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Abstract — Flying insects are capable of a wide-range of flight 

and cognitive behaviors which are not currently understood. The 

replication of these capabilities is of interest to miniaturized 

robotics, because they share similar size, weight, and energy 

constraints. Currently, embodiment of insect behavior is primarily 

done on ground robots which utilize simplistic sensors and have 

different constraints to flying insects. This limits how much 

progress can be made on understanding how biological systems 

fundamentally work. To address this gap, we have developed an 

inexpensive robotic solution in the form of a quadcopter aptly 

named BeeBot. Our work shows that BeeBot can support the 

necessary payload to replicate the sensing capabilities which are 

vital to bees’ flight navigation, including chemical sensing and a 

wide visual field-of-view. BeeBot is controlled wirelessly in order 

to process this sensor data off-board; for example, in neural 

networks. Our results demonstrate the suitability of the proposed 

approach for further study of the development of navigation 

algorithms and of embodiment of insect cognition. 

 
Index Terms— Embodiment; Insects; Honeybees; Robotics; 

Quadcopters 

I. INTRODUCTION 

he study of flying insects is interesting from the point-of-

view of small robot and Unmanned Aerial Vehicle (UAV) 

design, because they share small size, low weight, and low 

energy consumption. Flying insects are capable of agile flight 

at low speeds, complex obstacle avoidance, vertical take-off 

and landing, and hovering for long periods at a time. Recent 

studies with bees show they can estimate flight duration, 

regulate flight speed, and land using visual processing [1-3]. 

Beyond having the same impressive flying skills as other flying 

insects, honeybees achieve cognitively sophisticated behaviors 

despite the very limited size of their brain (approximately 106 

neurons) [4]. A well-known example of this is the waggle dance 

[5]. Additionally, among other advanced cognitive abilities, 

honeybees have been found capable of speed-accuracy trade-

offs in individual decision-making, positive, and negative 

reinforcement learning, contextual learning, learning advanced 

concepts such as ‘same’ and ‘different’, and transferring 

concepts across sensory modalities [6-9]. 

There has been extensive research into enabling small UAVs 

(sUAVs) and robots with similar capabilities and with 

comparable efficiency as flying insects as current technology is 

 
 

still limited [10]. This is largely due to the fact that the 

complications of flight for air vehicles are especially 

compounded for their smaller counterparts. For example, 

sUAVs are more likely to operate on complex missions (such 

as searching buildings or other confined areas) due to their agile 

nature and are much more heavily affected by small changes in 

the environment. Since they are more likely to fly at lower 

altitudes, variations in terrain need to be taken into 

consideration. Additionally, wind is a constant challenge as 

sUAVs fly at a much “slower” airspeed of about 10-20 

meter/second. At 50-100 meters above ground level, wind is 

already about 5-10 m/s, which means that sUAVs can easily be 

thrown off course. Furthermore, the reduced payload 

capabilities of small UAVs mean that heavy sensors and 

processors often cannot be utilized. It is frequently the case that 

GPS is unavailable or imprecise, state estimators are inaccurate, 

and that weight restrictions don’t allow for the redundancy of 
sensors. Enabling sUAVs with insect-like capabilities would be 

a significant step-forward in state-of-the-art. 

In recent years, neural networks and deep learning have 

overcome huge challenges in modeling and representing large-

scale sets of data. Also more recently, there has been some work 

to accomplish this with neural models which more accurately 

represent the processing and dynamics in the nervous system. 

For example, the “Blue Brain Project” and the “Green Brain 
Project” are modelling the human and honeybee brain 
respectively, using biologically-based neural models [11-12]. 

The ‘Green Brain’ Project is addressing the gap in our 

understanding of cognition by building a model of the honeybee 

brain and embodying it within a flying robot. The aim is to 

describe detection, classification, and learning in the olfactory 

and optic pathways as well as multi-sensory integration across 

these sensory modalities. This project presents some state-of-

the-art tools for easy creation [13], implementation [14-15], and 

real-time control of neural models. 

