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Abstract

Deep Neural Networks for image/video classification have obtained much
success in various computer vision applications. Existing deep learning al-
gorithms are widely used on RGB image or video data. Meanwhile, with
the development of low-cost RGB-D sensors (such as Microsoft Kinect and
Xtion Pro Live), high-quality RGB-D data can be easily acquired and used
to enhance computer vision algorithms [29]. It would be interesting to inves-
tigate how deep learning can be employed for extracting and fusing features
from RGB-D data. In this paper, after briefly reviewing the basic concepts
of RGB-D information and four prevalent deep learning models (i.e., Deep
Belief Networks (DBNs), Stacked Denoising Auto-Encoders (SDAE), Con-
volutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
Neural Networks), we conduct extensive experiments on five popular RGB-
D datasets including three image datasets and two video datasets. We then
present a detailed analysis about the comparison between the learned feature
representations from the four deep learning models. In addition, a few sug-
gestions on how to adjust hyper-parameters for learning deep neural networks
are made in this paper. According to the extensive experimental results, we
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believe that this evaluation will provide insights and a deeper understand-
ing of different deep learning algorithms for RGB-D feature extraction and
fusion.

Keywords: Deep neural networks, RGB-D data, Feature learning,
Performance evaluation.

1. Introduction1

Learning good feature representations from input data for high-level tasks2

receives much attention in computer vision, robotics and medical imaging3

[52, 53, 93, 97]. Image/video classification is a classic and challenging high-4

level task, which has many practical applications, such as robotic vision [1],5

image annotation [63, 71] and video surveillance [41, 85]. The objective is to6

predict the labels of new coming images/videos. Though RGB image/video7

classification has been studied for many years, it still faces a lot of challenges,8

such as complicated background, illuminance change and occlusion. With the9

invention of the low-cost Microsoft Kinect sensor, it opens a new dimension10

(i.e., depth data) to overcome the above challenges. Compared to RGB im-11

ages, depth images are robust to the variations in color, illumination, rotation12

angle and scale [16]. It has been proved that combining RGB and depth in-13

formation in image/video classification tasks can significantly improve the14

classification accuracy [29, 36, 43]. Therefore, an increasing number of RGB-15

D datasets have been created as benchmarks [13]. Moreover, Deep Neural16

Networks for high-level tasks obtain great success in recent years. Different17

from hand-crafted feature representations such as SIFT [60], HOG [17] and18

STLPC [70], deep learned features are automatically learned from the im-19

ages or videos. These neural network models improve the state-of-the-art20

performance on many important datasets (e.g., the ImageNet dataset), and21

some of them even overcome human performance [87]. Combining the ad-22

vantages of RGB-D images and Deep Neural Networks, many researchers are23

making great efforts to design more sophisticated algorithms. However, no24

single existing approach can successfully handle all scenarios. Therefore, it is25

important to comprehensively evaluate the deep feature learning algorithms26

for image/video classification on popular RGB-D datasets. We believe that27

this evaluation will provide insights and a deeper understanding of different28

deep learning algorithms for RGB-D feature extraction and fusion.29
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1.1. Related Work to RGB-D Information30

In the past decades, since RGB images usually provide the limited ap-31

pearance information of the objects in different scenes, it is extremely difficult32

to solve certain challenges such as the partition of the foreground and back-33

ground which have the similar colors and textures. Besides that, the object34

appearance described by RGB images is sensitive to common variations, such35

as illuminance change. This drawback significantly impedes the usage of RG-36

B based vision algorithms in real-world situations. Complementary to the37

RGB images, depth information for each pixel can help to better perceive38

the scene. RGB-D images/videos provide richer information, leading to more39

accurate and robust performance on vision applications.40

The depth images/videos are generated by a depth sensor. Compared41

to early expensive and inconvenient range sensors (such as Konica Minolta42

Vivid 910), the low-cost 3D Microsoft Kinect sensor makes the acquisition43

of RGB-D data cheaper and easier. Therefore, the research of computer44

vision algorithms based on RGB-D data has attracted a lot of attention in45

the last few years. Bo et al. [9] presented a hierarchical matching pursuit46

(HMP) based on sparse coding to learn new feature representations from47

RGD-D images in an unsupervised way. Tang et al. [81] designed a new48

feature called histogram of oriented normal vectors (HONV) to capture local49

3-D geometric characteristics for object recognition on depth images. In50

[8], Blum et al. presented an algorithm that can automatically learn feature51

responses from the image, and the new feature descriptor encodes all available52

color and depth data into a concise representation. Spinello et al. introduced53

an RGB-D based people detection approach which combines a local depth-54

change detector employing HOD and RGB data HOG to detect the people55

from the RGB-D data in [77] and [78]. In [18], Endres et al. introduced56

an approach which describes a volumetric voxel representation [95] through57

optimizing the 3D pose graph using the g2o [46] framework which can be58

directly used for path planning, robot localization and navigation [35]. More59

papers on combining color and depth channels from multiple scenes using60

RGB-D perception can be found in [83], [72], [55].61

1.2. Related Work to Deep Learning Methods62

According to our evaluation, we select four representative deep learning63

methods including Deep Belief Networks (DBNs), Stacked Denoising Auto-64

Encoders (SDAE), Convolutional Neural Networks (CNNs) and Long Short-65

TermMemory (LSTM) Neural Networks for our experiments. These methods66
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have been widely applied in numerous contests in pattern recognition and67

machine learning. DBN is fine-tuned by backpropagation (BP) without any68

training pattern deformations which receives much success with 1.2% error69

rate on the MNIST handwritten digits [33]. Meanwhile, it achieved good70

results on phoneme recognition, with an error rate of 26.7% on the TIMIT71

core test set [62]. SDAE was first introduced in [84] as an extension of72

Stacked auto-encoder (SAE) [48]. BP-trained CNNs [50] achieved a new73

MNIST record of 0.39% [64]. In 2012, GPU-implemented CNNs achieved74

the best results on the ImageNet classification benchmark [45]. LSTM won75

the ICDAR handwriting competition in 2009 and achieved a record 17.7%76

phoneme error rate on the TIMIT natural speech dataset in 2013. More77

relevant work and history on these four deep learning methods can be found78

in [68].79

Currently, aiming to obtain more robust features from RGB and depth80

images/videos, various algorithms based on Deep Neural Networks have been81

proposed. R. Socher et al. presented convolutional and recursive neural net-82

works (CNN-RNN) [76] to obtain higher order features. In CNN-RNN, C-83

NN layers firstly learn low-level translationally invariant features, and then84

these features are given as inputs into multiple, fixed-tree RNNs. Bai et85

al. proposed subset based sparse auto-encoder and recursive neural networks86

(Sub-SAE-RNNs) [3] which first train the RGB-Subset-Sparse auto-encoder87

and the Depth-Subset-Sparse auto-encoder to extract features from RGB im-88

ages and depth images separately for each subset. These learned features are89

then transmitted to RNNs to reduce the dimensionality and learn robust hi-90

erarchical feature representations. In order to combine hand-crafted features91

and machine learned features, Jin et al. used the Convolution Neural Net-92

works (CNNs) to extract the machine learned representation and Locality-93

constrained Linear Coding (LLC) based spatial pyramid matching for hand-94

crafted features [40]. This new feature representation method can obtain95

both the advantages of hand-crafted features and machine learned features.96

From these above successful methods, we can observe that they are all the97

extensions of our selected methods (CNNs, DBNs, SDAE or LSTM). There-98

fore, it is important to explore the performance of our selected methods on99

different kinds of RGB-D datasets.100

1.3. Deep learning methods for RGB-D Data Analysis101

Since deep learning methods have shown to be useful for standard RGB102

vision tasks like object detection, image classification and semantic segmen-103
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tation, more works on RGB-D perception naturally consider neural networks104

for learning representations from depth information [15] [76]. In general, the105

