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Abstract. We study homotopy limits for 2-categories using the theory of

Quillen model categories. In order to do so, we establish the existence of
projective and injective model structures on diagram 2-categories. Using these
results, we describe the homotopical behaviour not only of conical limits but

also of weighted limits. Finally, pseudo-limits are related to homotopy limits.

1. Quillen model structures in 2-category theory

The 2-category of small groupoids, functors, and natural transformations admits
a model structure in which the weak equivalences are the equivalences of categories
and the fibrations are the Grothendieck fibrations [1, 15]. Similarly, the 2-category
of small categories, functors, and natural transformations admits a model structure
in which the weak equivalences are the equivalences of categories and the fibra-
tions are the isofibrations, which are functors satisfying a restricted version of the
lifting condition for Grothendieck fibrations [15, 24]. Lack has vastly generalised
these results by showing that every 2-category K with finite limits and colimits ad-
mits a model structure, called here the natural model structure on K, in which the
weak equivalences are the equivalences in K and the fibrations are the isofibrations
in K [21]. Here, the notions of equivalence and isofibration for a map in a 2-category
are obtained by suitably generalising the notions of equivalence and of isofibration
for a functor. We take Lack’s theorem as a starting point to study homotopy limits
for 2-categories.

Our first step is to show that for every small 2-category A and every 2-category K
with finite limits and small colimits, the functor 2-category [A,K] admits a model
structure in which the weak equivalences are the pointwise equivalences and the
fibrations are the pointwise isofibrations. We refer to this model structure as the
projective model structure. When K is assumed to be locally presentable, the ex-
istence of the projective model structure follows by a result on the lifting of the
natural model structure on a 2-category K to 2-categories of algebras for a 2-monad
with rank on K [21, Theorem 4.5]. However, the special form of the 2-category
[A,K] allows us to avoid assuming that K is locally presentable, and to give a
proof of the model category axioms for the projective model structure which does
not make any direct use of transfinite induction and provides explicit methods to
produce the required factorisations and liftings.

We observe that by duality every 2-category K with finite limits and colimits
admits a dual of its natural model structure, in which the weak equivalences are
the categorical equivalences and the cofibrations are the isocofibrations, that is to
say the maps which are isofibrations in the 2-category Kop, obtained by reversing
maps, but not 2-cells, of K. We will then show that every small 2-category A
and every 2-category K with small limits and finite colimits, the functor 2-category
[A,K] admits a model structure in which the weak equivalences are the pointwise
equivalences and the cofibrations are the pointwise isocofibrations. We refer to this
model structure as the injective model structure.

1



2 NICOLA GAMBINO

The existence of the projective and injective model structures allows us to apply
the general theory of enriched model categories [9, 14, 25] to study the total de-
rived functors of limit 2-functors. We will consider not only conical limits but also
weighted limits [17, 18, 27]. The study of homotopy-theoretic aspects of weighted
limits for 2-categories reveals that there are two different combinations of model
structures on 2-categories of diagrams that allow us to regard the weighted limit
2-functor as a right Quillen 2-functor in two variables. This observation gives rise to
two different, but equivalent, ways of describing weighted homotopy limits in terms
of weighed limits.

In order to describe precisely the completeness properties of many 2-categories
of interest, such as those of categories equipped with algebraic structure [4], there
is a rich theory of 2-categorical limits [3, 18, 23, 27]. We will relate homotopy limits
to pseudo-limits [18, 27]. We do so not only at the level of universal properties, but
also by showing how the two reductions of weighted homotopy limits to weighted
limits correspond to two ways of reducing the weighted pseudo-limits to weighted
limits. These results provide a precise connection between ideas on homotopical
coherence and on categorical coherence, confirming the idea, implicit in much of
the development of higher-dimensional category theory, that homotopical and cat-
egorical coherence should be viewed as two aspects of the same phenomenon.

Let us point out that the approach of using model categories to study homotopy
limits in terms of derived functors, which goes back to [5] (see [13] for a modern
treatment), is not the only possible one. A different approach, based on the notion
of homotopical category, is developed in [7]. The paper [26] provides a discussion of
the relationship between these approaches and the one involving the bar construc-
tion [22]. Yet another approach is developed in [6].

