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Home use of closed-loop insulin delivery for overnight 
glucose control in adults with type 1 diabetes: a 4-week, 
multicentre, randomised crossover study
Hood Thabit, Alexandra Lubina-Solomon, Marietta Stadler, Lalantha Leelarathna, Emma Walkinshaw, Andrew Pernet, Janet M Allen, 
Ahmed Iqbal, Pratik Choudhary, Kavita Kumareswaran, Marianna Nodale, Chloe Nisbet, Malgorzata E Wilinska, Katharine D Barnard, 
David B Dunger, Simon R Heller, Stephanie A Amiel, Mark L Evans, Roman Hovorka

Summary
Background Closed-loop insulin delivery is a promising option to improve glycaemic control and reduce the risk of 
hypoglycaemia. We aimed to assess whether overnight home use of automated closed-loop insulin delivery would 
improve glucose control.

Methods We did this open-label, multicentre, randomised controlled, crossover study between Dec 1, 2012, and 
Dec 23, 2014, recruiting patients from three centres in the UK. Patients aged 18 years or older with type 1 diabetes 
were randomly assigned to receive 4 weeks of overnight closed-loop insulin delivery (using a model-predictive control 
algorithm to direct insulin delivery), then 4 weeks of insulin pump therapy (in which participants used real-time 
display of continuous glucose monitoring independent of their pumps as control), or vice versa. Allocation to initial 
treatment group was by computer-generated permuted block randomisation. Each treatment period was separated by 
a 3–4 week washout period. The primary outcome was time spent in the target glucose range of 3·9–8·0 mmol/L 
between 0000 h and 0700 h. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number 
NCT01440140.

Findings We randomly assigned 25 participants to initial treatment in either the closed-loop group or the control 
group, patients were later crossed over into the other group; one patient from the closed-loop group withdrew consent 
after randomisation, and data for 24 patients were analysed. Closed loop was used over a median of 8·3 h (IQR 6·0–9·6) 
on 555 (86%) of 644 nights. The proportion of time when overnight glucose was in target range was signifi cantly 
higher during the closed-loop period compared to during the control period (mean diff erence between groups 13·5%, 
95% CI 7·3–19·7; p=0·0002). We noted no severe hypoglycaemic episodes during the control period compared with 
two episodes during the closed-loop period; these episodes were not related to closed-loop algorithm instructions.

Interpretation Unsupervised overnight closed-loop insulin delivery at home is feasible and could improve glucose 
control in adults with type 1 diabetes.

Funding Diabetes UK.

Introduction
Intensive insulin therapy has been the standard of care 
for management of type 1 diabetes since the Diabetes 
Control and Complications Trial.1 However, tightening of 
glycaemic control increases the risk of hypoglycaemia,2,3 
which can be partly alleviated in adults by the use of 
modern insulin analogues4 and educational inter-
ventions,5 but such interventions fail in young people 
aged 11–16 years.6 Individuals with type 1 diabetes 
continue to face daily challenges of complex insulin 
regimens involving many daily insulin boluses, frequent 
blood glucose monitoring, and unpredictable glucose 
excursions.7 Advances in diabetes technology have 
emphasised their increasing role in clinical care. 
Continuous glucose monitoring devices measure 
interstitial glucose every 1–5 min, leading to improved 
glycaemic control.8 Findings from randomised controlled 
trials have shown the benefi ts of sensor-augmented 
pump therapy in reducing HbA1c.9 The advent of the 

threshold-suspend feature allows insulin delivery to be 
suspended automatically for up to 2 h and can reduce the 
duration and frequency of hypoglycaemia.10,11

Closed-loop insulin delivery—ie, the artifi cial 
pancreas—is a novel approach that is more complex 
than, and diff ers from, conventional pump therapy and 
the threshold suspend approach. In a closed-loop system, 
a control algorithm autonomously increases and 
decreases subcutaneous insulin delivery on the basis of 
real-time sensor glucose concentrations, thereby 
mimicking physiological insulin delivery.12 Findings 
from clinical research facility studies have shown that 
closed-loop insulin delivery is a feasible and safe option 
to improve glycaemic control and reduce the risk of 
hypoglycaemia.13–15

Findings from follow-up transitional and out-of-
hospital single-night studies have been promising,16,17 
paving the way towards development of ambulatory 
closed-loop prototypes such as that used in a 3 week 
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single-centre study in adolescents.18 We postulated that 
4 week overnight unsupervised closed-loop insulin 
delivery at home in adults would improve glycaemic 
control without increasing the risk of hypoglycaemia.