RGB-D vision problems that can be addressed or enhanced by means of the106

deep learning methods are summarized from four aspects: object detection107

and tracking, object and scene recognition, human activity analysis and in-108

door 3-D mapping. In this paper, our experiments focus on object and scene109

recognition, and human activity analysis.110

1.3.1. Object Detection and Tracking111

The depth information of an object is immune to object appearance112

changes, environmental illumination and subtle movements of the background.113

With the invention of the low-cost Kinect depth camera, researchers imme-114

diately realized that features based on depth information can significantly115

improve detecting and tracking objects in the real world where all kinds of116

variations occur. Depth-RCNN [27] [28] is the first object detector using117

deep convolutional nets on RGB-D data, which is an extension of the RCNN118

framework [22]. The depth map is encoded as three extra channels (with119

Geocentric Encoding: Disparity, Height, and Angle) appended to the color120

images. Furthermore, Depth-RCNN was extended to generate 3D bounding121

boxes through aligning 3D CAD models to the recognition results. Track-122

ing via deep learning methods in RGB-D data is also an important topic.123

In [98], Xue et al. proposed to train a deep convolutional neural network,124

which improves tracking performance, to classify people in RGB-D videos.125

RGB-D based object detection and tracking through deep learning methods126

have attracted great attention in recent few years.127

1.3.2. Object and Scene Recognition128

The conventional RGB-based deep learned features may suffer from the129

distortions of an object. RGB information is less capable of handling these130

environmental variations. Fortunately, the combination of RGB and depth131

information can potentially enhance the robustness of the deep learned fea-132

tures. Zaki et al. [99] presented an RGB-D object recognition framework133

which employed a CNN pre-trained on RGB data as feature extractors for134

both color and depth channels. Then they proposed a rich coarse-to-fine fea-135

ture representation scheme, called Hypercube Pyramid, which can capture136

discriminatory information at different levels of detail. Zhu et al. [100] intro-137

duced a novel discriminative multi-modal fusion framework for RGB-D scene138

recognition which simultaneously considered the inter- and intra-modality139
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correlation for all samples and meanwhile regularizing the learned features140

to be discriminative and compact. Then the results from the multimodal141

layer can be back-propagated to the lower CNN layers. Many object/scene142

recognition deep learning methods based on RGB and depth information143

have been proposed recently [88] [59].144

1.3.3. Human Activity Analysis145

Apart from outputting both RGB and depth information, another contri-146

bution of Kinect is a fast human-skeletal tracking algorithm. This tracking147

algorithm can provide the exact location of each joint of the human body over148

time, which makes the representation of complex human activities easier. Wu149

et al. [92] proposed a novel method called Deep Dynamic Neural Networks150

(DDNN) for multimodal gesture recognition, which learns high-level spa-151

tiotemporal representations using deep neural networks suited to the input152

modality: a Gaussian-Bernouilli Deep Belief Network (DBN) to handle skele-153

tal dynamics, and a 3D Convolutional Neural Network (3DCNN) to manage154

and fuse batches of depth and RGB images. Li et al. [54] proposed a feature155

learning network which is based on sparse auto-encoder (SAE) and principal156

component analysis for recognizing human actions. Many new deep learning157

methods are devoting to deducing human activities from depth information158

or the combination of depth and RGB data [56] [57].159

1.3.4. Indoor 3-D Mapping160

The emergence of Kinect boosts the research for indoor 3-D mapping161

through deep learning methods due to its capability of providing depth in-162

formation directly. Zhang et al. [42] proposed an approach to embed 3D163

context into the topology of a neural network trained for the performance of164

holistic scene understanding. After a 3D scene is depicted by a depth image,165

the network can align the observed scene with a predefined 3D scene tem-166

plate and then reason about the existence and location of each object within167

the scene template. To recover full 3D shapes from view-based depth images,168

Wu et al. [94] proposed to represent a geometric 3D shape as a probability169

distribution of binary variables on a 3D voxel grid through a Convolutional170

Deep Belief Network. Over the last few years, many excellent works about171

deep learning for indoor 3-D mapping have been published [69] [30].172

Aiming to make a comprehensive performance evaluation, we collect five173

representative datasets including two RGB-D object datasets [12, 47], an174
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RGB-D scene dataset [74], an RGB-D gesture dataset [58] and an RGB-D175

activity dataset [90] which can be divided into four categories: object clas-176

sification, scene classification, gesture classification and action classification.177

This is the first work to comprehensively focus on the performance of deep178

learning methods on popular RGB-D datasets. In our experiments, in order179

to make the comparison of CNNs, DBNs, SDAE and LSTM under a fair180

environment, the pre-trained CNNs model through abundant RGB data and181

the RGB-D coding methods are not included. It is because that not all of182

these four deep learning methods can use other RGB data for pre-training183

and the particular RGB-D coding methods may not be suitable for all of the184

four kinds of deep learned features. Therefore, the design of our experiments185

is in a traditional way for providing insights and a deeper understanding of186

different deep learning algorithms for RGB-D feature extraction and fusion,187

which is introduced in detail in Section 4. In addition, besides results of188

the classification accuracies, our evaluation also provides a detailed analysis189

including confusion matrices and error analysis. Some tricks about adjusting190

hyper-parameters that we observed during our experiments are also given in191

this evaluation.192

The rest of this paper is organized as follows. In Section 2, we briefly193

review the deep learning models which we use for evaluation in our experi-194

ments. In Section 3, we present the data pre-processing techniques on deep195

learned features. Section 4 describes experimental analysis, results and some196

tricks on our selected RGB-D datasets. Finally, we draw the conclusion in197

Section 5.198

2. Deep Learning Models199

In recent years, many successful deep learning methods [10, 32, 49, 84]200

as efficient feature learning tools have been applied to numerous areas. The201

aim of deep nets is to learn high-level features at each layer from the fea-202

tures learned at the previous layers. Some methods (such as DBNs [32] and203

SDAE [84]) have something in common: they have two steps in the training204

procedure - one is unsupervised pre-training and the other is fine-tuning. In205

the first step, through an unsupervised algorithm, the weights of the network206

are able to be better than random initialization. This phase can avoid local207

minima when doing supervised gradient descent. Therefore, we can consider208

that unsupervised pre-training is a regularizer. In the fine-tuning step, the209

criterion (the prediction error which uses the labels in a supervised task) is210
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minimized. These two approaches for learning deep networks are shown to be211

essential to train deep networks. Other methods like CNNs [45] contain more212

connections than weights. The model itself realizes a form of regularization.213

The aim of this kind of neural networks is to learn filters, in a data-driven214

fashion, as a tool to extract features describing inputs. This is not only used215

in 2D convolutions but also can be extended into 3D-CNNs [39].216

In this section, we will briefly introduce four deep learning models which217

are used in our experiments, DBNs, SDAE, CNNs and LSTM.218

2.1. Deep Belief Networks219

Deep Belief Networks (DBNs) stack many layers of unsupervised Re-220

stricted Boltzmann Machines (RBMs) in a greedy manner which was first221

introduced by Hinton et al. [32]. An RBM consists of visible layers and hid-222

den layers. Each neuron on the layers is fully connected to all the neurons on223

the next layer. But there are no connections in the same layer. The learned224

weights are used to initialize a multi-layer neural network and then adjust-225

ed to the current task through supervised information for classification. A226

schematic representation of DBNs can be found in Fig. 1.227

In practice, the joint distribution p(v,h; θ) over the visible units v and228

hidden units h can be expressed as:229

p(v,h; θ) =
exp(−E(v,h; θ))

