · ◦ U [p] ◦ U)) = I1(UVe+j−1) and this, by
the induction hypothesis, equals I1(UVe) = Ve+1.

Next, we wish to show that for each prime ideal p there exists an integer
ep such that

(3) VepRp = Vep+1Rp.
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and that for this ep, Vep+jRp = VepRp for all j ≥ 0. After completing at p,
we have assume that our ring is a complete regular local ring, and we let E

denote the injective hull of the residue field of R̂p. As this ring is complete
and regular, there is a natural Frobenius map on E which we denote T ,
which can be extended to a Frobenius map on direct sums of E by letting
T act coordinate-wise; we denote these Frobenius maps also with T .

We now consider the Frobenius map Θ = U tT on Eβ; in [KZ14, Lemma

3.6] it is shown that annEβ Ie(ImU [pe−1] ◦ · · · ◦ U [p] ◦ URp)
t ⊆ Eβ consists

of all elements killed by Θe. Now (cf. [HS77, Proposition 1.11] and [Lyu97,

Proposition 4.4]) show that there is an integer ep such that Iep(ImU [pe−1] ◦

· · · ◦U [p] ◦URp) = Iep+1(ImU [pep ] ◦· · · ◦U [p] ◦URp) and Iep(ImU [pep−1] ◦· · · ◦

U [p] ◦ URp) = Iep+j(ImU [pep+j−1] ◦ · · · ◦ U [p] ◦ URp) for all j ≥ 0. Crucially,

Lemma 2.5 implies that Ie

((
ImU [pe−1] ◦ · · · ◦ U [p] ◦ U

)
Rp

)
= VeRp for all

e ≥ ep and so (3) holds.
Consider the following subsets of Spec(R):

Pt = {p ∈ Spec(R) | VtRp = Vt+1Rp} = SpecR \ Supp
Vt

Vt+1
.

These form an increasing sequence of open subsets of SpecR, and since for
each prime ideal p there is an integer tp such that

VtpRp = Vtp+1Rp,

we have
⋃

t Pt = Spec(R). Now the quasicompactness of SpecR, guarantees
the existence of an integer e such that Pe = Spec(R); clearly that e satisfies
(2). �

Corollary 3.3. If Ie(ImU [pe−1]◦· · ·◦U [p]◦U) = Ie+1(ImU [pe]◦· · ·◦U [p]◦U),
then

SuppR

( Im Ie(U
[pe−1] ◦ · · · ◦ U [p] ◦ U) + ImA

ImA

)
= SuppR(M).

4. Our algorithm and its complexity

Let be given a matrix A, which gives a presentation CokerA ∼= M , and a

β× β matrix U , for which the the map CokerA
U
−→ CokerA[p] is isomorphic

to a generating morphism M → FR(M) of an F -finite F -module M. We
compute the support of M as follows.

Define L0 = Rβ and for all i ≥ 0, Li+1 = I1(ULi). Note that Ie(ImU [pe−1]◦

· · · ◦ U [p] ◦ U) = Le. The output of the algorithm is the stable value of
Supp(Le+ImA

ImA ).
In the rest of this section we discuss the complexity of this algorithm for

computing supports of F -finite F -modules.
Let δ be the largest degree of an entry in U and for any j ≥ 0 let δj be

the largest degree of a polynomial in a generator of Lj. The calculation of
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I1(−) as described in Proposition 2.3 implies that δj+1 ≤ (δj + δ)/p hence

δe ≤
δ0
pe

+ δ(
1

p
+ · · ·+

1

pe
) ≤

δ

p− 1
.

Let R = Z[x1, . . . , xn] and let J ⊆ R be an ideal. For any prime p let Jp
denote the image of J in Rp = Z/pZ[x1, . . . , xn]. An interesting and natural
question arising in this context is the description of the properties of the

local cohomology module Hj
Jp
(Rp) as p ranges over all primes and we now

turn our attention to these.
For different choices of prime p the matrices A and U above will be dif-

ferent and this could result in different values of δe which are unbounded
as p ranges over all primes. We now show that this is not the case. Let
Up denote the square matrix that induces the map Extj(Rp/Jp, Rp) →

Extj(Rp/J
[p]
p , Rp) and δp to denote the maximal degree of entries in Up.