Methods
Study design and participants
We did this open-label, multicentre, randomised, 
crossover study between Dec 1, 2012, and Dec 23, 2013, 
recruiting patients from three centres in the UK. We 
identifi ed eligible adults from diabetes clinics who were 
attending Addenbrooke’s Hospital (Cambridge, UK); 
Sheffi  eld Teaching Hospitals (Sheffi  eld, UK); and King’s 
College Hospital (London, UK). Inclusion criteria were 
type 1 diabetes (WHO criteria), C-peptide negative, aged 
18 years or older, insulin-pump therapy for at least 
3 months, knowledge of insulin self-adjustment, 
undertaking of glucose self-monitoring at least four 
times daily, and HbA1c of 10% (86 mmol/mol) or lower. 
Exclusion criteria were established nephropathy, 
neuropathy or proliferative retinopathy, total daily 
insulin dose of 2·0 U/kg or greater, regular use of 
continuous glucose monitoring within 1 month before 
enrolment, severe visual or hearing impairment, 
pregnancy, or breastfeeding.

Figure 1 shows the open-label, randomised controlled, 
crossover study design. After the run-in phase, 
participants applied insulin-pump therapy with real-time 
continuous glucose monitoring at home on two periods, 
with or without use of an overnight closed-loop system. 
Each period lasted 4 weeks. Identical study insulin pump 
and real-time continuous glucose monitoring device 
were used during the two study periods, which were 
separated by a 3–4 week washout, during which 
participants used their own pump and discontinued 
continuous glucose monitoring.

All participants provided written informed consent. 
The study protocol was approved by the East of England 
Central Cambridge Ethics Committee.

Randomisation and masking
The order of the two study periods was randomly 
assigned following the run-in phase using computer 
generated permuted block randomisation. During run-
in, the continuous glucose monitor receiver was modifi ed 
and participants were masked to the recorded sensor 
glucose concentrations, and continued to monitor blood 
glucose with the built-in Freestyle Navigator capillary 
glucose meter (Abbott Diabetes Care, Alameda, CA, 
USA). Participants had access to sensor glucose readings 
after the end of the run-in phase. Investigators analysing  
study data were not masked to treatment allocation.

Procedures
On enrolment, participants were trained in how to use the 
study insulin pump (Dana R Diabecare, Sooil, Seoul, 
South Korea) and the FreeStyle Navigator device. 
Participants calibrated the real-time continuous glucose 
monitoring device according to manufacturer’s instruc-
tions. During the run-in phase, we assessed com pliance by 
assessing the number of days for which continuous 
glucose monitoring data were available from sensor 
glucose downloads. Each participant had to use the study 
pump and continuous glucose monitor for at least 2 weeks. 
At the end of the run-in phase, downloaded sensor glucose 
readings were used to optimise insulin-pump therapy. 
Participants used the rapid-acting insulin analogue 
normally used in their usual clinical care. Participants 
used the built-in bolus wizard of the insulin pump during 
both interventions to calculate insulin boluses at mealtimes 
and when administering correction boluses.

During the control period, participants used real-time 
continuous glucose monitoring and the study pump. The 
sensor glucose alarm threshold for hypoglycaemia was 
initially set at 3·5 mmol/L, but could be modifi ed by the 
participants. During the closed-loop period, participants 
were admitted to the local clinical research facility for 
their fi rst closed-loop night and received training in use 
of the closed-loop system, which was used under 
supervision overnight. Training lasted for 60–90 min and 
covered initiation and discontinuation of the closed-loop 
system, and problem troubleshooting. Participants were 
trained to do calibration checks before evening meals; if 
sensor glucose was greater than capillary glucose by 
more than 3 mmol/L, the continuous glucose monitor 
was recalibrated and the calibration check was repeated 
before starting the closed-loop system. These instructions 
reduced the risk of sensor error and the calibration check 
approach was eff ective when assessed by computer 
modelling.19 If sensor glucose readings became 
unavailable, or in case of other system failures, 
participants were alerted by an audible alarm and the 
system restarted the participant’s usual insulin delivery 
rate within 30–60 min to mitigate the risk of insulin 
underdelivery and overdelivery.20

From the second night onwards, participants used the 
closed-loop system unsupervised at home for 4 weeks. 