Z
, (1)

where the model parameters θ = w, a,b and Z =
∑

v

∑
h exp(−E(v,h; θ))230

is the normalization factor. The energy E(v,h; θ) of the joint configuration231

(v,h) is defined as:232

E(v,h; θ) = −

V∑

i=1

H∑

j=1

wijvihj −

V∑

i=1

bivi −

H∑

j=1

ajhj , (2)

where V and H are the numbers of the visible and hidden units. wij is the233

symmetric interaction between visible unit vi and hidden unit hj. bi and aj234

are the bias terms.235

The marginal probability of the model to a visible vector v is expressed236

as:237

p(v; θ) =

∑
h exp(−E(v,h; θ))

Z
. (3)
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Figure 1: The schematic representation of DBNs. It is just an example of DBNs structure.
In practice, the number of units on each hidden layer is flexible.
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Therefore, according to the gradient of the joint likelihood function of238

data and labels, we can get the update rule of the v-h weights as239

∆wij = 〈vihj〉data − 〈vihj〉model
. (4)

The greatest advantage of DBNs is the capability of “learning features”240

in a “layer-by-layer” manner. The higher-level features are learned from the241

previous layers. These features are believed to be more complicated and can242

better reflect the information which is contained in the structures of input243

data. Another advantage of DBNs is that it learns the generative model with-244

out imposing subjective selection of filters. Factored RBM is able to learn the245

filters while learning the feature activities in an unsupervised learning man-246

ner. It solves the concern of the legality of the selected filters. Meanwhile, it247

shows the biological implementation of visual cortex, namely, the receptive248

fields for cells in the primary visual cortex. However, a well-performing DBN249

requires a lot of empirically decided hyper-parameter settings, e.g., learning250

rate, momentum, weight cost number of epochs and number of layers. Inad-251

equate selection of hyper-parameters will result in over-fitting and blow up252

DBNs. The property of DBNs that is sensitive to the empirically selected253

parameters has also been proved in our experiments. An improper set of254

hyper-parameters results in a huge difference from the best performance. To255

some extent, this disadvantage compromises the potential of DBNs.256

DBNs have been used for generating and recognizing images [5], video257

sequences [79], motion-capture data [82] and natural language understanding258

[66].259

2.2. Stacked Denoising Auto-Encoders260

The Stacked Denoising Auto-Encoders (SDAE) [84] is an extension of261

the Stacked auto-encoder [48]. This model works in much the same way with262

DBNs. It also uses the greedy principle but stacks denoising auto-encoders263

to initialize a deep network. An auto-encoder consists of an encoder h(·) and264

a decoder g(·). Therefore, the reconstruction of the input x can be expressed265

as Re(x) = g(h(x)). Through minimizing the average reconstruction error266

loss(x,Re(x)), the reconstruction accuracy is able to be improved. This267

unsupervised pre-training is done on one layer at one time.268

Same as DBNs, after all layers have been pre-trained, the parameters269

which can describe levels of representation about x are used as initialization270

to the deep neural network optimized with a supervised training criterion. In271
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Figure 2: A diagram of Stacked Denoising Auto-Encoders which includes an unsupervised
pre-training step and a supervised fine-tuning step. Through performing gradient descent,
the parameters are fine-tuned to minimize the error with the supervised target.

the fine-tuning stage, an output logistic regression layer is added to the top272

of the unsupervised pre-trained machine. Then, the classifier is fine-tuned273

through the design data set Dx = {dx1
, · · · , dxn

} and the corresponding set of274

label codes Ly = {ly1 , · · · , lyn} to minimize the entropy loss function between275

the correct labels and the classifier’s predictions. A schematic diagram of276

Stacked Denoising Auto-Encoders is shown in Fig. 2.277

For binary x, the cross-entropy loss of the input vector x ∈ {0, 1}d and278

the reconstructed d-dimensional vector x̂ is expressed as:279

CEL(x‖x̂) =
∑

i

CEL(xi‖x̂i) = −
∑

i

(xilogx̂i + (1− xi)log(1− x̂i)), (5)

where x̂ = sigmoid(c + wTh(c(x))), c is the bias, and w is the transpose of280

the feed-forward weights. Additionally, another option is to use a Gaussian281

model.282

SDAE makes use of different kinds of encoders to transform the input283

data, which can preserve a maximization of the mutual information between284

the original and the encoded information. Meanwhile, it utilizes a noise285

criterion for minimizing the transformation error. We mentioned that DBNs286

and SDAE have something in common: they have two steps in the training287
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procedure - one is unsupervised pre-training and the other is fine-tuning.288

The advantage of using auto-encoders instead of RBMs as the unsupervised289

building block of a deep architecture is that as long as the training criterion290

is continuous in the parameters, almost any parametrization of the layers is291

possible [4]. However, in SDAE, training with gradient descent is slow and292

hard to parallelize. The optimization of SDAE is inherently non-convex and293

dependent on its initialization. Besides, since SDAE does not correspond to294

a generative model, unlike DBNs which is with generative models, samples295

cannot be drawn to check qualitatively what has been learned.296

SDAE is currently applied to many areas such as domain adaptation [23],297

images classification [96] and text analysis [89].298

2.3. Convolutional Neural Networks299

Convolutional Neural Networks [51] obtain much success in many visual300

processing tasks in recent years. This deep learning model is motivated by301

Hubel and Wiesel’s work [37] on the cat’s visual cortex. This visual cortex302

includes some cells which are sensitive to small sub-regions of the visual field.303

It can be called a receptive field. In practice, these cells can be considered304

as filters on the input space in the CNNs model. It has been proved that it305

is well-suited to extract the local correlation in natural images/videos.306

Convolutional Neural Network consists of one image processing layer, one307

or more convolutional layers and fully connected layers and one classification308

layer. A classical schematic representation of CNNs is shown in Fig. 3. The309

image processing layer is a designed pre-processing layer which can keep310

being fixed in the training step. We introduce the pre-processing layer in311

Section 3 in detail. The convolutional layer applies a set of kernels of size312

n× n× c that are able to process small local parts of the input. For most of313

the 2D-CNNs experiments, the input color images are often processed into314

gray images to enhance the efficiency and accuracy, therefore, the kernel size315

is often expressed as n × n. Pooling is another important concept. It is a316

form of non-linear down-sampling where each map is sub-sampled with mean317

or max pooling over m × m contiguous regions (usually, m is from 2 to 5).318

It can improve translation invariance and tolerance to small differences of319

positions about object parts, at the same time, lead to faster convergence.320

The classification layer is fully connected which combines the outputs from321

the topmost convolutional layer into a feature vector, with one output unit322

per class label. Additionally, weight sharing is a significant principle since it323

is able to reduce the number of trainable parameters. More details concerning324
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Figure 3: The classical schematic representation of CNNs which includes an input layer,
convolutional layers, max-pooling layers and an output layer. The fully connected part is
also presented in the figure.