We also denote L0,p = Rp and Li+1,p = I1(UpLi,p) and use δe,p to denote the
largest degree of a polynomial in a generator of Le,p.

Theorem 4.1. Let 0 → Rbs As−→ · · ·
A2−−→ Rb1 A1−−→ R → R/J → 0 be a

free resolution of R/J . Let ∆ denote the maximal degree of any entry in
A1, . . . , As. Let p be a prime integer which is also a regular element on R/J .
Then δe,p ≤ 2j∆ for all integers e ≥ 1.

Proof. Since p is a regular element on R/J , tensoring the free resolution of
R/J with R/pR produces a free resolution of Rp/Jp. Hence the maximal
degree of entries in the maps of this free resolution of Rp/Jp is at most ∆.

Let θj denote the map R
bj
p → R

bj
p in the following commutative diagram

induced by Rp/J
[p]
p → Rp/Jp

0 // Rbs
p

As,p // · · · // R
bj
p

Aj,p // · · · // Rb1
p

A1,p // Rp
// Rp/Jp // 0

0 // Rbs
p

A
[p]
s,p //

θs

OO

· · · // R
bj
p

A
[p]
j,p //

θj

OO

· · · // Rb1
p

A
[p]
1,p // Rp

=

OO

// Rp/J
[p]
p

//

OO

0

An easy induction on j shows that the maximal degree of entries in θj is at

most jp∆. The map Up : Extj(Rp/Jp, Rp) → Extj(Rp/J
[p]
p , Rp) is induced

by the transpose of θj and hence the maximal degree in an entry of Up is
also bounded by jp∆. Now

δe,p ≤
jp∆

p− 1
≤ 2j∆,

for all e ≥ 1. �

Corollary 4.2. There is an integer N , independent of p, such that δe,p ≤ N
for all e and all p.
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In particular, there is an integer N ′, independent of p, such that min{e |
Le,p = Le+1,p} ≤ N ′ for all p, i.e. for each prime integer p, the number of
steps required to compute the stable value Le,p is bounded by N ′.

Proof. The second statement follows immediately from the first since, once
the degree is bounded, the number of steps will be bounded by the number
of monomials with the bonded degree.

To prove the first statement, it suffices to note there are only finitely
many associated prime ideals of R/J in R and hence p is a regular element
on R/J for almost all p. �

The complexity of our algorithm lies in the calculation Li+1 = I1(ULi)
which involves

(a) the size β of U , which is an input to the algorithm and does not
depend on p,

(b) the total number of terms occurring in each of the coordinates of a
set of generators of Li.

In the worst case scenario, if the maximal degree of an entry in Up is Cp,
the total number of terms in (b) is bounded by

((
Cp+ n− 1

n− 1

))β

= O

(
pβ(n−1)

)
.

In practice, the number of terms is much lower than this worst case.
In order to assess the practical advantage of our algorithm, we com-

puted the support of 100 F -finite F -modules with randomly generated gen-
erating morphism C → F 1

R(C) where C is a quotient of R2 and R =
Z/2Z[x1, . . . , x5]. We demote t1 the time required by our algorithm to com-
pute the support and t2 the time required to compute a root using Grobner
bases. The following is a plot of log t2 as a function of log t1
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This suggests that for this characteristic and rank, t2 is approximately t21.
3

To further illustrate the effectiveness of our algorithm we compute the
following example.