Continuous 
glucose monitoring

Effectiveness

Adverse events

Recorded; masked to 
participants

Training and therapy 
optimisation*

Overnight 
closed-loop 
period

Overnight 
closed-loop 
period

Control period Control period

RecordedRecorded

Recorded

Measured

Recorded Recorded

Measured

Recorded

Not recorded

Not measured Not measured

2–4 weeks 3–4 weeks 4 weeks4 weeks

Run-in Period 1 Washout Period 2

Figure 1: Trial design
*Compliance assessed. 
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Participants were instructed to start the system at home 
after their evening meal, and to discontinue it before 
breakfast the next morning. Participants were not 
restricted in dietary intake or daily activities. A 24-h 
telephone support service assisted participants in clinical 
or technical issues that arose during the study. All 
participants were given troubleshooting literature and 
user manuals for all study devices. Standard local 
hypoglycaemia and hyperglycaemia treatment guidelines 
were followed.

Blood samples for HbA1c, fructosamine, random 
glucose, and C-peptide measurements were taken after 
enrolment. Additionally, we measured HbA1c and 
fructosamine before and after each study period.

The Florence automated closed-loop system21 
comprised a model predictive control algorithm residing 
on a hand-held computer linked by cable to the 
continuous glucose monitoring receiver. Every 12 min, 
the treat-to-target algorithm calculated a new insulin 
infusion rate, which was automatically set on the study 
pump via wireless communication. The calculations 
used a compartment model of glucose kinetics22 
describing the eff ect of rapid-acting insulin and the 
carbohydrate content of meals on glucose concentrations. 
The algorithm was initialised with pre-programmed 
basal insulin delivery. At setup, on the fi rst night during 
which the closed-loop sy  stem was used, the research 
team entered participants’ weight and total daily insulin 
dose. Data for carbohydrate intake, as entered by 
participants into the insulin pump built-in bolus wizard, 
were automatically downloaded to the hand-held 
computer when the closed-loop system was turned on. 
Insulin delivery history, including manually instructed 
insulin boluses, was also automatically downloaded. The 
algorithm included rules that restricted maximum 
insulin infusion and suspended insulin delivery if 
glucose concentration was at or below 4·3 mmol/L or 
when it was rapidly decreasing. We used algorithm 
version 0.3.24 (University of Cambridge, UK).

We used a chemiluminescence immunoassay (Diasorin 
Liaison XL, Deutschland GmbH, Dietzenbach, Germany; 
interassay coeffi  cients of variation 5·6% at 563 pmol/L, 
4·5% at 2529 pmol/L, 5·8% at 5449 pmol/L) to measure 
baseline plasma C-peptide. We measured fructosamine 
with an enzymatic assay (Randox, Antrim, UK; interassay 
coeffi  cients of variation 9·5% at 193 μmol/L, 6·4% at 
430 μmol/L, 5·2% at 669 μmol/L). We measured HbA1c 
centrally with ion exchange high-performance liquid 
chromatography (G8 HPLC Analyzer, Tosoh Bioscience, 
CA, USA; interassay coeffi  cients of variation 1·3% at 
31·2 mmol/mol, 0·8% at 80·5 mmol/mol).

Outcomes
The primary effi  cacy outcome was the time spent in the 
target glucose range (3·9–8·0 mmol/L) between 0000 h 
and 0700 h, as recorded by continuous glucose monitoring. 
Secondary outcomes included mean glucose 

concentration, time spent at concentrations lower than 
3·9 mmol/L (hypoglycaemia) and greater than 
8·0 mmol/L (hyperglycaemia), and insulin delivery. 
Overnight glucose variability was assessed by the SD and 
the coeffi  cient of variation of continuous glucose 
monitoring levels. We assessed hypoglycaemia burden by 
calculation of the glucose sensor area under the curve less 
than 3·5 mmol/L and the number of nights with sensor 
glucose less than 3·5 mmol/L for at least 20 min. 
Outcomes were additionally calculated with adjusted 
sensor glucose with an assumption of a 15% measurement 
error to correct for bias resulting from simultaneous use 
of sensor glucose to direct insulin delivery.23 We calculated 
secondary outcomes from 0000 h to 0700 h and over 24 h. 