CNNs can be found in [11]. For a multi-label classification problem with F325

training examples and M classes, the squared-error is expressed as:326

EF =
1

2

F∑

f=1

M∑

m

(tfm − yfm)2, (6)

where tfm is the value of the m-th dimension about f-th pattern’s correspond-327

ing label, and yfm is the m-th output layer unit related to f-th input pattern.328

In our experiments, for better results, we use 2D-CNNs for image datasets329

and 3D-CNNs for video datasets. Due to the space limitation, we do not give330

a detailed review of 3D-CNNs. More details can be found in [39].331

One major advantage of CNNs is the use of shared weights in convo-332

lutional layers. The same filter is used for each pixel in the layer, which333

leads to the reduction of memory footprint and the improvement of result334

performance. For image classification applications, CNNs use relatively little335

pre-processing, which means that the network in CNNs is responsible to learn336

the filters. Without dependence on prior knowledge and human effort for de-337

signing features is another major advantage of CNNs. Besides, compared to338

traditional neural networks, CNN is more robust towards variation of input339

features. The neurons in the hidden layers are connected to the neurons that340
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are in the same spatial area instead of being connected to all of the nodes in341

the previous layer. Furthermore, the resolution of the image data is reduced342

when calculating to higher layers in the network. However, besides a com-343

plex implementation, CNNs have another significant disadvantage that they344

require very large training data and consume an often impractical amount of345

time to learn the parameters of the network, which always take several days346

or weeks. Though the framework for accelerating training and classification347

of CNNs on Graphic Processing Units (GPUs) has been implemented and348

performs nearly hundreds of times faster than on the CPU, it is still not349

enough for real-world applications.350

CNNs is considered as one of the most attractive supervised feature learn-351

ing methods nowadays. CNNs have achieved superior performance for d-352

ifferent tasks such as image recognition [80], video analysis [39], Natural353

language processing [73] and drug discovery [86]. Especially, CNNs based on354

GoogLeNet increased the mean average precision of object detection to 0.439355

and reduced classification error to 0.067 [80]. Both of the performances are356

the best results up to now.357

2.4. Long Short-Term Memory Neural Networks358

Long short-term memory (LSTM) is an extension of recurrent neural net-359

work (RNN) architecture which was first proposed in [34] for addressing the360

vanishing and exploding gradient problems of conventional RNNs. Different361

from traditional RNNs, when there exist long time lags of unknown size a-362

mong important events, an LSTM network can classify, predict and process363

time series from experience. LSTM provides remedies for the RNN’s weak-364

ness of exponential error decay through adding constant error carousel (CEC)365

which allows for constant error signal propagation along with the time. Be-366

sides, taking advantages of multiplicative gates can control the access to the367

CEC.368

An LSTM architecture consists of an input layer, an output layer and a369

layer of memory block cell assemblies. A classical schematic representation370

of standard LSTM architecture is shown in Fig. 4. Fig. 4 shows that the371

memory block assemblies are composed of multiple separate layers: the in-372

put gate layer (ι), the forget gate layer (φ), the memory cell layer (c), and373

the output gate layer (ω). The input layer projects all of the connections to374

each of these layers. The memory cell layer projects all of the connections375

to the output layer (θ). Moreover, each memory cell cj projects a single376

ungated peephole connection to each of its associated gates. A diagram of377
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Figure 4: The standard LSTM architecture. The memory block assemblies contain sepa-
rate layers of memory cells, input gates, forget gates and output gates, in addition to the
input layers and output layers. Blue solid arrows show full all-to-all connectivity between
units in a layer. Blue dashed arrows mean connectivity only between the units in the two
layers that have the same index. The light gray bars denote gating relationships.

a single memory block which consists of four specialized neurons: a mem-378

ory cell, an input gate, a forget gate and an output gate can be found in379

Fig. 5. The memory cell and the gates receive a connection from every neu-380

ron in the input layer. Through gated control, the network can effectively381

maintain and make use of past observations. An LSTM network computes382

a mapping from an input sequence x = (x1, · · · , xT ) to an output sequence383

y = (y1, · · · , yT ) through computing the network unit activations through384

the following equations iteratively from t = 1 to T [65]:385

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi), (7)

ft = σ(Wfxxt +Wmfmt−1 +Wcfct−1 + bf ), (8)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc), (9)

ot = σ(Woxxt +Wommt−1 +Wocct + bo), (10)

mt = ot ⊙ h(ct), (11)

yt = Wymmt + by, (12)

where the W terms denote weight matrices, the b terms denote bias vectors,386

σ is the logistic sigmoid function, and i, f , c and o represent the input gate,387

forget gate, cell activation vectors and output gate respectively, all of which388

are the same size as the cell output activation vectorm. ⊙ is the element-wise389
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Figure 5: A cross-section of an LSTM network, with a single memory block, and connec-
tions from the input layer (bottom) to the output layer (top).
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product of the vectors. g and h are the cell input and cell output activation390

functions, generally tanh.391

LSTM can solve the vanishing gradient point problem in RNN. Mean-392

while, LSTM has the capability of bridging long time lags between inputs,393

which can remember inputs up to 1000 time steps in the past. This advantage394

makes LSTM learn long sequences with long time lags. Besides, it appears395

that there is no need for parameter fine tuning in LSTM [34]. LSTM can396

work well over a broad range of parameters such as learning rate, input gate397

bias and output gate bias. However, in LSTM, the explicit memory adds398

more weights to each node, and all of these weighs have to be trained. This399

increases the dimensionality of the task and potentially makes it harder to400

find an optimal solution.401

Applications of LSTM include speech recognition [25], handwriting recog-402

nition [26] and human action recognition [2]. Besides, LSTM is also ap-403

plicable to robot localization [21], online driver distraction detection [91]404

and many other tasks. Specially, LSTM RNN/HMM hybrids obtained best405

known performance on medium-vocabulary [24] and large-vocabulary speech406

recognition. Moreover, LSTM-based methods set benchmark records in au-407

dio onset detection [61], prosody contour prediction [20] and text-to-speech408

synthesis [19]. Note that different from DBNs, SDAE and CNNs, LSTM is409

a sequence learning method which is hardly applied to image classification410

and object detection. Therefore, in our experiments, we only show the per-411

formance about LSTM on a gesture recognition dataset (SKIG dataset) and412

an action recognition dataset (MSRDailyActivity3D dataset).413

3. Data Preprocessing on Deep Learned Features414

Data preprocessing is an important part of the procedure of learning deep415

features. In practice, through a reasonable choice of preprocessing steps,416

it will result in a better performance according to the related task. Com-417

mon preprocessing methods include normalization and PCA/ZCA whitening.418

Generally, one without much working experience about the deep learning al-419

gorithms will find it hard to adjust the parameters for raw data. When the420

data is processed in a small regular range, tuning parameters will become421

easier [14]. However, in the whole process of our experiments, we find that422

not every dataset is suitable to be either normalized or whitened. Therefore,423

we will have a test on the dataset and then choose the preprocessing steps424

according to the situations. Additionally, before we test the algorithms on425
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the datasets, we will first observe properties of the data itself to gain more426