Remark. For the convenience of the reader, the axioms for a Quillen model category
are recalled in Appendix A.

2. Model 2-categories

2.1. The natural model structure on Cat. As a special case of [15, Theorem
4], the category Cat of small categories and functors admits a model structure in
which the weak equivalences are the fully faithful and essentially surjective functors
and the cofibrations are the functors injective on objects. Using the Axiom of
Choice, which is not necessary to establish this result, the weak equivalences can
be identified with the categorical equivalences, that is to say functors f : A → B
such that there exists a functor g : B → A and natural isomorphisms η : 1A ⇒ gf
and ε : fg ⇒ 1B , and the fibrations with the isofibrations, that is to say functors
f : A → B such that for every a ∈ A, b ∈ B and isomorphism β : fa → b, there
exists a lifting of β, given by an a′ ∈ A and an isomorphism α : a → a′ such that
fa′ = b and fα = β. We refer to this model structure as the natural model structure
on Cat. We write Ho(Cat) for the homotopy category of Cat, which consists of
categories and isomorphism classes of functors, and denote the localization functor
as λ : Cat → Ho(Cat). Let us point out that there is a different model structure on
Cat, originally established by Thomason [28], which is not going to be considered
here.

2.2. Model 2-categories. The cartesian product equips Cat with a symmetric
monoidal structure which, as recalled in [21, §2.2], satisfies the axioms for a monoidal
model category [9, 14, 25]. For any symmetric monoidal model category V, there
is an associated notion of a model V-enriched category [9, 14]. We spell out the
general definition in the special case when V is Cat, so as to obtain the notion of
a model 2-category. In order to do so, for a 2-category K, let us write K(X, Y )
for the hom-category associated to a pair of objects X, Y ∈ K. A pair of maps
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u : X → Y and v : V → W in K determines the commutative diagram of categories
and functors

(1) K(Y, V )
K(u,V ) //

K(Y,v)

��

K(X, V )

K(X,v)

��
K(Y, W )

K(u,W )
// K(X, W )

Since Cat has pullbacks, we obtain a canonical functor, denoted

(2) [u, v] : K(Y, V ) → K(Y, W )×K(X,W ) K(X, V )

This map is used in Definition 2.2.1.

Definition 2.2.1. Let K be a 2-category with finite limits and colimits. A model
2-structure on K consists of a model structure on its underlying category such that
the following condition holds: if u : X → Y is a cofibration and v : V → W is a
fibration in K, then the functor [u, v] is an isofibration in Cat, which is a categorical
equivalence whenever either u or v is a weak equivalence. A model 2-category is a 2-
category with finite limits and colimits which is equipped with a model 2-structure.

For a 2-category K, we write Kop for the category obtained from K by formally
reversing the direction of the maps of K, but leaving the 2-cells unchanged. The
function mapping a pairs of objects X, Y ∈ K to the category K(X, Y ) determines
a 2-functor K(−,−) : Kop × K → Cat. We say that K has tensors if for every
X ∈ K the 2-functor K(X,−) : K → Cat has a left 2-adjoint. The left 2-adjoint
sends A ∈ Cat into A ⊗ X ∈ K, the A-tensor of X, and the 2-adjointness means
that we have a 2-natural isomorphism with components

(3) K
(
A⊗X, Y

) ∼= Cat
(
A,K(X, Y )

)
.

Similarly, we say that K has cotensors if for every Y ∈ K, the functor K(−, Y ) :
Kop → Cat has a left adjoint. The left 2-adjoint sends A ∈ Cat into Y A ∈ K, the A-
cotensor of Y . Here, the 2-adjointness means that we have a 2-natural isomorphism
with components

(4) K
(
X, Y A

) ∼= Cat
(
A,K(X, Y )

)
.

It is convenient to have equivalent characterizations of the notion of a model 2-
category under the assumption that K is tensored or cotensored. This involves the
construction of analogues of the map defined in (2). Let us consider maps f : A → B
in Cat and u : X → Y in K. When K has tensors, there is an evident analogue of
the diagram in (1), and the universal property of pushouts gives us canonical map

〈f, u〉 : (A⊗ Y ) tA⊗X (B ⊗X) → B ⊗ Y .