Figure 2: Trial profi le

28 patients invited

27 enrolled

25 underwent therapy optimisation 
and compliance assessment

25 randomised

12 assigned to control 12 assigned to overnight 
closed loop

12 assigned to overnight
 closed loop

12 assigned to control

24 patients completed and analysed

2 dropouts at training

1 dropout after randomisation 

Data

Sex*

Male 13 (54%)

Female 11 (46%)

Age (years) 43 (12)

BMI (kg/m2) 26·0 (3·5)

HbA1c (%) 8·1 (0·8)

HbA1c (mmol/mol) 65 (9)

Duration of diabetes (years) 29 (11)

Time on pump (years) 6·3 (4·4)

Total daily insulin (U/kg per day) 0·5 (0·1)

Data are n (%) or mean (SD), unless otherwise indicated. *All C-peptide lower than 
33 pmol/L.

Table 1: Baseline characteristics
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We calculated diff erences in HbA1c and plasma 
fructosamine concentrations to identify changes in 
metabolic control. We calculated outcomes with GStat 
software (version 2.0).

Statistical analysis
We based the power calculation on data from a previous 
study.14 We postulated that overnight closed-loop insulin 
delivery would increase the proportion of night time for 
which glucose was between 3·9 mmol/L and 8·0 mmol/L 
by a mean of 13% (SD 25). We calculated that 
24 participants would provide 80% power at the 5% 
signifi cance level to detect a diff erence between sensor-
augmented pump therapy and overnight closed-loop 
insulin delivery.

Analyses were done on an intention-to-treat basis. We 
compared normally distributed data with the paired t test 
and non-normally distributed data with Wilcoxon signed 
rank test. To assess end-period HbA1c, a regression model 
adjusted for pre-period HbA1c level was fi tted to compare 
the two treatments. We did a similar analysis to assess 
changes in fructosamine. We report values as mean (SD) 
or median (IQR), unless stated otherwise. All p values 
are two-tailed. We did analyses with SPSS (version 21).

Role of the funding source
The sponsor of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. Abbott Diabetes Care read the 

manuscript before submission. The corresponding 
author had full access to all the data in the study and had 
fi nal responsibility for the decision to submit for 
publication.

Results
Figure 2 shows the trial profi le. 25 eligible participants 
were randomised: nine (36%) from Addenbrooke’s 
Hospital, eight (32%) from King’s College Hospital, and 
eight (32%) from Sheffi  eld. One participant from 
Sheffi  eld withdrew consent after randomisation, 
meaning 24 participants completed the study and were 
analysed. Table 1 summarises baseline characteristics.

Table 2 shows results of the primary and secondary 
analyses. The time when overnight sensor glucose was in 
target range was higher during delivery of overnight 
closed-loop insulin (52·6% [SD 10·6]) than with control 
(39·1% [12·8])––a mean diff erence of 13·5% (95% CI 
7·3–19·7; p=0·0002). No period (p=0·77) or carryover 
eff ect (p=0·84) was detected on the primary endpoint. 
Figure 3 shows sensor glucose profi les. In all but three 
participants, closed loop improved time spent in target 
range (fi gure 4). In one of those three participants, time 
spent in hypoglycaemia was reduced by 15·1% and in the 
other two by 2·4% and 2·7%. Closed loop reduced mean 
overnight glucose and time above target range without 
increasing time spent in the hypoglycaemia range. Time 
spent in hypoglycaemia at a glucose concentration of less 
than 3·9 mmol/L was low (median time less than 

Closed loop
(n=24)

Control
(n=24)

Paired diff erence* 
(n=24)

p value

Mean glucose (mmol/L) 8·2 (0·9) 9·0 (1·3) –0·8 (1·3) 0·0052

SD of glucose (mmol/L)† 2·0 (0·3) 1·9 (0·3) 0·1 (0·4) 0·18

Within-night coeffi  cient of variation of glucose (%) 24% (3) 21% (4) 3% (6) 0·010

Between-night coeffi  cient of variation of glucose (%) 26% (6) 29% (7) –3% (9) 0·11

Time spent at glucose concentration (%)