In order to fully understand navigational and cognitive 

behaviors, it is important to understand how they are embedded 

in their bodies and how their bodies interact with the world. By 

using robots for embodiment, we can better understand the 

underlying processes. Embodiment allows us to implement 

hypothesized principles and check their soundness, robustness, 

and scaling properties on a physical tool in a real environment. 

This may challenge widely accepted “facts”, suggest new 

experiments to be carried out on bees or other insects, and raise 
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new biological questions [16-18]. One of the major advantages 

of this approach is that robots are easy to manipulate and simple 

to monitor and record data from (i.e. motor commands, internal 

states, etc.). Beyond fundamental research, embodiment of 

cognitive models also can lead to the development of intelligent 

systems for ground and aerial robots of practical use [19]. 

As such, there is a need to develop efficient and robust 

algorithms (e.g. neural networks) based on flying insects and 

the corresponding robotic platforms which enable this 

development. Therefore, the goal of the work was to advance 

robotic embodiment by designing a flying robot that can 

replicate honeybee sensing and behavior. A sUAV of this type 

could then be better used for development of: insect cognition 

& flight behavior, UAV visual flight-control, multi-modal 

flight control algorithms, and more.  

In the remainder of the paper, we review relevant insect 

behaviors and capabilities, insect embodiment platforms, and 

sUAV platforms (Section II). We describe the design 

requirements as motivated by current state-of-the-art (Section 

III). We present the final robot design and methodology 

(Section IV). We show results and give examples of how this 

can be used in neural computations (Section V), and then 

discuss the significance of our findings and future work 

(Section VI and VII, respectively). 

II. BACKGROUND 

A. Flying Insect Sensing and Behavior 

The visual and olfactory systems in insects are implicated in 

complex cognitive behaviors which are not currently 

understood. They are of interest to robotic applications as they 

are shown to be essential to biological autonomous agents. 

1) Vision 

There has been extensive research in recent years into 

honeybee vision and flight navigation as bees are known to 

have impressive capabilities. For example, honeybees will seek 

out food over miles and directly return to their hive, provide 

navigational instructions to each other, use landmarks for 

location identification, distinguish colors to identify good 

sources of food, navigate in corridors and other, complex 

environments, and more. It has been shown that bees use their 

visual system to regulate their velocity in flight, control their 

course, estimate distance travelled through path integration, 

avoid obstacles, and land smoothly [10]. Bees are able to 

accomplish these tasks, because they use Elementary Motion 

Detectors (EMDs) to discern Optic Flow (OF). While this 

aspect of honeybee vision is fairly well understood, little else is 

known about the honeybee visual system. 

Like the majority of insects, honeybees have two compound 

eyes that each contain ~5500 ommatidia. Each ommatidium has 

a lens that detects light covering a small angle and each from a 

different direction. The light is focused onto 3 different classes 

of photoreceptors (ultraviolent, blue, and green sensitive) 

resulting in honeybee’s color vision [20]. Unlike humans, these 

classes of photoreceptors respond at shorter wavelengths which 

likely helps with flower recognition and discrimination. 

The spacing and acceptance angle of the ommatidia results 

in the large field-of-view. It is these two parameters (spacing 

and acceptance angles) that produce the bee’s spatial resolution 
of the bee’s eye and how much the world appears blurred. The 

acceptance angles allow neighboring ommatidia to view 

neighboring regions of space. It has been found that the 

ommatidia are packed more densely near the center of the eyes 

than at the edges. The central ommatidia have a visual angle of 

about 1º whereas those furthest from the center can be up to 3º 

[21]. Additionally, the honeybee's eye is almost four times as 

long as it is wide which leads them to resolve objects better 

vertically than horizontally [22]. 

Between the two eyes and ~11,000 ommatidia, the bees have 

a near-panoramic field-of-view with a significant binocular 

overlap (~30 º in the front and similar in the dorsal and ventral 

regions) [21]. The only thing stopping them from having a full 

panoramic view is where their body obstructs their vision and 

creates a blind spot in the back. Studies have been performed to 

try to determine how fast bees can actually see rapidly changing 

images. It has been established that bees have a temporal 

resolution between 165–300 Hz implying that they may resolve 

images up to a maximum of 300 Hz [23]. 