When K has cotensors, the universal property of pullbacks gives us a canonical map

{f, u} : XB → Y B ×Y A XA .

Lemma 2.2.2 is a special case of [9, Proposition 3.4]. It will be useful in the study
of homotopy-theoretic aspects of 2-categorical limits.

Lemma 2.2.2. Let K be a 2-category with finite limits whose underlying category
is equipped with a model structure.

(i) If K is tensored, K is a model 2-category if and only if the following conditions
hold: if f is a cofibration in Cat and u is a fibration in K, then 〈f, u〉 is a
cofibration in K, which is a weak equivalence whenever either f or u is so.

(ii) If K is cotensored, K is a model 2-category if and only if the following condition
holds: if f is a cofibration in Cat and u is a fibration in K, then {f, u} is a
fibration in K which is a weak equivalence whenever either f or u is so.



4 NICOLA GAMBINO

While the definition of a model 2-category involves a compatibilty condition
between different model structures, the notion of a Quillen 2-adjunction can be
formulated in a straightforward fashion, simply recalling that a 2-adjunction be-
tween 2-categories determines an adjunction between their underlying categories.
A Quillen 2-adjunction between model 2-categories consists of a 2-adjunction whose
underlying adjunction is a Quillen adjunction [14, §1.3.1]. The notion of Quillen
2-equivalence is defined analgously, using the familiar notion of a Quillen equiva-
lence [14, §1.3.3]. The notion of a Quillen 2-functor in two variables is discussed in
Section 5.1.

2.3. The natural model structure on a 2-category. The notions of categorical
equivalence and of isofibrations recalled in Section 2.1 can be expressed not only
in Cat, but within any 2-category K as follows. We call a map f : B → A in K
an equivalence if there exists a map g : A → B and invertible 2-cells η : 1A ⇒ gf
and ε : fg ⇒ 1B . We refer to such g : B → A as a quasi-inverse of f : A → B.
If an equivalence has a section, then it is called a surjective equivalence; if it has a
retraction then it is called an injective equivalence. For example, given diagrams of
form

A

A B
f //

g

��1A ++ B

A B
goo

1Bss

f

��

ε +3

where ε is an invertible 2-cell, then f is an injective equivalence and g is a surjective
equivalence. Following [21, §3.4], we define a map f : A → B to be an isofibration
if for every diagram of form

(5)

X A

X B

1X

��

f

��

a //

b
//

β +3

where β : b ⇒ fa is an invertible 2-cell, there exists a map a′ : X → A such that
b = fa′ and an invertible 2-cell α : a′ ⇒ a such that β : b ⇒ fa equals the composite
2-cell fα : b ⇒ fa, obtained by the following pasting diagram

(6)

X A

X B

1X

��

f

��

a //

b
//

a′

::ttttttttttttt

α
KS

As shown in [21, Section 3] every 2-category K with finite limits and colimits admits
a model 2-structure in which the weak equivalences are the equivalences and the
fibrations are the isofibrations. We refer to this model structure as the natural
model structure on K. The acyclic fibrations in the natural model structure are
the surjective equivalences. The special case of this result for the 2-category Cat
of small categories, functors, and natural transformations gives back the natural
model structure discussed in Section 2.1 and implies that it is a model 2-category
structure.

3. Projective model structures on 2-categories of diagrams

3.1. Pointwise equivalences. For a small 2-category A, we refer to 2-functors
F : A → K as diagrams. We write [A,K] for the 2-category of diagrams, 2-natural
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transformations, and modifications [20]. This 2-category has again finite limits and
colimits, since all limits and colimits are computed pointwise [17, 18]. We say that
a 2-natural transformation m : F → G, where F and G are diagrams, is a pointwise
equivalence if all its components mA : FA → GA are equivalences in K. In general,
a pointwise equivalence is not an equivalence in [A,K]. However, as we recall
below, the results in [16] imply that a pointwise equivalence is an equivalence in
the larger 2-category Psd[A,K] of diagrams, pseudo-natural transformations, and
modifications. Let us recall that the notion of a pseudo-natural transformation
generalises that of a 2-natural transformations by allowing the 2-naturality squares
to commute up to coherent isomorphism rather than strictly. More precisely, given
diagrams F and G, a pseudo-natural transformation m : F → G consists of a family
of maps mA : FA → GA in K, for A ∈ A, and a family of invertible 2-cells mu, for
u : A → B in A, fitting in diagrams of form