3·9–8·0 mmol/L‡ 52·6% (10·6) 39·1% (12·8) 13·5% (14·7) 0·0002

3·9–10·0 mmol/L 73·2% (9·0) 61·2% (13·7) 12·0% (14·2) 0·0004

>8·0 mmol/L 44·3% (11·9) 57·1% (15·6) –12·8% (16·5) 0·0014

>16·7 mmol/L 1·1% (0·0 to 2·8) 1·5% (0·1 to 3·4) –0·0% (–1·6 to 0·5) 0·54

<3·9 mmol/L 1·8% (0·6 to 3·6) 2·1% (0·7 to 3·9) –0·3% (–2·4 to 1·0) 0·28

<3·5 mmol/L 0·7% (0·3 to 1·4) 0·7% (0·3 to 2·0) 0·3% (–17·4 to 3·4) 0·30

<2·8 mmol/L 0·2% (0·0 to 0·7) 0·2% (0·0 to 1·3) 0·0% (–0·9 to 0·2) 0·63

AUC less than 3·5mmol/L (mmol/L×min)§ 4·0 (0·8 to 15·1) 5·3 (0·4 to 25·6) 0·3 (–17·4 to 3·8) 0·61

Number of nights when glucose <3·5 mmol/L¶ 36 (5·4) 58 (8·6) ·· 0·18

LBGI 0·67 (0·27 to 0·96) 0·62 (0·25 to 1·21) –0·02 (–0·69 to 0·32) 0·44

Glucose at 2100 h (mmol/L) 8·6 (0·9) 9·3 (1·3) –0·6 (1·3) 0·021

Glucose at 0000 h (mmol/L) 9·2 (1·3) 9·2 (1·7) 0·01 (1·2) 0·98

Glucose at 0700 h (mmol/L) 7·2 (0·9) 8·8 (1·2) –1·6 (1·5) <0·0001

Data are mean (SD) or median (IQR). AUC=area under the curve. LBGI=low blood-glucose index. *Closed loop minus control; positive value indicates measurement was 
higher on night of closed-loop delivery than with night of control. †Data in parentheses are the SD of SDs. ‡Primary endpoint. §AUC normalised per day. ¶Number of nights 
over 4 weeks when sensor glucose was <3·5 mmol/L for at least 20 min (total number of nights=644).

Table 2: Comparison of overnight glucose control from 0000 to 0700 h during closed loop and control period with unadjusted (raw) sensor glucose over 
28 days in the home setting
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10 min per night) and similar during the two study 
interventions. We noted no signifi cant diff erences in the 
burden of hypoglycaemia as measured by the area under 
the curve less than 3·5 mmol/L (p=0·61), number of 
nights during the study when sensor glucose was less 
than 3·5 mmol/L for at least 20 min (p=0·18), and the 
low blood glucose index24 (p=0·44; table 2).

Increased time spent in target range and reduced mean 
overnight glucose (table 2, fi gure 4) was brought about by 
the closed-loop system delivering 30% more insulin than 
the control system overnight (table 3, fi gure 3); however, 
total daily insulin delivery did not diff er between the two 
study interventions (table 3). Table 4 shows details from 
analysis of closed-loop operation. Closed-loop insulin 
delivery was unintentionally interrupted on average 
every 41 h (once every 5 nights). The most common cause 
of interruptions was the loss of wireless connectivity 
between handheld computer and insulin pump (table 4). 
The 24 h support line was contacted roughly four times 
per patient during each study intervention period 
(28 days; data not shown).

Overnight glucose variability was similar between the 
two interventions (table 2). The coeffi  cient of variation of 
overnight glucose within each night was increased 
during the closed-loop period (table 2). Conversely, we 
recorded a trend towards a reduced between-nights 
coeffi  cient of variation when patients were using the 
closed-loop system, accompanied by consistently reduced 
morning glucose (table 2). This trend was not associated 
with either increased time spent at glucose concentrations 
less than 3·9 mmol/L or area under the curve less than 
3·5 mmol/L (appendix). Outcomes based on adjusted 
sensor glucose values were in concordance with those 
based on unadjusted sensor glucose; the proportion of 
time when adjusted overnight glucose was in target 
increased during closed-loop insulin delivery compared 
with control by a mean of 13·4% (SD 13·5; p=0·0001). 
Time above target was reduced by a mean of 11·9% (16·1; 
p=0·0014) and time below target was similar (2·2% [IQR  
0·7–3·9] vs 2·5% [1·0–4·5]; p=0·21].