2) Olfaction 

Honeybee olfaction plays an important role in bees’ daily 
lives. It allows them to communicate, detect dangers, and 

forage on flowers as it is the primary sense used to differentiate 

flowers. Much of the learning that takes place in the olfactory 

system is associative and is based on positive and negative 

conditioning. Not only can they learn that individual odors 

might be rewarded, but they can also learn that when combined 

with other odors, they now might be punished (non-elemental 

learning) [24]. This is necessary for bees as the world is filled 

with mixed, complex odors where they need to constantly make 

decisions and select appropriate actions. 

Odor detection primarily takes place on the bees’ antennae. 
Bee antennae are covered in tiny hairs, called sensilla, which 

contain Olfactory Receptor Neurons (ORNs). The antennae has 

roughly 170 types of odor receptors which send information to 

so-called glomeruli in the antennal lobe, the primary olfactory 

processing unit. ORNs and glomeruli allow bees to be sensitive 

to a practically unlimited number of different odorants. After 

initial pre-processing in the antennal lobe, odor information 

gets passed to higher brain centers through projection neurons 

that follow two separate tracts. These two tracts have different 

response times and are believed to provide two separate types 

of information: (1) general information about the identity of the 

odor and (2) more specific information about where and when 

the odor was encountered [25]. It is likely that this parallel 

processing is one reason for bees’ ability to distinguish scents 

despite the complexity of many mixed odors. 

B. Insect Behavior & Cognitive Embodiment 

Ground robots are the typical platform of choice for 

embodiment of insect and cognitive behaviors though some 

testing has been performed on aerial robots [10, 26]. This is due 

to their constrained motion, and so their stable, simple, and slow 

dynamics make control easier. They can also hold heavy 

payloads and operate in many diverse environments. Ground 



robots have demonstrated steering, distance estimation, and 

obstacle avoidance [27-28]. They have also been used for 

olfactory-related tasks in order to detect, localize, and navigate 

toward odor cues [29]. Rugged, wheeled robots have been taken 

out of the lab and utilized outdoors to replicate the path 

integration and landmark steering of ants [28]. Hovercrafts have 

been primarily used to demonstrate the corridor centering 

response and other reactive control tasks in a hallway [27]. 

While ground robots are typically used for embodiment, they 

are limited in their Degrees-of-Freedom (DoF) and are not 

subjected to the same uncertainties as flying robots. As a result, 

navigation algorithms for ground robots do not always translate 

well to aerial vehicles. 

sUAVs are becoming more affordable and flexible with the 

development of miniaturized electronics. They also have a large 

open-source community which makes them a good choice for 

current research and development. Small UAVs can be grouped 

into 3 categories: fixed-wing, rotorcraft, and flapping-wing 

flyers. Fixed-wing and flapping-wing aerial robots have had 

limited applications in embodiment with some marginal success 

with basic OF control [19]. While fixed-wing aircraft have 

longer flight times and can carry a decent payload, they need to 

maintain a minimum velocity to generate lift and have other 

constraints that make agile maneuvers difficult (i.e. they require 

a minimum turn radius). This makes it difficult to replicate the 

maneuverability of insects using a fixed-wing platform. 

There has been a lot of advancement in the last decade on 

flapping-wing technology, but these platforms still suffer from 

limited payload capacity and short flight times [30]. 

Additionally even though theoretically flapping-wing flight 

should be more power-efficient, technology has yet to be able 

to produce this same result which has led to many of these flyers 

needing to be tethered to maintained sufficient power.  

Rotorcraft provide a good compromise between the other two 

categories in that they can be used to produce the same behavior 

as insect flight and can support a small but decent payload. The 

main drawback to rotorcraft is their power requirements which 

proportionally increases with the payload requirements. 

Despite their limitations, it is because of these advantages that 

has led to the popularization and commercialization of 

quadcopters and therefore, their inexpensive nature [31]. As a 

result, hovercraft and quadcopters have seen the widest range 

of application including obstacles avoidance, odometry, and 

lateral, ventral, and forward OF control [17, 26, 32]. However, 

their complex dynamics make the control problem very 

difficult, and most demonstrations have been on single DoFs or 

in very constrained environments. Further, they have seen 

limited chemosensing capabilities and primarily use simplistic 

OF sensors (rather than using visual inputs to calculate OF).  