Example 4.3. Consider three generic degree-2 polynomials in t: F1(t) =
x0 +x1t+x2t

2, F2(t) = y0+ y1t+ y2t
2, F1(t) = z0 + z1t+ z2t

2. For any two
polynomials F (t), G(t) let Res(F,G) denote their Sylvester resultant, e. g. ,

Res(F1, F2) = det




x0 x1 x2 0
0 x0 x1 x2
y0 y1 y2 0
0 y0 y1 y2




Let I denote the ideal generated by Res(F1, F2),Res(F1, F3),Res(F2, F3),Res(F1+
F2, F3) in the polynomial ring R over a field k whose variables are the x,y,
and zs above. In [Lyu95] it was asked whether H4

I(R) = 0 and this was
settled in prime characteristic p > 2 (cf. [Kat97]) and in characteristic zero
(cf. [Yan99, Theorem 3].) We used an implementation of our algorithm [KZ]
with Macaulay2 ([GS]) to settle the remaining case of characteristic 2: a
20-second run calculated the support of H4

I(R) to be empty.

5. Iterated local cohomology modules

Let f1, . . . , fm be a sequence of elements in R and let N be an R-module.
We will write Ki :=

⊕
1≤j1<···<ji≤mNj1···ji to denote the i-th term of the

Koszul (co)complex K•(M ; f) (where each Nj1···ji = N), and we will use

H i(N ; f) to denote the i-th Koszul (co)homology.

Proposition 5.1. Let M be an FR-finite FR-module with a generating ho-

momorphism M
ϕ
−→ FR(M) and let I = (f1, . . . , fm) be an ideal of R. Then

H i
I(M) admits a generating homomorphism

H i(M ; f) → FR(H
i(M ; f)).

Proof. Consider the following commutative diagram:

...
...

...

0 // FR(K
1)

FR(φ1)

OO

FR(δ1)
// · · · // FR(K

i)

FR(φi)

OO

FR(δi)
// · · · // FR(K

m) = FR(M)

FR(φm)

OO

// 0

0 // K1

φ1

OO

δ1
// · · · // Ki

φi

OO

δi
// · · · // Km = M

φm

OO

//

3The Macaulay2 code used to produce this data and the data itself is available at [KZ].
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where the bottom row is the Koszul (co)complex of M on f and

φi :
⊕

1≤j1<···<ji≤m

Mj1···ji

⊕1≤j1<···<ji≤mϕ◦(fj1 ···fji )
p−1

−−−−−−−−−−−−−−−−−−−−→ FR(
⊕

1≤j1<···<ji≤m

Mj1···ji).

It follows from [Lyu97, 1.10(c)] that the φi are generating morphisms of
Mfj1 ···fji

. Therefore taking direct limit of each row of the diagram produces

the Čech complex Č(M; f ). Since taking direct limits preserves exactness,

lim
−→

(H i(M ; f ) → FR(H
i(M ; f)) → · · · ) = H i

I(M). Our conclusion follows.
�

Combining what we have so far in this section, we now have an algorithm
to compute the support of H i1

I1
· · ·H is

Is
(R). For example, the case s = 2 rel-

evant to the calculation of Lyubeznik numbers in handled as follows. Start
with a generating morphism Exti2(R/I2, R) → FR(Ext

i2(R/I2, R)). Using
Proposition 5.1, we know that the Koszul cohomology H i1(Exti2(R/I2, R); f)

(with I1 = (f)) is a generating homomorphism of H i1
I1
H i2

I2
(R). We may then

apply Corollary 3.3 to compute the support of H i1
I1
H i2

I2
(R).

6. The support of local cohomology of hypersurfaces

Throughout this section R denotes a regular ring of prime characteristic
p, I ⊆ R an ideal, and g ∈ R some fixed element.

Following [Lyu97, §2] we write

Hi
I(R) = lim

→

[
ExtiR(R/I,R)

φ
−→ F 1

R ExtiR(R/I,R)
F 2
R
φ

−−→ F 2
R ExtiR(R/I,R)

F 3
R
φ

−−→ . . .