information which will help us to save more time.427

3.1. Normalization428

General normalization approaches include simple rescaling, per-example429

mean subtraction and feature standardization. The choice of these methods430

mainly depends on the data. In our experiments, since feature standard-431

ization is able to set every dimension of raw data to have zero-mean and432

unit-variance, at the same time, deep features will work with the linear SVM433

classifier, we choose feature standardization to normalize our data. There-434

fore, our data is normalized through first subtracting the mean of each di-435

mension from each dimension and then dividing it by its standard deviation.436

3.2. PCA/ZCA Whitening437

Following the step of feature standardization, we apply PCA/ZCA whiten-438

ing to the entire dataset [38]. This is commonly used in deep learning tasks439

(e.g., [44]). Whitening cannot only make the deep learning algorithm work440

better but also speed up the convergence of the algorithm. However, in our441

experiments, for SDAE and DBNs, the results after whitening did not show442

an obvious improvement. To make the experiments under a fair environ-443

ment, as long as whitening does not lead to a worse result, we choose to444

do ZCA whitening to the normalized data. Since we transfer RGB images445

to grey-scale images to make the data have the stationary property in our446

experiments and the data has been scaled into a reasonable range, the value447

of epsilon in ZCA whitening is set large (0.1) for low-pass filtering. More448

details about PCA/ZCA whitening can be found in [38].449

4. Experiments on Deep Learning Models450

In this section, we evaluate four deep feature learning algorithms (DBNs,451

CNNs, SDAE and LSTM) on three popular image recognition datasets and452

two video recognition datasets including 2D&3D object dataset [12], RGB-453

D object dataset [47], NYU Depth v1 indoor scene segmentation dataset454

[74], Sheffield Kinect Gesture dataset (SKIG) [58] and MSRDailyActivity3D455

dataset [90]. Note that in our experiments, we only show the performance456

about LSTM on SKIG dataset and MSRDailyActivity3D dataset. In all of457

these five datasets, we follow the standard setting procedures according to458

the authors of their respective datasets. Over all of the datasets, we process459

18



raw RGB images into grey-scale images and choose the first channel of the460

depth images as training and test data. According to DBNs, CNNs, SDAE461

and LSTM, after weights are learned in the deep neural networks, we are able462

to extract the image or video features from the preprocessed images/videos.463

Then a linear SVM classifier is trained and tested on the related test sets.464

To make the results comprehensive, we compare the final results computed465

on deep features from RGB data only, deep features from depth data only,466

RGB-D features concatenation and deep features from RGB-D fusion. In467

RGB-D features concatenation experiments, we concatenate the feature vec-468

tors which are extracted from RGB data and depth data respectively into469

new vectors. Different from concatenation experiments, according to RGB-D470

fusion experiments, we firstly concatenate RGB images/frames and relative471

depth images/frames together, and then extract features from deep learn-472

ing models. Illustration about these two experimental procedures is shown473

in Fig. 6. Detailed experimental settings, some important parameters, tricks474

and experiences about adjusting hyper-parameters are shown in the following475

subsections. All experiments are performed using Matlab 2013b and C++476

on a server configured with a 16-core processor and 500G of RAM running477

the Linux OS.478

(a) RGB-D features concatenation (b) Deep features from RGB-D fusion

Figure 6: Illustration about two experimental procedures used in our evaluation work.

4.1. 2D&3D Object Dataset479

We evaluate deep feature learning for object category recognition on the480

2D&3D object dataset [12]. This dataset includes 18 different categories (i.e.,481

binders, books and scissors) with each of them containing 3 to 14 objects re-482

sulting in 162 objects. The views of each object are recorded every 10 degrees483
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Figure 7: Example images in the 2D&3D Object dataset, which contains 14 object classes
(binder, books, bottles, cans, coffee pots, cups, dishes, dish liquids, mice, pens, scissors,
monitors, silverware and drink cartons). There are totally 14 paired samples shown in this
figure. The Cropped RGB image is shown on the top and the corresponding depth image
is on the bottom.

along the vertical axis. Therefore, there are totally 162 × 36 = 5832 RGB484

images and 162 × 36 = 5832 depth images respectively. For the consistency485

with the setup in [12], since the low number of examples of classes perforator486

and phone, our experiments do not include them. Meanwhile, knives, forks487

and spoons are combined into one category ‘silverware’. Example images488

from this dataset are given in Fig. 7. We choose 6 objects per category for489

training, and the left are used for testing. If the number of objects in a cat-490

egory is less than 6 (e.g., scissors), 2 objects are added into the test. Since491

images are cropped in different sizes, we resize each image into 56×56 pixels.492

We give the final comparison results between neural-network classifier and493

SVM in Table 1.494

Table 1: The final comparison results between neural-network classifier and SVM on the
2D&3D object dataset. The second, fourth and seventh columns are the results of RGB test
images, depth test images and RGB-D fusion test images on the neural-network classifier
separately. The third, fifth, sixth and eighth columns are the results of RGB test images,
depth test images, concatenated RGB-D image features and RGB-D fusion test images on
SVM separately.

Method RGB
RGB
(SVM)

Depth
Depth
(SVM)

RGB-D
Concatenation

(SVM)

RGB-D
fusion

RGB-D
fusion
(SVM)

DBNs 72.1 74.5 75.7 78.6 82.3 78.3 79.1
CNNs 77.3 79.1 81.0 83.5 83.6 82.7 84.6

SDAE 73.0 74.5 74.2 75.6 79.3 77.6 78.4
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The hyper-parameters of the DBNs, SDAE and CNNs models are de-495

scribed in Table. 2, Table. 3 and Table. 4. Fig. 8 shows confusion matrixes496

about our three deep learning models across 14 classes on the 2D&3D dataset.497

Table 2: Hyper-parameters about DBNs experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 2
Units for each layer 100/100/100 100/100/100 100/100
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.009 0.009 0.008
Number of unsupervised epochs 13 13 13
Number of supervised epochs 17 30 24

498

Table 3: Hyper-parameters about SDAE experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 2 2 2
Units for each layer 100/100 100/100 100/200
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.1 0.1 0.1
Number of unsupervised epochs 10 10 15
Number of supervised epochs 10 10 30

From the comparison results of our experiments about three selected deep499

learning models on 2D&3D dataset in Table. 1, it can be seen that the ac-500

curacy of RGB, depth and RGB-D fusion results through SVM outperforms501

that through the neural-network classifier. In each deep learning method, ac-502

curacies of RGB-D concatenation through SVM and RGB-D fusion features503

through SVM are higher than deep features from RGB data only and deep504

features from depth data only. In these three methods (DBNs, CNNs and505

SDAE), CNNs obtain the highest performance (84.6%). From the compar-506

ison of three confusion matrixes in Fig. 8, we can see that our three deep507

learning models all have the lowest error rates in bottles, cans, coffee pots508

and cups. Binders, books, pens and scissors have higher error rates. The509

main reason is that binders and books are similar in shape and color. Pens,510
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Table 4: Hyper-parameters about CNNs experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of convolution layers 2 2 2
Number of sub-sampling layers 2 2 2
Kernel size 5 5 5
Learning rate 0.1 0.06 0.1
Number of epochs 30 60 30

Figure 8: Confusion matrixes about three deep learning models on the 2D&3D dataset.
The labels on the vertical axis express the true classes and the labels on the horizontal
axis denote the predicted classes.