III. DESIGN REQUIREMENTS 

There is a lack of flying robots that are suitable for 

embodiment and development of flying insect visual navigation 

models. As stated, neural models have shown to reproduce the 

robust capabilities of insects (for example, in the AVDU model 

in calculating OF [33]), but it is difficult to further develop and 

verify these models without the appropriate body in which to 

embed them. Simulations have difficulty duplicating the 

uncertainties and dynamism that insects face in real life, and so 

it is essential to have robotic platforms to test models in real-

world conditions. 

This problem is further described below with its plausible 

testing scenario and the subsequent design specifications. The 

sUAV is then evaluated on how well it meets the design 

requirements and on the system response. 

A. Problem Description 

As stated, there is a need for a flying robotic platform for 

research in embodiment that can be used in scaled testing. An 

aerial robotics laboratory provides a semi-controlled space 

which can be used to help understand biological capabilities 

before testing them in real-life scenarios. By first testing in a 

lab environment, the response to controlled stimuli can be 

evaluated as a precursor to examination in less constrained 

situations. This methodology provides a good tool for 

understanding embodied insect flight behavior which can be 

studied from pure simulation up to real-world deployment. 

Indoor testing of sUAVs requires wireless communications 

and a moderate amount of space. Communication is more 

reliable indoors since distances are short but interference and 

noise can be moderate. This environment is also characterized 

by semi-controlled lighting, low ventilation, uncontrolled 

airflow, and unknown odor mixing. In this work, BeeBot was 

tested in the Sheffield Aerial Robotics Lab (SARL) which in 

addition to the above has a Vicon Motion Tracking System 

(MTS) [34]. The MTS provides ground-truth data about 

position and orientation within millimeter accuracy to 

supplement analysis. BeeBot and the SARL setup used in this 

work is shown in Fig. 1.  

 

B. Design Specifications 

The design specifications are a result of the robot application 

and also the plausible testing environment described above. 

Maneuverability and small size allow are required for operation 

in most environments and in order to replicate the wide-range 

of flying insect behaviors. Additional size and communication 

requirements are a result of the laboratory testing and additional 

safety in the event of failure [35]. Payload requirements are a 

result of the application domain. Lastly, the requirement for low 

cost is motivated to provide a wider user-base. 

 

Fig. 1.  BeeBot Laboratory Testing Scenario 



Design Requirements 

• sUAV category with 6 DoFs 

• Less than 2kg total weight 

• Less than 0.5 x 0.5 x 0.5 meters in size 

• Inexpensive (off-the-shelf components) 

• Moderate payload capacity of ~350grams (due to high 

sensing payload) 

• Replicate the insect-like visual input: fast, steady, course, 

wide field-of-view 

• Replicate the insect-like olfactory input: array of various 

chemical detectors 

The sUAV design is then evaluated against the design 

requirements and its suitability for further development. 

Therefore, the overall design parameters and their distributions 

(i.e. weight, size, cost, average flight time, and power draw) are 

assessed. Additionally, the sensor payload responses are 

evaluated for their applicability in higher-level neural processes 

like OF and odor detection. 

IV. BEEBOT DESIGN 

To address the embodiment of a honeybee behavior, this 

research proposes a quadcopter sUAV named BeeBot (see Fig. 

1). It enables the fundamental capabilities of 6-DoF honeybee 

flight like hovering and vertical take-off/landing while allowing 

for a reasonable payload (necessary to equip a quadcopter with 

honeybee senses). Additionally, a quadcopter platform was 

selected due to their configurability, flexibility, simple 

mechanics, large-open-source community, low cost, and ability 

to support a moderate payload. 

The BeeBot quadcopter was designed around the necessary 

payload (final design was 1800gram total) and to ensure 

appropriate and reliable camera data (for the study of embodied 

computational models of visual processing and for visual 

navigation). The quadcopter design was then optimized using 

the design iteration proposed for sUAVs [36]. 