Table 5 shows endpoints calculated over a 24 h period 
from 0000 h to 0000 h. Overnight closed loop signifi cantly 
reduced 24 h glucose by 0·5 mmol/L (p=0·0013) and 
increased proportion of time spent within wider target 
range (p=0·0016). Similar to the overnight period 
analyses, time when glucose was above 10·0 mmol/L was 
signifi cantly reduced (table 5). Participants took an 
average of eight capillary glucose measurements per day. 
Overall sensor accuracy in relation to capillary glucose 
was good (median absolute deviation 0·8 mmol/L 
[IQR 0·3–1·5]; median absolute relative deviation 
10·4% [4·7–19·3]). 78% of values were in Clarke Error 
Grid zone A. Median absolute relative deviation of sensor 
glucose during closed-loop and control interventions was 
10·1% (IQR 4·5–18·7) and 10·7% (4·9–19·8), respectively.

The closed-loop intervention reduced mean HbA1c, 
whereas no change was noted for control (before vs after 

closed loop: 7·9% [SD 0·8] vs 7·7% [0·8]; before vs after 
control: 7·9% [0·7] vs 7·9 [0·8]; p=0·033). Fructosamine 
was unchanged (460 [76] vs 454 [77]; 458 [98] vs 464 [84] 
μmol; p=0·75).

Two participants with history of hypoglycaemia 
unawareness each had an episode of severe 
hypoglycaemia during the closed-loop period (appendix). 
Both events happened at a time when the closed-loop 
system was not operational and one participant was 
receiving insulin delivery at the standard rate while the 
other was receiving insulin delivery at 50% of the 
standard rate. A post-hoc analysis identifi ed that closed 
loop was interrupted about 1 hour before these events, 
because of disrupted wireless connectivity with insulin 
pump, and at the time when insulin delivery was 
suspended because of predicted low glucose 
concentrations. The events were not related to closed-
loop algorithm instructions or performance of the closed-
loop system. Although the cause of the episodes cannot 

Figure 3: Median (IQR) of sensor glucose (A) and insulin d elivery (B) during closed   loop and control period for 
the 24 h duration
Solid red line and red shaded area signify closed loop; dashed black line and peach shaded area signify control. The 
glucose range 3·9–8·0 mmol/L is denoted in panel A by horizontal black lines.
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be known defi nitely, they were probably compounded by 
increased physical activity during the day in one 
participant, and a user error—resulting in overdelivery of 
insulin—whilst changing pump infusion rate when 

setting up the closed-loop system at night in the second 
participant. Both participants recovered fully with no 
clinical sequelae.

We recorded no other episodes of severe adverse events 
and no episodes of hyperglycaemia with ketosis. Four 
(17%) participants had mild to moderate respiratory tract 
infections during the closed-loop period, as did one (4%) 
participant during the control period. Two (8%) 
participants had episodes of viral gastroenteritis during 
the closed-loop period. One participant underwent an 
elective inguinal hernia repair during the washout period 
and continued the study after recovery.

Discussion
Our fi ndings show the feasibility of 4 week home use of 
overnight closed-loop insulin delivery in adults. The 
closed-loop procedure improved glucose control, 
increasing the time spent in the target range and 
reducing mean glucose by delivering 30% more insulin 
overnight. Glucose concentrations remained lower in 
participants in the closed-loop group than in those in the 
control group throughout the daytime after closed loop 
was stopped, allowing participants to give less insulin 
bolus during breakfast and dinner periods. As such, the 
amount of total daily insulin during both interventions 
was similar. Time spent in hypoglycaemia was low, with 
few nights with glucose lower than 3·5 mmol/L during 
both interventions.

