This is a repository copy of Virtual endovascular treatment of intracranial aneurysms: models and uncertainty.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113209/

Version: Supplemental Material

Article:

https://doi.org/10.1002/wsbm.1385

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Meta-analysis on the effect of uncertainties in inflow boundary condition, blood rheology, and vascular wall compliance

Data extracted from reference studies and meta-analysis computations are presented in this supplementary material. Three meta-analyses were performed to measure the effect of uncertainties in inflow boundary condition, blood rheology, and vascular wall compliance on the wall shear stress (WSS) predictions made by virtual endovascular treatment models of aneurysms. Random-effects meta-analyses performed on reference studies within each group and computations are presented in tables 1, 2, 3. For each reference study, matched group standardized mean differences (Hedges’ g) were computed. The basic and summary data for the reference studies used in each meta-analysis are presented in tables 4, 5, and 6.

Table 1. Random-effects computations on the effect of inflow boundary condition on CFD-predicted aneurysmal WSS.

<table>
<thead>
<tr>
<th>Reference First Author (Year)</th>
<th>N</th>
<th>Effect Size (g)</th>
<th>Study Variance (Vg)</th>
<th>Adjusted Variance (T² + Vg)</th>
<th>Adjusted Weight</th>
<th>Percentage Weight</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jansen (2014)</td>
<td>36</td>
<td>0.37</td>
<td>0.011</td>
<td>0.027</td>
<td>36.78</td>
<td>45.5%</td>
<td>0.16 - 0.57</td>
</tr>
<tr>
<td>Karmonik (2010)</td>
<td>10</td>
<td>0.07</td>
<td>0.024</td>
<td>0.040</td>
<td>24.91</td>
<td>30.8%</td>
<td>-0.23 - 0.37</td>
</tr>
<tr>
<td>McGah (2014)</td>
<td>4</td>
<td>0.48</td>
<td>0.036</td>
<td>0.052</td>
<td>19.11</td>
<td>23.7%</td>
<td>0.11 - 0.85</td>
</tr>
<tr>
<td>Pooled</td>
<td>50</td>
<td>0.30</td>
<td></td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.08 - 0.52</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between-studies Variance (T²)</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Random-effects computations on the effect of blood rheological model on CFD-predicted aneurysmal WSS. Between-studies variance is set to zero (fixed-effect meta-analysis) as DerSimonian and Laird method of computing between-studies variance resulted in a negative value (DerSimonian and Kacker, 2007)

<table>
<thead>
<tr>
<th>Reference First Author (Year)</th>
<th>N</th>
<th>Effect Size (g)</th>
<th>Study Variance (Vg)</th>
<th>Adjusted Variance (T² + Vg)</th>
<th>Adjusted Weight</th>
<th>Percentage Weight</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro (2014)</td>
<td>10</td>
<td>0.02</td>
<td>0.002</td>
<td>0.002</td>
<td>597.95</td>
<td>52.8%</td>
<td>-0.06 - 0.10</td>
</tr>
<tr>
<td>Fisher (2009)</td>
<td>4</td>
<td>0.04</td>
<td>0.013</td>
<td>0.013</td>
<td>75.52</td>
<td>6.7%</td>
<td>-0.26 - 0.19</td>
</tr>
<tr>
<td>Morales (2013)</td>
<td>3</td>
<td>0.02</td>
<td>0.002</td>
<td>0.002</td>
<td>459.19</td>
<td>40.5%</td>
<td>-0.07 - 0.11</td>
</tr>
<tr>
<td>Pooled</td>
<td>17</td>
<td>0.02</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
<td>-0.04 - 0.07</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td>0.292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between-studies Variance (T²)</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Random-effects computations on the effect of wall compliance model on CFD-predicted aneurysmal WSS.