scissors and silverware are similar in shape. It is worth to note that the error511

rates of binders and books in SDAE and DBNs are much lower than that512

of binders and books in CNNs, and the error rates of pens and scissors in513

SDAE and DBNs are much higher than that of pens and scissors in CNNs.514

The error rates of other categories are approximately similar. This inter-515

esting phenomenon may be due to the principle of the three different deep516

learning methods. In addition, it proves that in general SDAE and DBNs517

are more in common than CNNs.518

4.2. Object RGB-D Dataset519

We test these deep learning algorithms on the second dataset called RGB-520

D object dataset. This dataset contains 41877 images which are organized521

into 51 categories about 300 everyday objects such as apples, mushrooms and522

notebooks. All of the objects are segmented from the background through523

combining color and depth cues. Fig. 9 shows some segmentation objects524

from this dataset. Every shown object is from one of the 51 object categories.525

Following the setup in [47], we choose to run category recognition experiments526
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Figure 9: Some example images in Object RGB-D dataset. We can find 20 paired samples
shown in this figure. In each pair, the segmented RGB image is shown on the top and the
corresponding depth image is on the bottom.

by randomly selecting one object from the categories for testing. Each image527

in object RGB-D dataset is resized into 56 × 56 pixels for consistency with528

the 2D&3D dataset. Table 5 summarizes the comparison between neural-529

network classifier and SVM.530

Table 5: The final comparison results between neural-network classifier and SVM on
Object RGB-D dataset. The second, fourth and seventh columns are the results of RGB
test images, depth test images and RGB-D fusion test images on the neural-network
classifier separately. The third, fifth, sixth and eighth columns are the results of RGB
test images, depth test images, concatenated RGB-D image features and RGB-D fusion
test images on SVM separately.

Method RGB
RGB
(SVM)

Depth
Depth
(SVM)

RGB-D
Concatenation

(SVM)

RGB-D
fusion

RGB-D
fusion
(SVM)

DBNs 80.9 81.6 75.1 78.6 84.3 82.4 83.7
CNNs 82.4 82.5 75.5 78.9 83.4 83.2 84.8

SDAE 81.4 82.0 71.9 73.7 82.3 82.6 84.2

The hyper-parameters of three deep learning models DBNs, SDAE and531

CNNs are shown in Table 6, Table 7 and Table 8.532

As we can see from Table 5, CNNs outperform DBNs and SDAE by 0.5%533

and 0.3%. Due to the limitation of space, we only give the confusion matrix534

of the best performance (CNNs RGB-D fusion) in our experiments. Fig. 10535
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Figure 10: Confusion matrix about CNNs on Object RGB-D Dataset. The labels on
the vertical axis express the true classes and the labels on the horizontal axis denote the
predicted classes.
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Table 6: Hyper-parameters about DBNs experiments on Object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 3
Units for each layer 110/100/20 110/100/20 110/100/20
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.009 0.009 0.009
Number of unsupervised epochs 13 13 13
Number of supervised epochs 8 10 22

Table 7: Hyper-parameters about SDAE experiments on Object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 2 2 2
Units for each layer 100/100 130/100 110/200
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.1 0.08 0.05
Number of unsupervised epochs 10 15 15
Number of supervised epochs 15 30 30

shows the confusion matrix about CNNs across 51 classes over object RGB-D536

dataset.537

4.3. NYU Depth v1538

Besides image object classification, we also evaluate these three deep fea-539

ture learning models on indoor scene classification. NYU Depth v1 dataset540

consists of 7 different kinds of scene classes totally containing 2347 labeled541

frames. Since the standard classification protocol removes scene ‘cafe’ from542

Table 8: Hyper-parameters about CNNs experiments on Object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of convolution layers 2 2 2
Number of sub-sampling layers 2 2 2
Kernel size 5 5 5
Learning rate 0.1 0.06 0.03
Number of epochs 30 60 80
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Bathroom Bedroom Bookstore Kitchen Living room Office

Figure 11: Some example images in the NYU Depth v1 dataset. It includes 6 object
classes (bathroom, bedroom, bookstore, kitchen, living room and office). We can find 6
paired samples shown in this figure. In each pair, the segmented RGB image is shown on
the top and the corresponding depth image is on the bottom.

the dataset, we use the remaining 6 different scenes. Example images in the543

NYU Depth v1 dataset are shown in Fig. 11. It is worth noting that since544

there are so many objects in one scene and the correlation between images545

in one scene is low, it makes NYU Depth v1 a very challenging dataset.546

The baseline when only using RGB images is 55% [74]. Table 9 shows the547

performance comparison between neural-network classifier and SVM on this548

dataset.549

Table 9: The performance comparison results between neural-network classifier and SVM
on NYU Depth v1 dataset. The second, fourth and seventh columns are the results of
RGB test images, depth test images and RGB-D fusion test images on the neural-network
classifier separately. The third, fifth, sixth and eighth columns are the results of RGB test
images, depth test images, concatenated RGB-D image features and RGB-D fusion test
images on SVM separately.

Method RGB
RGB
(SVM)

Depth
Depth
(SVM)

RGB-D
Concatenation

(SVM)

RGB-D
fusion

RGB-D
fusion
(SVM)

DBNs 62.4 66.7 57.3 60.8 68.3 65.5 70.5

CNNs 68.4 69.5 56.5 56.9 70.4 70.1 71.8

SDAE 65.2 68.4 51.5 55.0 70.3 69.6 71.1

The hyper-parameters of DBNs, SDAE and CNNs can be found in Ta-550

ble 10, Table 11 and Table 12. Fig. 12 shows confusion matrixes about our551

three deep learning models across 6 classes over NYU Depth v1 dataset.552

As we have mentioned above, NYU depth v1 dataset is very challeng-553
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Table 10: Hyper-parameters about DBNs experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 3
Units for each layer 120/100/80 120/100/80 110/100/100
Unsupervised learning rate 0.06 0.04 0.1
Supervised learning rate 0.006 0.008 0.008
Number of unsupervised epochs 3 3 3
Number of supervised epochs 35 45 22

Table 11: Hyper-parameters about SDAE experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 3
Units for each layer 120/100/80 120/100/60 130/200/120
Unsupervised learning rate 0.01 0.01 0.01
Supervised learning rate 0.1 0.1 0.1
Number of unsupervised epochs 15 15 15
Number of supervised epochs 30 35 50

ing. Therefore, in our three deep learning methods, CNNs achieve the best554

performance which is only 71.8%. Different from 2D&3D object dataset555

and object RGB-D dataset, RGB-D fusion through SVM always obtains the556

higher recognition accuracy (70.5% DBNs, 71.8% CNNs and 71.1% SDAE)557

compared to RGB-D concatenation (SVM) and RGB-D fusion. It may be558

because the scene images from NYU depth v1 dataset contain many irregular559

objects which seem much more complicated than the object images from the560

Table 12: Hyper-parameters about CNNs experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of convolution layers 2 2 2
Number of sub-sampling layers 2 2 2
Kernel size 8 8 8
Learning rate 0.008 0.008 0.004
Number of epochs 50 45 80
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Figure 12: Confusion matrixes about three deep learning models on NYU Depth v1
dataset. The labels on the vertical axis express the true classes and the labels on the
horizontal axis denote the predicted classes.