Achieving glycaemic concentration within the 
euglycaemic range, as safely as possible, presents a 
major challenge in patients with type 1 diabetes. The 
risk of hypoglycaemia is increased when glycaemic 
control is tightened.25 Threshold-suspend pump therapy, 
which allows insulin delivery to be automatically 
suspended for up to 2 h when sensor glucose falls to 
lower than a preset threshold, represents the fi rst step 
towards glucose-responsive insulin delivery. Studies in 
children and adults report reductions in the frequency 
and duration of nocturnal hypoglycaemia in individuals 
at greatest risk.26,27 However, the threshold-suspend 
approach is not designed to step up insulin delivery and 
does not address the issue of overnight hyperglycaemia. 
After use of masked continuous glucose monitoring 
during the run-in period, participants used real-time 
sensor glucose during the control intervention to reduce 
time spent in hypoglycaemia, showing that the main 
driver for these individuals was hypoglycaemia 
avoidance. During the control intervention, glucose 
outcomes were similar between week 1 and week 4 
suggesting rapid settling of glucose concentrations after 
start of real-time continuous glucose monitoring. 
Corrected-for-baseline HbA1c, continuous glucose 
monitoring data obtained during the control 
intervention were similar to the Juvenile Diabetes 
Research Foundation continuous glucose monitoring 
trial;8 the latter recruited adults with baseline HbA1c of 
7·6% who achieved a mean time of 68% with glucose 
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Figure 4: Individual values of time when glucose was in target glucose range of 3·9–8·0 mmol/L (A) and mean 
overnight glucose (B)

Closed loop (n=24) Control (n=24) p value

Overnight insulin delivery (U) 6·4 (4·5–8·1) 4·9 (3·7–6·3) 0·0001

Total daily insulin delivery (U) 34·5 (29·3–48·4) 35·4 (29·7–45·2) 0·32

SD of overnight insulin delivery (U)* 0·6 (0·2) 0·1 (0·1) <0·0001

Data are median (IQR) or mean (SD), unless otherwise indicated. *Data in parentheses are the SD of SDs.

 Table 3: Insulin delivery overnight (0000–0700 h) and over 24 h

Closed-loop operation

Number of nights when closed loop turned on 555/644 (86%)*

Time of day when closed loop turned on (h)† 2252 (2205–2344)

Time of day when closed loop turned off  (h)† 0723 (0641–0829)

Duration of closed-loop operation at night (h)† 8·3 (6·0–9·6)

Total duration of closed-loop operation during the study (h)   4613

Number of events when closed loop interrupted (N=112)

Lack of pump connectivity 68 (61%)

Unable to start closed-loop cycle within 30 min 21 (19%)

Unavailability of sensor data 7 (6%)

Temporary infusion changed by user 7 (6%)

Extended bolus changed by user 4 (4%)

Failure of handheld computer operating system 4 (4%)

Error in handheld computer software system 1 (1%)

*22 (92%) participants had 28 nights each; two (8%) participants had 14 nights each in accordance with advice from 
the Steering Committee advice to shorten their study period after events of severe hypoglycaemia. †Median (IQR) 
from all study nights when closed loop turned on.

Table 4: Utility and failure analysis of closed-loop operation
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concentrations in the target range between 3·9 mmol/L 
and 10·0 mmol/L over 24 h and 4·2% less than 
3·9 mmol/L. The present study recruited adults with a 
slightly higher baseline HbA1c of 8·1%, shown by a 
lower time in the target range of 60% and in the time 
spent in hypoglycaemia of 1·7%.

The advantage of a closed-loop system such as that in 
our study is the fi nely tuned modulation of insulin 
delivery both below and above the preset pump regimen. 
Day-to-day variations in insulin sensitivity are present in 
individuals with type 1 diabetes.28 With information from 
participants’ total daily insulin dose, basal insulin 
requirements, and sensor glucose values, our control 
algorithm could adapt and safely cope with variations in 
overnight insulin requirements, trading variability in 
insulin delivery for glucose consistency.

Early overnight closed-loop studies with our model 
predictive control algorithm in the research facility 
setting showed increased time spent in the target range 
and reduced time spent in hypoglycaemia.14,29 Findings 
from a single-centre, 3-week, overnight, closed-loop 
study in the home setting showed improved glucose 
control and fewer nights with sensor glucose less than 
3·5 mmol/L (10% vs 17% proportion of nights) in 
adolescents.18 Before the present study, no other study 
had assessed the safety and eff ectiveness of 
unsupervised closed loop at home in adults for longer 
than 1 week (panel). We regarded a 4 week study 
intervention period as suffi  cient to provide useful 
experience with unsupervised overnight closed-loop 
home use by adults, and to allow progression to longer 
studies. Although nights with glucose concentrations 
less than 3·5 mmol/L were not signifi cantly diff erent, 
we recorded lower baseline hypoglycaemia than in 
previous studies,16 with median time of less than 10 min 
spent at less than 3·9 mmol/L per night. Showing 

reductions in hypo glycaemia will be diffi  cult to achieve 
without studying a larger or more hypoglycaemia-prone 
population.