]

where F e
R(−) denotes the eth Frobenius functor, and φ : ExtiR(R/I,R)

φ
−→

F 1
R ExtiR(R/I,R) ∼= ExtiR(R/I [p], R) is the R-linear map induced by the

surjection R/I [p] → R/I. For all i ≥ 0 we fix a presentation Rαi
Ai−→

Rβi where Ai is a βi × αi matrix with entries in R. We can now find a

βi × βi matrix Ui with entries in R for which the map φ : ExtiR(R/I,R)
φ
−→

F 1
R ExtiR(R/I,R) is isomorphic to the map Ui : CokerAi → F 1

R(CokerAi) =

CokerA
[p]
i given by multiplication by Ui.

Theorem 6.1. For any i ≥ 0 consider the map g : Hi
I(RP ) → Hi

I(RP ) given
by multiplication by g. Let Ii denote the set of primes P ⊂ R for which the
map g is not injective and let Si denote the set of primes P ⊂ R for which
the map g is not surjective. For ℓ, e, j ≥ 0 write

V
(ℓ)
ej = U

[pe+j−1]
ℓ U

[pe+j−2]
ℓ · · ·U

[pe]
ℓ .

Then

(a) Ii is closed and equal to Supp
(ker V

(i)
0η :Rβ g)

kerV
(i)
0η

for some η > 0,
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(b) Si is closed and equal to Supp
Rβ

⋃
j≥0

(
gRβ + ImA[pj ] :Rβ V

(i)
0j

) , and

(c) the support of Hi
I(R/gR) is closed and equal to Ii ∪ Si.

Proof. Fix some i ≥ 0 and write β, A and U for βi, Ai and Ui. The map
g : Hi

I(R) → Hi
I(R) can be described as a map of direct limit systems

(4) CokerA
U //

g

��

CokerA[p]U
[p]

//

g
��

. . .
U [pe−1]

// CokerA[pe]U
[pe]

//

g
��

. . .

CokerA
U // CokerA[p]U

[p]
// . . .

U [pe−1]
// CokerA[pe]U

[pe]
// . . .

.

For any e, j ≥ 0 abbreviate Vej = V
(i)
ej , and note that it is the matrix

corresponding to the composition map CokerA[pe] → CokerA[pe+j] in the
direct limits in (4). Any element in Hi

I(RP ) can be represented by an element

a ∈ CokerA
[pe]
P for some e ≥ 0, and this element represents the zero element

if and only if there exists a j ≥ e for which Veja ∈ ImA
[pe+j]
P , i.e., if and

only if

a ∈ (ImA[pe+j ] :Rβ Vej)P .

Consider the kernels Kj of the maps V0j : CokerA → CokerA[pj ]; these form
an ascending chain of submodules of CokerA and hence stabilize for all j

beyond some η ≥ 0. Note that the map Vej : CokerA[pe] → CokerA[pe+j ]

is obtained by applying the exact functor F e
R(−) to the map V0j, hence the

kernels of the maps Vej also stabilize for j ≥ η.

To prove (a) we now note that an element in Hi
I(RP ) represented a ∈

CokerA
[pe]
P is multiplied by g to zero if and only if a ∈ (ker Veη :Rβ g)P

and so g is injective if and only iff

(
(ker Veη :Rβ g)

ker Veη

)

P

= 0, i.e., if g is not

a zero divisor on
(
Rβ/ ker Veη

)
P
. But Rβ/ ker Veη = F e

R(R
β/ ker V0η) and,

since R is regular, F e
R(R

β/ ker V0η) and Rβ/ ker V0η have the same associated
primes, so we deduce that multiplication by g is injective if and only if g is
not a zero divisor on

(
Rβ/ ker V0η

)
P
. We deduce that for a prime P ⊂ R,

multiplication by g on Hi
I(RP ) is injective if and only if

(
(ker V0η :Rβ g)

kerV0η

)

P

= 0

so Ii = Supp
(ker V0η :Rβ g)

ker V0η
.

To prove (b) we now note that an element in Hi
I(RP ) represented a ∈

CokerA
[pe]
P is in the image of g if and only if there exists a j ≥ 0 such that
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Veja ∈
(
gRβ + ImA

[pe+j]
P

)
hence g is surjective if for all e ≥ 0,

⋃

j≥0

(
gRβ + ImA[pe+j ] :Rβ Vej

)
P
= Rβ

P .