previous two datasets. From the confusion matrixes about these three deep561

learning methods, to a great extent, it can be seen that the distribution of562

error rates is similar.563

4.4. Sheffield Kinect Gesture (SKIG) Dataset564

We also evaluate these four deep learning algorithms on video classifica-565

tion datasets. SKIG is a hand gesture dataset which contains 10 categories566

of hand gestures with 2160 hand gesture video sequences from six people, in-567

cluding 1080 RGB sequences and 1080 depth sequences respectively. Fig. 13568

shows some frames in this dataset. In our experiments, since it has been569

proved that 5∼7 frames (0.3∼0.5 seconds of video) are enough to have the570

similar performance with the one obtainable with the entire video sequence571

[67]. Therefore, each video sequence is resized into 64 × 48 × 13. Following572

the experimental setting in [58], we choose four objects as the training set573

and test on the remaining data. Table 13 shows the performance comparison574

between neural-network classifier and SVM on SKIG dataset. Additional-575

ly, since 3D-CNNs gain much success in video data classification, we use576

3D-CNNs instead of 2D-CNNs in our experiments. We also compare LSTM577

Neural Networks experimentally in this subsection.578

The hyper-parameters of DBNs, SDAE, 3D-CNNs and LSTM can be579

found in Table 14, Table 15, Table 16 and Table 17.580

To get better results in the 3D-CNNs model, we decay the learning rate581

a half in each epoch.582

Fig. 14 shows confusion matrixes about our four deep learning models583

across 10 classes on the SKIG dataset.584
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Circle Triangle Pat Turn
around

ComehereCrossZWaveRight-leftUp-down

Figure 13: Example frames from Sheffield Kinect gesture dataset and the descriptions of
10 different categories: circle (clockwise), triangle (anti-clockwise), up and down, right
and left, wave, hand signal “Z”, cross, comehere, turn around and pat. In each pair, the
segmented RGB image is shown on the top and the corresponding depth image is on the
bottom.

From the comparison of these four deep learning models in Table 13, we585

can see that 3D-CNNs achieve the best performance among four - 93.3%.586

It may be because that 3D-CNNs consider the more temporal correlation587

between video frames [39]. Sequence learning method LSTM with raw pixel588

features achieves 91.3% on the SKIG dataset, which is better than the perfor-589

mances of DBN and SDAE. It is reasonable because LSTM can learn from590

experience to classify, process and predict time series. Overall, we obtain591

high accuracies in this dataset. The main reason is that the ten categories in592

SKIG dataset can be classified easily. Each category is much different from593

other categories, and every test video in one category is similar to other test594

videos in the same category. Therefore, in terms of SKIG dataset, inter-class595

distance is big and intra-class distance is small. The analysis above sug-596

gests that deep learning will produce a good performance with less training597

samples if the experimental dataset is not challenging.598

4.5. MSRDailyActivity3D Dataset599

The last dataset which we test on is MSRDailyActivity3D dataset [90].600

It is a daily activity dataset which contains 16 activity types (e.g., drink, eat,601

play game). There are 10 subjects with each of them performs each activity602

twice, once in standing position, and once in sitting position. Examples of603

RGB images, raw depth images in this dataset are illustrated in Fig. 15. We604

do the same preprocessing procedure like SKIG and resize each sequence to605

64×48×13. Then subject 1 to subject 5 of “sitting on sofa” and subject 1 to606

subject 5 of “standing” in this dataset are used as training set and the rest607
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Figure 14: Confusion matrixes about four deep learning models on SKIG dataset. The
labels on the vertical axis express the true classes and the labels on the horizontal axis
denote the predicted classes. From left to right in order, (a) SDAE, (b) 3DCNN, (c) DBN,
(d) LSTM.
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Table 13: The performance comparison results between neural-network classifier and SVM
on SKIG dataset. The second, fourth and seventh columns are the results of RGB test
videos, depth test videos and RGB-D fusion test videos on the neural-network classifier
separately. The third, fifth, sixth and eighth columns are the results of RGB test videos,
depth test videos, concatenated RGB-D vedio features and RGB-D fusion test videos on
SVM separately.

Method RGB
RGB
(SVM)

Depth
Depth
(SVM)

RGB-D
Concatenation

(SVM)

RGB-D
fusion

RGB-D
fusion
(SVM)

DBNs 78.3 83.1 68.9 73.8 84.7 81.5 85.9

3D-CNNs 87.2 91.3 77.5 82.2 92.6 88.1 93.3

SDAE 78.9 79.1 74.4 78.9 81.1 78.3 83.3

LSTM 82.6 83.1 75.7 77.5 87.2 86.7 91.3

Table 14: Hyper-parameters about DBNs experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 3
Units for each layer 120/100/100 120/100/100 110/100/100
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.01 0.009 0.006
Number of unsupervised epochs 3 3 3
Number of supervised epochs 30 40 55

are used for evaluation. Table 18 shows the accuracies of four deep learning608

methods.609

The hyper-parameters of DBNs, SDAE, 3D-CNNs and LSTM are shown610

in Table 19, Table 20, Table 21 and Table 22.611

To get better results in the 3D-CNNs model, we use the same trick as612

in the experiments of SKIG Dataset by decaying the learning rate a half in613

every epoch.614

In our deep learning experiments on MSRDailyActivity3D dataset, 3D-615

CNNs achieve a higher accuracy (68.9%) than DBNs (68.1%), SDAE (66.3%)616

and LSTM (68.1%). But compared to the performances of SKIG dataset, we617

only obtain lower accuracies. There are two main reasons. First, it is a very618

challenging video dataset. According to this dataset, inter-class distance is619
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Table 15: Hyper-parameters about SDAE experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 2 2 2
Units for each layer 100/80 100/85 100/100
Unsupervised learning rate 0.01 0.01 0.01
Supervised learning rate 0.01 0.015 0.01
Number of unsupervised epochs 12 15 30
Number of supervised epochs 1200 500 500

Table 16: Hyper-parameters about 3D-CNNs experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of convolution layers 2 2 2
Number of sub-sampling layers 2 2 2
First Kernel size 7× 7× 7 7× 7× 7 7× 7× 7
Second Kernel size 7× 7× 5 7× 7× 5 7× 7× 5
Initial Learning rate 0.0005 0.0005 0.0004
Number of epochs 40 45 60

small and intra-class distance is big. Second, there are no enough training620

samples for deep learning models. Therefore, it can be seen that it will show621

a bad performance with less training samples if the experimental dataset622

is very challenging. Fig. 16 shows confusion matrixes about our four deep623

learning models across 16 classes over MSRDailyActivity3D dataset.624

4.6. Tricks For Adjusting Hyper-parameters625

Deep neural network learning involves many hyper-parameters to be tuned626

such as the learning rate, the momentum, the kernel size, the number of lay-627

ers and the number of epochs. In the process of adjusting hyper-parameters,628

Table 17: Hyper-parameters about LSTM experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Memory blocks 50 50 60
Output neurons 10 10 10
Learning rate 0.0001 0.0001 0.0001
Number of epochs 2000 2000 2500
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Figure 15: Selected examples of RGB images and raw depth images in MSRDailyActivi-
ty3D dataset.