A. BeeBot Sensor Payload Design 

The unique configuration of sensors used here in the design 

of BeeBot include dual wide-angle lens cameras and an array 

of chemosensors to mimic honeybee vision and olfaction. These 

are motivated by the requirements of steady, quick, reliable data 

streams and a wide visual field-of-view. BeeBot also has other 

typical UAV sensors which include a 3-axis gyroscope, 3-axis 

accelerometer, magnometer, and GPS. 

1) Vision 

It is necessary to use cameras equipped with wide-angle 

lenses since insects have almost panoramic vision and use each 

region in the eye for different tasks. However, they also have 

relatively coarse vision which is dictated by the spacing and 

acceptance angles of the ommatidia. Since each ommatidium 

essentially functions as a pixel in an image, bee vision works 

out to be roughly 75x75 pixels which even low-resolution 

cameras possess. The implication of this is that a wide selection 

of off-the-shelf cameras will provide the necessary acuity, and 

that the limiting factor on most cameras will be the field-of-

view and weight. Because their vision is so coarse (and 

therefore, they don’t require as much visual information), there 
is no need for high-definition cameras for insect-inspired 

embodiment, but moderate performance is desired for visual 

navigation applications. 

To balance these requirements, the BeeBot was fitted with 2 

mini CCD FPV (First-Person View) cameras with wide-angle 

lenses (see TABLE I). These are general, inexpensive, and 

commercially-available cameras that stream their video 

wirelessly. The cameras are fixed off rigid legs which are 

secured atop of an anti-vibration mount to reduce rolling 

shutter. 

 
The 2 cameras are mounted symmetrically off the front of the 

quadcopter in a similar orientation to that of honeybee eyes (see 

Fig. 2). In this configuration, each wide-angle lens has a field-

of-view of 150º (again, similar to each bee eye). Unlike the bee, 

the binocular overlap of the BeeBot is closer to 60º (as opposed 

to ~30º). This is to minimize loss of information in the front of 

the quadcopter’s field-of-view due to distortion from the lenses. 

In total, the chosen configuration results in BeeBot’s field-of-

view to be ~240º horizontally and ~150º vertically (very similar 

to the bee’s ~280º by ~150º).  

 
Data from each camera was transmitted over a 5.8 GHz 20mw 

FPV transmitter to an 8CH Diversity A/V receiver compatible 

with generic USB capture cards. These low-power transmitters 

are suitable over the short distances required. The resultant 

communication between BeeBot and the Ground Control 

Station (GCS) is shown below in Fig. 3 including the telemetry 

data and command signal connection which is sent over a 

2.4GHz Xbee data link. 

TABLE I 

BEEBOT CAMERA SPECIFICATIONS 

Quantity Value 

Manufacturer Turnigy 

Model Micro FPV Camera 600TVL 

Region Encoding NTSC 

Resolution  768x494 

Frame-Rate 30FPS 

Lens Viewing Angle 150º 

Lens Diameter 2.1mm 

 

 

Fig. 2.  BeeBot’s Field-of-View 



 
The output from the cameras could then be processed and 

utilized for various uses on the GCS. More traditionally with 

sUAVs, the data is then processed for computer vision 

applications (e.g. for SLAM, object detection, OF, etc.). In our 

example however, BeeBot is used as a basis to study neural 

models based on flying insects as also shown in Fig. 3. The GCS 

communicates with a GPU which parallelizes, and so speeds 

up, the computations needed to process the models. In either 

case, the visual output from the cameras can be used to calculate 

the OF and detect objects (i.e. like flowers or obstacles) which 

are implicated in insect visual flight behaviors and cognition. 

2) Olfaction 

BeeBot is also equipped with the commercially-available 

Figaro metal-oxide gas sensors depicted in Fig. 4 [37]. The 

types selected are the TGS 2600, TGS 2602, and TGS 2620 

which are used to detect general air contaminants like volatile 

organic compounds, ammonia, methanol, etc. in office and 

home environments. Suitable environments for these olfactory 

sensors include office space, home, and lab. 