<table>
<thead>
<tr>
<th>Reference First Author (Year)</th>
<th>N</th>
<th>Effect Size (g)</th>
<th>Study Variance (Vg)</th>
<th>Adjusted Variance (T² + Vg)</th>
<th>Adjusted Weight</th>
<th>Percentage Weight</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torii (2009)</td>
<td>3</td>
<td>0.19</td>
<td>0.011</td>
<td>0.012</td>
<td>80.02</td>
<td>26.6%</td>
<td>-0.02 - 0.40</td>
</tr>
<tr>
<td>Takizawa (2012)</td>
<td>10</td>
<td>0.32</td>
<td>0.009</td>
<td>0.010</td>
<td>101.44</td>
<td>33.8%</td>
<td>0.13 - 0.50</td>
</tr>
<tr>
<td>Bazilevs (2010a)</td>
<td>4</td>
<td>0.42</td>
<td>0.015</td>
<td>0.016</td>
<td>60.77</td>
<td>20.2%</td>
<td>0.18 - 0.67</td>
</tr>
<tr>
<td>Bazilevs (2010b)</td>
<td>4</td>
<td>0.49</td>
<td>0.016</td>
<td>0.017</td>
<td>58.10</td>
<td>19.3%</td>
<td>0.24 - 0.74</td>
</tr>
<tr>
<td>Pooled</td>
<td>21</td>
<td>0.34</td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.22 - 0.45</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td>< 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between-studies Variance (T²)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Basic data from three studies performed on the effect of inflow boundary condition on CFD-predicted aneurysm WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WSS (Pa)</td>
<td>WSS (Pa)</td>
<td>Absolute Difference (Pa)</td>
</tr>
<tr>
<td>P1</td>
<td>2.0</td>
<td>2.60</td>
<td>0.60</td>
</tr>
<tr>
<td>P2</td>
<td>1.6</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>P3</td>
<td>1.2</td>
<td>1.80</td>
<td>-0.60</td>
</tr>
<tr>
<td>P4</td>
<td>1.5</td>
<td>1.90</td>
<td>-0.40</td>
</tr>
<tr>
<td>P5</td>
<td>1.2</td>
<td>1.80</td>
<td>-0.60</td>
</tr>
<tr>
<td>P6</td>
<td>1.1</td>
<td>1.70</td>
<td>-0.60</td>
</tr>
<tr>
<td>mean</td>
<td>1.6</td>
<td>1.80</td>
<td>-0.20</td>
</tr>
<tr>
<td>SD</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSIBC Patient-specific inflow boundary condition
GIBC Generalized inflow boundary condition
r Pearson’s correlation coefficient
N Sample size
S_within Within-study standard deviation
g Hedges’ g
V_g Variance of the Hedges’ g
SD_g Standard deviation of the Hedges’ g

* Only mean and SD values of WSS magnitude were reported by this study, therefore the correlation coefficient was assumed to be equal to that of the most populated study in the meta-analysis, i.e., Jansen et al. (2014).
Table 5. Basic data from three studies performed on the effect of blood rheological model on CFD-predicted aneurysmal WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

<table>
<thead>
<tr>
<th></th>
<th>WSS (Pa)</th>
<th>WSS (Pa)</th>
<th>Absolute Difference (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NRM</td>
<td>CRM</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3.53</td>
<td>3.62</td>
<td>0.11</td>
</tr>
<tr>
<td>P2</td>
<td>0.78</td>
<td>0.89</td>
<td>0.11</td>
</tr>
<tr>
<td>P3</td>
<td>0.85</td>
<td>0.79</td>
<td>-0.06</td>
</tr>
<tr>
<td>P4</td>
<td>0.95</td>
<td>1.08</td>
<td>0.13</td>
</tr>
<tr>
<td>P5</td>
<td>1.19</td>
<td>1.18</td>
<td>-0.01</td>
</tr>
<tr>
<td>P6</td>
<td>0.36</td>
<td>0.35</td>
<td>-0.01</td>
</tr>
<tr>
<td>P7</td>
<td>0.76</td>
<td>0.61</td>
<td>-0.15</td>
</tr>
<tr>
<td>P8</td>
<td>0.22</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>P9</td>
<td>0.02</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>P10</td>
<td>0.32</td>
<td>0.29</td>
<td>-0.03</td>
</tr>
<tr>
<td>mean</td>
<td>0.90</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>SD</td>
<td>0.94</td>
<td>0.97</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.23</td>
<td>0.63</td>
<td>0.58</td>
<td>0.816</td>
<td>0.30</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>0.62</td>
<td>0.58</td>
<td>0.818</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>-0.01</td>
<td>0</td>
<td>0.002</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>N</th>
<th>S_within</th>
<th>g</th>
<th>V_g</th>
<th>SD_g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.99</td>
<td>10</td>
<td>0.58</td>
<td>0.02</td>
<td>0.002</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>NRM</td>
<td>CRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Basic data from three studies performed on the effect of wall compliance model on CFD-predicted aneurysmal WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