(7)

FA GA

FB GB

F (u)

��

G(u)

��

mA //

mB

//

mu��

These 2-cells are subject to coherence axioms [27, §4] that express suitable com-
patibility conditions with respect to identity and composition of maps in A, and
with composition with 2-cells in A. A 2-natural transformation can be seen as a
pseudo-natural transformation and therefore there is an inclusion 2-functor

(8) [A,K] I // Psd[A,K] .

If m : F → G is a a pointwise equivalence, then there exists a pseudo-natural
transformation n : G → F that is a pointwise quasi-inverse for m : F → G. Indeed,
for A ∈ A, let nA : GA → FA be a quasi-inverse to mA : FA → GA in K. We can
assume without loss of generality that mA and nA form an adjoint equivalence in
K,

(9) FA

mA

⊥
//
GA .

nA

oo

Let us write ηA : 1FA ⇒ nAmA and εA : mAnA ⇒ 1GA for the invertible 2-cells
providing the unit and counit of the adjoint equivalence, respectively. Using them,
we can equip the family nA : GA → FA with 2-cells so as to obtain a pseudo-
natural transformation n : G → F . For u : A → B in A, we define a 2-cell
nu : F (u) nA ⇒ nB G(u) as the composite of the invertible 2-cells appearing in the
following diagram:

GA FA FB

GA GB FB

mA

��

mB

��

F (u) //

G(u)
//

nA //

1GA ,,
nB

//

1F B

��

εA

�� ��
���
�

ηB� �
����
�

With this definition, the coherence axioms for a pseudo-natural transformations
follow from the triangular laws of the adjoint equivalence in (9).

3.2. The projective model structure. Let A be a small category, and let K be a
model 2-category. A 2-natural transformation m : F → G between diagrams is said
to be a pointwise weak equivalence if all of its components mA : FA → GA are weak
equivalences in the model 2-structure on K. The notions of pointwise fibration and
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pointwise cofibration are defined analogously. We say that a 2-natural transforma-
tion is a projective cofibration if it has the left lifting property with respect to the
2-natural transformations which are pointwise acyclic fibrations. Relative to the
model 2-category structure on K, the projective model structure on the 2-category
[A,K] is defined as follows:

[A,K]Proj =

 Weak equivalences = pointwise weak equivalences,
Fibrations = pointwise fibrations,
Cofibrations = projective cofibrations.

When the model structure K is cofibrantly generated, the existence of the projective
model structure is a familiar fact [13]. In general, however, it is not known whether
these definitions satisfy Quillen’s axioms for a model category.

Let us now consider a 2-category K with finite limits and colimits, and regard
it as equipped with its natural model 2-structure. This model structure is not,
in general, cofibrantly generated [21, Proposition 3.19]. We will show that if K is
cocomplete, then the diagram 2-category [A,K] admits the projective model struc-
ture. Let us emphasize that the projective model structure we will establish is
relative to the natural model structure on K. Therefore, a pointwise weak equiv-
alence is a pointwise equivalence, a pointwise fibration is a pointwise isofibration,
and so a pointwise acyclic fibration is a pointwise surjective equivalence. The proof
of Lemma 3.2.1 uses the observations on pseudo-natural transformations made in
Section 3.1.

Lemma 3.2.1. Let m : F → G be a 2-natural transformation that is a pointwise
cofibration, and let n : H → K be a 2-natural transformation that is a pointwise
fibration. If either m or n is a pointwise weak equivalence, then for every commu-
tative square in Psd[A,K] of the form

F

m

��

s // H

n

��
G

t
// K

there exists a pseudo-natural transformation j : G → H that is a filler for the
diagram.