 
Each chemosensor has a sensing element and integrated 

heater. The sensing element is comprised of a metal oxide 

semiconductor layer which changes conductivity depending on 

gas concentration in the air. Sensor conductivity can be related 

to a voltage reading using a simple electrical circuit. This 

voltage reading then directly reflects the gas concentration. 

Each sensor only requires 42mA at 5V of power. As a result, 

the chemosensors can be connected through the ArduPilot, and 

the data can be sent over the 2.4GHz connection. 

While the BeeBot only has 3 types of chemosensors, it should 

be able to distinguish 2 different odors or pick out 1 odor in a 

mixture with this setup. Even though BeeBot doesn’t have as 
many chemical sensor types as the bee, it is able to reproduce 

the sensor response and therefore, some of the behaviors that 

utilize olfactory information.  

B. BeeBot Platform Design 

The quadcopter design process proposed by Bouabdallah for 

sUAVs was used here and first chooses a propulsion group 

based on overall weight [32]. Quadcopters over 1kg are 

typically designed with a motor specification between 700-

900Kv (and between 1300-2200Kv for less than 500g). For 

steady flight at this size, an 8-12” propeller would be 
appropriate where 4-6” would be for smaller, faster designs. 
Therefore, a “higher” motor speed for its size (950Kv) with 

medium sized propellers (10x4.7) is chosen as this ensures a 

balance between design specifications and maneuverability. 

The final robot utilized APC 10x4.7 propellers, HobbyWing 

A2217-9 motors, 18Amp ESCs, and a 25C 11.1V 5400mAh 

Thunder Power battery. The propulsion group shows the 

appropriate thrust (~1kg for each motor) and high efficiency 

(>80%) at the desired 7500RPMs and average 19A draw. 

For this propulsion group and size, the BeeBot quadcopter 

utilizes a 24” Aeroquad frame [38], an ArduPilot autopilot [39], 

and the custom sensors discussed above. This size makes it 

suitable for both large laboratory environments and outdoor 

flights. ArduPilot was chosen as it is open-source and has a 

large community for support. This is ideal for this case, because 

the quadcopter will need to support a unique configuration of 

sensors. An autopilot that is open-source allows it to be 

modified as needed. The reasonably small frame makes it more 

conducive to flying indoors but also supports the necessary 

sensor payload required. 

In addition to the components needed to embody honeybee 

senses, the quadcopter/autopilot is equipped with traditional 

sensors like an inertial measurement unit (which has a 3-axis 

accelerometer, 3-axis gyroscope, and magnometer), air pressure 

sensor, and ultrasonic sensor. While most quadcopters also 

have GPS, the BeeBot does not as it primarily flies indoors as 

stated in the design requirements (Section III). 

As stated, the quadcopter is controlled remotely via wireless 

networking. The ground station processes visual data received 

from the robot’s cameras, manages olfactory information from 
the on-board gas sensors, and runs heavy computing processes. 

While ultimately it is desirable to do all computing on-board, 

physical space and weight restrictions limit how much can be 

done. Furthermore, this setup means that heavy visual 

computing and/or neurological models can be run in real-time 

to control the quadcopter. This would not be realizable with an 

on-board setup with off-the-shelf components at this time. 

V. RESULTS 

The testing and results evaluate the final design which 

includes both the platform and sensor payload performance. 

 

Fig. 3.  BeeBot to Ground Control to Brain Interface 

 

Fig. 4.  BeeBot’s Figaro TGS Chemosensors 



A. BeeBot Design Results 

The final BeeBot design is detailed below in TABLE II. The 

total cost was $1,500 and had a weight of 1840 grams (both 

within the requirements). The propulsion group had an average 

power draw of 200W which results in a ~8 minute flight time. 

The total weight, power (average usage), and cost breakdown is 

shown below in Fig. 5, Fig. 6, and Error! Reference source 

not found., respectively. 

 

 

 

 

B. BeeBot Sensor Payload Results 

BeeBot sensor payload results are an outcome of testing the 

impact of the specific hardware component selection for 

feasible use in insect embodiment and navigation problems. For 

flying insects like honeybees, neural processes like OF and odor 

detection are crucial to navigation. 