<table>
<thead>
<tr>
<th>Study</th>
<th>WSS (Pa)</th>
<th>WSS (Pa)</th>
<th>Absolute Difference (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RWM</td>
<td>CWM</td>
<td></td>
</tr>
<tr>
<td>Takizawa et al. (2012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>11.90</td>
<td>8.91</td>
<td>2.99</td>
</tr>
<tr>
<td>P2</td>
<td>3.31</td>
<td>2.40</td>
<td>0.91</td>
</tr>
<tr>
<td>P3</td>
<td>27.84</td>
<td>24.26</td>
<td>3.58</td>
</tr>
<tr>
<td>P4</td>
<td>10.45</td>
<td>3.30</td>
<td>7.16</td>
</tr>
<tr>
<td>P5</td>
<td>23.59</td>
<td>14.16</td>
<td>9.43</td>
</tr>
<tr>
<td>P6</td>
<td>20.01</td>
<td>16.17</td>
<td>3.84</td>
</tr>
<tr>
<td>P7</td>
<td>5.10</td>
<td>4.58</td>
<td>0.52</td>
</tr>
<tr>
<td>P8</td>
<td>2.29</td>
<td>2.17</td>
<td>0.13</td>
</tr>
<tr>
<td>P9</td>
<td>16.15</td>
<td>4.76</td>
<td>11.39</td>
</tr>
<tr>
<td>P10</td>
<td>29.81</td>
<td>25.97</td>
<td>3.84</td>
</tr>
<tr>
<td>mean</td>
<td>16.08</td>
<td>10.97</td>
<td>5.12</td>
</tr>
<tr>
<td>SD</td>
<td>11.23</td>
<td>10.66</td>
<td>4.68</td>
</tr>
<tr>
<td>r</td>
<td>0.95*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_within</td>
<td>14.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_g</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD_g</td>
<td>0.094</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>WSS (Pa)</th>
<th>WSS (Pa)</th>
<th>Absolute Difference (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RWM</td>
<td>CWM</td>
<td></td>
</tr>
<tr>
<td>Bazilevs et al. (2010a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>38.58</td>
<td>35.25</td>
<td>3.33</td>
</tr>
<tr>
<td>P2</td>
<td>41.29</td>
<td>27.08</td>
<td>14.21</td>
</tr>
<tr>
<td>P3</td>
<td>50.36</td>
<td>38.64</td>
<td>11.72</td>
</tr>
<tr>
<td>P4</td>
<td>38.58</td>
<td>36.27</td>
<td>2.31</td>
</tr>
<tr>
<td>mean</td>
<td>43.41</td>
<td>34.00</td>
<td>9.41</td>
</tr>
<tr>
<td>SD</td>
<td>5.04</td>
<td>4.98</td>
<td>5.12</td>
</tr>
<tr>
<td>r</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_within</td>
<td>16.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_g</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD_g</td>
<td>0.124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>WSS (Pa)</th>
<th>WSS (Pa)</th>
<th>Absolute Difference (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RWM</td>
<td>CWM</td>
<td></td>
</tr>
<tr>
<td>Bazilevs et al. (2010b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>15.00</td>
<td>12.36</td>
<td>2.64</td>
</tr>
<tr>
<td>P2</td>
<td>30.81</td>
<td>28.59</td>
<td>2.22</td>
</tr>
<tr>
<td>P3</td>
<td>23.02</td>
<td>17.58</td>
<td>5.43</td>
</tr>
<tr>
<td>P4</td>
<td>28.28</td>
<td>26.15</td>
<td>2.13</td>
</tr>
<tr>
<td>mean</td>
<td>27.37</td>
<td>24.10</td>
<td>3.26</td>
</tr>
<tr>
<td>SD</td>
<td>3.25</td>
<td>4.72</td>
<td>1.53</td>
</tr>
<tr>
<td>r</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_within</td>
<td>4.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_g</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD_g</td>
<td>0.127</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RWM = Rigid wall model
CWM = Compliant wall model
r = Pearson’s correlation coefficient
N = Sample size
S_within = Within-study standard deviation
g = Hedges’ g
V_g = Variance of the Hedges’ g
SD_g = Standard deviation of the Hedges’ g

*Obtaining a correlation for the studies by Torii et al. (2009) and Bazilevs et al. (2010a) was not possible; so all the studies were pooled together and the correlation coefficient was computed.
References