inappropriate parameters may result in overfitting or convergence to a local-629

ly optimal solution, so it requires a strong practical experience. Therefore,630

many researchers who did not utilize neural networks in the past have the im-631

pression of this tuning as a “black art”. It is true that experiences can help a632

lot, but the research on hyper-parameter optimization moves towards a more633

fully automated fashion. The widely used strategies on hyper-parameter op-634

timization are grid search and manual search. Bergstra and Bengio [6] first635

proposed the very simple alternative called “random sampling” to standard636

methods which works very well. Meanwhile, it is easy to implement. Bergstra637

et al. then presented automatic sequential optimization which outperforms638

both manual and random search in [7]. This work is successfully extended639

in [75] which considers the hyper-parameters optimization problem through640

the framework of Bayesian optimization. In this paper, we give some tricks641

about how to choose hyper-parameters in our experiments. It can help other642

researchers use deep neural networks.643

During our experiments, we find that DBNs are more difficult than C-644

NNs and SDAE in hyper-parameter optimization. With inappropriate pa-645

rameters, DBNs easily converge to locally optimal solutions. According to646

DBNs, CNNs, SDAE and LSTM, the reconstruction error always increases647

remarkably if the learning rate is too large. Therefore, we follow the simplest648

solution and try several small log-spaced values (10−1, 10−2, . . .) [31]. Then649
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(a) DBN (b) 3D-CNN

(d) SDAE (e) LSTM

Figure 16: Confusion matrixes about four deep learning models on MSRDailyActivity3D
dataset. The labels on the vertical axis express the true classes and the labels on the
horizontal axis denote the predicted classes. From left to right in order, (a) DBN, (b)
3D-CNN, (c) SDAE, (d) LSTM.
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Table 18: The performance comparison results between neural-network classifier and SVM
on MSRDailyActivity3D Dataset. The second, fourth and seventh columns are the results
of RGB test videos, depth test videos and RGB-D fusion test videos on the neural-network
classifier separately. The third, fifth, sixth and eighth columns are the results of RGB test
videos, depth test videos, concatenated RGB-D video features and RGB-D fusion test
videos on SVM separately.

Method RGB
RGB
(SVM)

Depth
Depth
(SVM)

RGB-D
Concatenation

(SVM)

RGB-D
fusion

RGB-D
fusion
(SVM)

DBNs 51.9 62.5 50.6 53.1 66.3 65.0 68.1

3D-CNNs 50.5 65.6 47.3 58.2 61.3 61.3 68.9

SDAE 57.5 59.4 46.3 48.1 64.4 62.5 66.3

LSTM 49.4 64.4 46.3 57.5 63.1 60.0 68.1

Table 19: Hyper-parameters about DBNs experiments on MSRDailyActivity3D Dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 3 3 3
Units for each layer 120/100/100 120/100/100 110/100/100
Unsupervised learning rate 0.1 0.1 0.1
Supervised learning rate 0.004 0.008 0.005
Number of unsupervised epochs 4 4 4
Number of supervised epochs 55 46 60

we narrow the region and choose the value where we obtain the lowest error.650

During the training, the learning rate is reduced half in each epoch prior to651

termination. The choice of the number of hidden layers and units for each652

layer is very much dataset-dependent. From most tasks that we worked on,653

it can be found that when the image size is small and training samples are654

not a lot, it does not need a large number of hidden units and very deep655

hidden layers in DBNs and SDAE. Therefore, we define the initial number of656

hidden layers as 2 and the initial units for each layer as 100. Then we keep657

fine-tuning the number of hidden layers and the units manually till finding658

the ideal results. For CNNs, the kernel size of small image datasets is usually659

in the 5× 5 range, while natural image datasets which are with hundreds of660

pixels in each dimension are better to use larger kernel sizes such as 10× 10661
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Table 20: Hyper-parameters about SDAE experiments on MSRDailyActivity3D Dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of hidden layers 2 2 2
Units for each layer 110/80 110/85 100/100
Unsupervised learning rate 0.01 0.01 0.01
Supervised learning rate 0.01 0.015 0.01
Number of unsupervised epochs 15 20 33
Number of supervised epochs 1000 800 800

Table 21: Hyper-parameters about 3D-CNNs experiments on MSRDailyActivity3D
Dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Number of convolution layers 2 2 2
Number of sub-sampling layers 2 2 2
First Kernel size 7× 7× 7 7× 7× 7 7× 7× 7
Second Kernel size 7× 7× 5 7× 7× 5 7× 7× 5
Initial Learning rate 0.0003 0.0005 0.0004
Number of epochs 50 45 60

or 15 × 15. In all of our experiments, we set momentum which is used for662

increasing the speed of learning as 0.9. The number of unsupervised epochs663

and number of supervised epochs is usually initialized as 10 and increased664

with the step 5 (10, 15, 20, . . .).665

4.7. Overall Performance Analysis666

Based on the experimental results reported and analyzed above, we also667

conduct a detailed analysis of all the benchmarking deep learning models668

and RGB-D datasets. From the comparison of selected deep learning models669

(DBNs, SDAE, LSTM and 2D, 3D-CNNs), 2D-CNNs for RGB-D images and670

Table 22: Hyper-parameters about LSTM experiments on MSRDailyActivity3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion
Memory blocks 60 60 70
Output neurons 16 16 16
Learning rate 0.0001 0.0001 0.0001
Number of epochs 2000 2000 2500
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3D-CNNs for RGB-D videos always outperform DBNs, SDAE and LSTM in671

classification tasks. LSTM shows advantages compared to DBNs and SDAE672

in RGB-D video classification tasks. The results of RGB-D concatenation673

(SVM) and RGB-D fusion (SVM) are better than other methods. For a fair674

comparison, we take almost the same time to adjust hyper-parameters. From675

the final performances of Table 1, Table 5 and Table 9, we can find that the676

more challengeable the dataset is, the lower the accuracy. In our RGB-D677

video experiments, the results in Table 13 reveal that it will also show a678

great performance without lots of training samples when the experimental679

datasets are simple.680

5. Conclusion681

In this paper, we performed large-scale experiments to comprehensively682

evaluate the performance of deep feature learning models for RGB-D im-683

age/video classification. Based on the benchmark experiments, we gave the684

overall performance analysis about our results and introduced some tricks685

about adjusting hyper-parameters. We noted that RGB-D fusion methods686

using CNNs with numerous training samples always outperform our other687

selected methods (DBNs, SDAE and LSTM). Since LSTM can learn from688

experience to classify, process and predict time series, it achieved better per-689

formances than DBN and SDAE in video classification tasks. Moreover,690

this large-scale performance evaluation work could facilitate a better under-691

standing of the deep learning models on RGB-D datasets. In the future, we692

will focus on collecting large-scale RGB-D datasets for better gauging new693

algorithms and finding convenient ways to adjust hyper-parameters.694

[1] Peter Allen. Robotic object recognition using vision and touch, vol-695

ume 34. 2012.696

[2] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia,697

and Atilla Baskurt. Sequential deep learning for human action recogni-698

tion. In International Workshop on Human Behavior Understanding,699

pages 29–39, 2011.700

[3] Jing Bai, Yan Wu, Junming Zhang, and Fuqiang Chen. Subset based701

deep learning for rgb-d object recognition. Neurocomputing, 2015.702

[4] Yoshua Bengio. Learning deep architectures for ai. Foundations and703

trends R© in Machine Learning, 2(1):1–127, 2009.704

37



[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.705

Greedy layer-wise training of deep networks. Advances in Neural In-706

formation Processing Systems, 19:153, 2007.707

[6] James Bergstra and Yoshua Bengio. Random search for hyper-708

parameter optimization. The Journal of Machine Learning Research,709

13(1):281–305, 2012.710
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