A benchmark problem used for flying insects is the hallway 

navigation test. Therefore, a scaled laboratory environment of 

this experiment is used to test BeeBot in. The lab was 

configured with two walls along the length (fitted with a 

checkerboard pattern) and a motion tracking system providing 

ground truth data as shown previously in Fig. 1. In each test, 

BeeBot starts at one end of the hallway and then travels to the 

other end at a fixed velocity for a number of trials. 

1) Vision 

As stated previously, the visual outputs are primarily used for 

replicating insect flight behavior based on OF. To enable this, 

the raw camera data needs to be processed to model insect 

vision accurately and to calculate the OF. 

The methodology presented by Sabo [40] was followed for 

modelling camera intrinsic and lens distortion values as well as 

for modelling honeybee vision and subsequent pixel selection. 

An example of the output data from BeeBot in the hallway is 

shown below in Fig. 8. Both the original view and final insect 

view can be seen. 

 
As BeeBot moves down the hallway, OF is generated and can 

be calculated off-board at the GCS. Typically, computer vision 

algorithms are used, but we utilize a neural-based approach to 

OF calculations here. Measurements are computed using a 

biological model of motion detection. The Angular Velocity 

Detector Unit (AVDU) model is founded on the Reichardt 

Detector which is based on EMDs in the insect eyes [33]. The 

AVDU model calculates angular velocity which is summed 

over each of the cameras (or “eye”) and shown in Fig. 9. 

The results show the raw and average response from 12 trials 

when presented with a 98mm square grating. For each trial, the 

robot followed the same path which was approximately 

centered in the hallway (5cm closer to left wall), and the 

velocity was kept constant at 0.3 meters/second. As expected, 

TABLE II 

BEEBOT DESIGN RESULTS 

Quantity Value 

Total Weight: 1840 grams 

Total Size: 75 x 75 x 40cm 

Total Cost: $1,500 

Average Power Draw: 225 Watts 

Average Flight Time 8 Minutes 

 

 
Fig. 5.  BeeBot Weight Breakdown 

 
Fig. 6.  BeeBot Power Breakdown 

 
Fig. 7.  BeeBot Cost Breakdown 

 

 

Fig. 8.  Image from BeeBot Camera Output – Original View (Top) 

Image from BeeBot Camera Output – Insect View (Bottom) 



the left values are consistently larger than the right even though 

it is by a small amount, and variations are relatively low. The 

deviations towards the end of the trials are also as expected, 

because the robot gets closer to the end of the lab and the view 

of the hallway is behind the robot and limited. 

 

2) Olfaction 

The olfactory system in insects is primarily used to identify 

the presence of odors and distinguish odors in a mixture. The 

odor cues can then be used for a variety of tasks in insects but 

of interest here is how they relate to navigation. 

Again, experiments on olfaction were completed in the 

indoor laboratory which provides a semi-controlled 

environment. The practicality of using the 3-chemosensor 

combination was tested by arranging an odor source at the end 

of the hallway in front of a small, low-powered fan. In each trial 

as the robot moved towards the odor source, it took readings at 

1 second time-steps. Large fans were turned on to help clear 

room of residual odors between trials. A total of 3 trials were 

performed each for 2 odors (orange essential oil and ethanol). 

At the start of each trial, a Baseline Value (BV) was taken and 

averaged over 10 seconds. The response of the chemosensor is 

then calculated by dividing the Sensor Value (SV) by the BV 

for that trial. 

 
The chemosensor value for each type of sensor is the average 

of the responses over the trials and shown in Fig. 10. For all the 

sensors, the response to different odors is fairly steady after they 

reach their maximum value (5-20 seconds) if the robot is still. 

However as the robot moves, sensors do not have this time to 

reach a steady state value, and the control system may need to 

distinguish odors at a faster rate. It can be seen that although the 

response for the two different odors are initially the same, they 

converge to different points over time. Not only do they diverge 

to separate points, they do so within the first few time steps. 

This is especially apparent as the robot approaches the odor and 

the values differ considerably. 