Furthermore,
(
gRβ + ImA[pe+j ] :Rβ Vej

)[p]
=

(
gpRβ + ImA[pe+1+j ] :Rβ Ve+1,j

)

⊆
(
gRβ + ImA[pe+1+j] :Rβ Ve+1,j

)

so for for all e ≥ 0,
⋃

j≥0

(
gRβ + ImA[pe+j ] :Rβ Vej

)
P
= Rβ

P

if and only if ⋃

j≥0

(
gRβ + ImA[pj ] :Rβ V0j

)
P
= Rβ

P .

We conclude that g is not surjective if and only if P ∈ SuppRβ/
⋃

j≥0

(
gRβ + ImA[pj ] :Rβ V0j

)
.

To prove (c) consider the long exact sequence

· · · → Hi
I(R)

g
−→ Hi

I(R) → Hi
I(R/gR) → Hi+1

I (R)
g
−→ Hi+1

I (R) → . . .

induced by the short exact sequence 0 → R
g
−→ R → R/gR → 0. Note that

Hi
I(R/gR)P = 0 if and only if both

(
Hi

I(R)
g
−→ Hi

I(R)
)
P

is surjective and
(
Hi+1

I (R)
g
−→ Hi+1

I (R)
)
P
and the result follows.

�

Question 6.2. Theorem 3.2 gives us an effective method for the calculation
of Ii. However, we do not know how to compute Si, hence we ask the
following: is there an effective method to bound the value of e for which

⋃

j≥0

(
gRβ + ImA[pj ] :Rβ V

(i)
0j

)
=
(
gRβ + ImA[pe] :Rβ V

(i)
0e

)
?

It turns out that part of our Theorem 6.1 can be extended to the case of
isolated singular points.

Corollary 6.3. Let R be a noetherian commutative ring of prime char-
acteristic that has finitely many isolated singular points. Let g ∈ R be a

nonzerodivisor. Then Supp(Hj
I (R/gR)) is Zariski-closed for each integer j

and ideal I of R.

Proof. Let {m1, . . . ,mt} denotes the set of isolated singular points of R.
Set a =

⋂t
i=1mi. Let {f1, . . . , fs} be a set of generators of a. It follows

from Theorem 6.1 that SuppRfk
(Hj

I(Rfk/gRfk)) is closed, i.e. it has finitely
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many minimal associated primes. By the bijection between the set of asso-

ciated primes of Hj
I(R/gR) that do not contain fk and Ass(Hj

I(Rfk/gRfk)),

it follows that the minimal associated primes of Hj
I(R/gR) are contained

in the union of {m1, . . . ,mt} and the set of minimal associated primes of

Hj
I(Rfk/gRfk ) which is a finite set. �

The proof of Corollary 6.3 can also be used to prove the following result
which is of independent interest.

Proposition 6.4. Let R be either

(1) a noetherian commutative ring of prime characteristic, or
(2) of finite type over a field of characteristic 0.

Suppose that R has finitely many isolated singular points. Then Hj
I(R) has

only finitely many associated primes for each integer j and each ideal I of
R.

Proof. Let {m1, . . . ,mt} denotes the set of isolated singular points of R. Set

a =
⋂t

i=1 mi. Let {f1, . . . , fs} be a set of generators of a. It follows from
our assumptions on R that Rfk is either a noetherian regular ring of prime
characteristic or a regular ring of finite type over a field of characteristic 0

(cf. [Lyu93, Corollary 3.6]). Consequently, Ass(Hj
I(Rfk)) is finite for each

generator fk. Since there is a bijection between the set of associated primes

of Hj
I(R) that do not contain fk and Ass(Hj

I(Rfk)), it follows that

Ass(Hj
I(R)) ⊆

s⋃

k=1

Ass(Hj
I(Rfk))

⋃
{m1, . . . ,mt}.

�
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