The strength of our study is its multicentre design, 
which allowed us to assess a novel technology over a 
wider patient demographic showing generalisability. No 
restrictions were placed on participants’ dietary intake or 
physical activity in the assessment of systems’ 
performance during free living conditions. Previous 
trials showed improved glucose control with continuous 
glucose monitoring alone, particularly in regular users.8 
Our study was restricted by a duration of the control 
period that was too short to show a reduction in HbA1c, as 
noted in previous trials of continuous glucose monitoring 
over 3 months or longer. Nevertheless, compliance with 
continuous glucose monitoring was high, with most 
participants using it regularly during this period. Regular 
use of hyperglycaemia threshold alarms and further 
increase in nocturnal insulin supplementation during 
the control period might have diminished the diff erence 
in mean glucose between the two interventions. However, 
this outcome might have resulted in additional 
hypoglycaemia during the control intervention, or 
reduced compliance of sensor glucose use due to alarm 
fatigue. Longer duration studies might provide additional 
information. We adopted a crossover design that had the 
benefi t of each participant serving as their own control, 
and the possible confounding period or carry-over eff ects 
were not detected. The study was limited by disruptions 
of wireless connectivity and other reasons causing closed 
loop to be interrupted on average every 5 nights. 
Improved connectivity and reliability of follow-up 
prototypes might further increase usage to greater than 
in the present study, in excess of 85%.

In conclusion, unsupervised overnight closed loop at 
home is feasible and might improve glucose control in 

Closed loop (n=24) Control (n=24) Paired diff erence* 
(n=24)

p value

Mean glucose (mmol/L) 8·7 (0·8) 9·3 (1·1) –0·5 (0·7) 0·0013

SD of glucose (mmol/L)† 2·9 (0·4) 2·9 (0·4) –0·0 (0·3) 0·79

Within-day coeffi  cient of variation of glucose (%) 34·1% (31·1 to 35·8) 32·6% (30·0 to 34·1) 1·9% (–0·6 to 3·4) 0·016

Between-day coeffi  cient of variation of glucose (%) 14·9% (12·4, 16·6) 15·3% (13·6 to 21·3) .. 0·11

Time spent at glucose level (%)

3·9 to 10·0 mmol/L 66·0% (7·7) 59·7% (10·8) 6·4% (8·7) 0·0016

>10·0 mmol/L 30·8% (9·3) 37·3% (12·3) –6·5% (8·7) 0·0013

>16·7 mmol/L 1·9% (1·0 to 2·9) 2·2% (1·0 to 3·0) –0·6% (–1·2 to 0·5) 0·33

<3·9 mmol/L 1·7% (0·9 to 3·1) 1·7% (1·1 to 3·5) –0·2% (-1·8 to 0·5) 0·27

<3·5 mmol/L 0·8% (0·4 to 1·4) 0·7% (0·5 to 1·6) –0·2% (-0·8 to 0·3) 0·11

<2·8 mmol/L 0·2% (0·0 to 0·6) 0·2% (0·1 to 0·6) 0·0% (-0·3 to 0·2) 0·84

AUC less than 3·5 mmol/L (mmol/L×min)‡ 4·7% (1·3 to 11·9) 4·5 (1·8 to 17·2) –0·2 (–7·2 to 1·9) 0·42

LBGI 0·57% (0·36 to 0·84) 0·54 (0·34 to 0·96) 0·0 (–0·5 to 0·2) 0·57

Data are mean (SD) or median (IQR). AUC=area under the curve. LBGI=low blood-glucose index. *Closed loop minus control; positive value indicates measurement was 
higher during closed-loop intervention than with control. †Data in parentheses are the SD of SDs. ‡AUC normalised per day.

Table 5: 24 h glucose control during closed loop versus control with unadjusted (raw) sensor glucose over 28 days in the home setting
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adults with type 1 diabetes. Longer term assessments are 
needed to strengthen the evidence of the benefi ts of 
overnight closed loop with use of systems with improved 
reliability.
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