This analysis shows that our sensor payload has good 

potential for odor discrimination for robotics applications. This 

discrimination and learning by the olfactory system could be 

done with a neural reinforcement learning approach with 

rewarded odors as in real-life for instance. Even though the 

responses diverge in state space, it is still slow to converge 

compared to the frequency needed for low-level flight control 

commands. Therefore, the use of this signal would be more 

suitable for higher-level navigation decisions (e.g. switching 

flight modes or targets). 

VI. DISCUSSION 

Embodiment of honeybee-like cognition is achieved here 

using a quadcopter sUAV as a platform, dual wide-angle lens 

cameras for vision, and chemosensors for olfaction. It was 

shown that insect vision can be replicated with relative 

similarity in field-of-view and also resolution by some post-

processing of the visual input. Bee’s ability to distinguish odors 

is reproduced using multiple types of chemosensors which 

lends itself to neural mechanisms which can discriminate and 

learn odors. 

As discussed earlier, the temporal resolution of the bee’s eye 
is up to 300 Hz (much quicker than human vision). However, 

the camera system deployed on the BeeBot is only capable of 

30 fps. While this is sufficient for robot visual navigation, it is 

much slower than the bee requires. To accurately represent the 

visual input in higher-level cognitive models, there are a few 

compromises that could be made: (1) do pixel selection on-

board to reduce the size of the data, (2) slow the models speed 

down by 1/10th so that the models can still get data and can 

control the quadcopter in real-time, or (3) spend significantly 

more money to improve hardware. 

The slow settling time of the chemosensor’s response will 
make quick navigation by searching for odors challenging. 

However, these experiments can similarly be slowed down to 

still reasonably model bee response and behavior. Also, the 

change in voltage can be seen relatively quickly. Therefore, 

rapid actions can still be selected based on odor response 

change, but informed decisions would still be difficult.  

The BeeBot design meets all of the design requirements but 

falls a little short in the response time. This was mainly due to 

the choice of using inexpensive, off-the-shelf components. This 

could be improved by reducing the overall size of the platform 

and using smaller propellers. However, the sensing payload 

would still need to be a significant percentage of overall weight. 

Another desirable trait would be to move all computing on-

board BeeBot to increase autonomy. However, the next steps 

require a reduction in overall size and weight which can only 

be achieved with more money. This will improve development 

by increasing autonomy and computing capacity. 

Despite some shortcomings, BeeBot is a considerable 

 

Fig. 9.  BeeBot AVDU Model OF Output 

Left and Right camera/eye over the trials is depicted for each trial 
(light, dotted line) and the overall average (dark solid line). 

 

Fig. 10.  BeeBot Odor Sampling Chemosensor Output 

The averaged response from the 3-chemosensor readings are depicted for 

2 different odors (ethanol in blue and orange in orange). 



improvement over typical platforms used for embodiment. 

Most platforms used are ground robots which can usually only 

move in 3 DoFs despite flying insects having 6 DoFs. It also 

has less constraints in each DoF than normal ground robots. 

Finally, the range of sensing capabilities make this usable for 

high-level cognitive tasks which require multi-sensory inputs.  

VII. CONCLUSION 

Due to progress in the miniaturization of electronics, UAVs 

are becoming much smaller (<20lb) and more affordable. 

Advances in sensors, processing, and batteries have made these 

technologies low-weight, low-power, and low-cost and allowed 

these sUAVs to broaden their user group and applications. 

Despite their growth, they still lack the ability to demonstrate 

robust navigation and cognition like flying insects, and so there 

is extensive interest to enable sUAVs with insect-like abilities. 

In this research, a quadcopter was designed and modelled and 

then tested and analyzed based on its suitability to embody 

insect flight behavior and cognition. BeeBot is a good proof-of-

concept prototype demonstrating support of necessary payload 

to replicate the sensing capabilities which are vital to bees’ 
flight navigation including chemical detection and wide visual 

field-of-view. Furthermore, this was done with inexpensive 

(~$1500 total), off-the-shelf components which are open-

source and thus, good for research development. 

The successes seen by neural models in reproducing 

robustness to real-life uncertainties need platforms for which 

the algorithms can be embodied and fully tested. Ultimately, 

this robot could be used for better understanding of honeybee 

flight behavior and cognition and the development of 

sophisticated visual flight control based on mimicking the 

natural world.  
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