Proof. Let m : F → G be a pointwise equivalence, and so a pointwise acyclic
cofibration. Since n : H → K is a pointwise fibration, for every A ∈ A there exists
a filler for the commutative diagram

FA

mA

��

sA // HA

nA

��
GA

tA

// KA

Let jA : GA → HA be a filler. Since m : F → G is a pointwise equivalence,
we can use its pseudo-natural quasi-inverse to construct 2-cells making the maps
jA : GA → HA into a pseudo-natural transformation. The case when n : H → K
is a pointwise acyclic fibration is treated analogously. �

Lemma 3.2.2. Every 2-natural transformation can be factored both as a point-
wise cofibration followed by a pointwise acyclic fibration, and as a pointwise acyclic
cofibration followed by a pointwise fibration.

Proof. The factorisations in K are functorial. �

We now assume that K is also cocomplete, so as to be able to apply the results
in [4]. Recall that we write Psd[A,K] for the 2-category of diagrams, pseudo-natural
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transformations, and modifications. A crucial fact underlying our verification of
Quillen’s axioms for the projective model structure on [A,K] is the consequence
of [4, Theorem 3.16] exhibiting a 2-adjunction of form

(10) [A,K]
I

// Psd[A,K] .
(−)′

⊥
oo

The right 2-adjoint I is the inclusion 2-functor in (8). Since I is an inclusion, it will
not be mentioned explicitly in the following. The left 2-adjoint maps a diagram F
into a diagram F ′, called the flexible diagram associated to F . The components of
the unit of the 2-adjunction are pseudo-natural transformations pF : F → F ′ which
are universal in the sense that every pseudo-natural transformation m : F → G
factors uniquely through pF : F → F ′ in a diagram of form

F
pF //

m --

F ′

m̄

��
G

The components of the counit are 2-natural transformations qF : F ′ → F . As
shown within the theory of 2-monads in [4, Theorem 4.2] and explained in the
special case of interest to us in [3, §4], the pseudo-natural transformations pF and
the 2-natural transformations qF form an adjoint equivalence. In particular, we
have diagrams

(11)

F

F F ′pF //

qF

��1F ++
F ′

F F ′qFoo

1F ′ss

pF

��

εF +3

The 2-cell εF : pF qF ⇒ 1F ′ is the invertible modification providing the counit of
the adjoint equivalence. Lemma 3.2.3 states an important property of the counit
of the 2-adjunction in (10). As we will see, the flexible 2-functor associated to a
2-functor can be seen as its cofibrant replacement with respect to the projective
model structure on [A,K].

Lemma 3.2.3. For every F , the 2-natural transformation qF : F ′ → F is a point-
wise acyclic fibration.

Proof. We need to show that qF : F ′ → F is a pointwise surjective equivalence in
K. This follows by instanciating pointwise the diagrams in (11). �

For the statement of Lemma 3.2.4, recall that a 2-natural transformation is a
projective cofibration if it has the left lifting property with respect to the pointwise
acyclic fibrations. We also say that a 2-natural transformation is a projective trivial
cofibration if it has the left lifting property with respect to the pointwise fibrations.

Lemma 3.2.4. If m : F → G is a pointwise cofibration, then m′ : F ′ → G′ is a
projective cofibration. Furthermore, when m is a pointwise acyclic cofibration, then
m′ is a projective trivial cofibration.

Proof. Assume that m is a pointwise cofibration. It is necessary to show that
m′ has the left lifting property with respect to pointwise acyclic fibrations. In
order to do so, first use the 2-adjunction in (10) to transfer the lifting problem
from [A,K] to Psd[A,K], and then apply Lemma 3.2.1. The proof of the other
claim is analogous. �
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Lemma 3.2.5 is the crucial step to establish that the projective model structure
satisfies the axioms for a Quillen model structure. In its proof, we use again the
2-adjunction in (10).

Lemma 3.2.5. Every pointwise cofibration m : F → G can be factored as follows

F
s //

m
��@

@@
@@

@@
X

n
~~~~

~~
~~

~

G

where s : F → X is a projective cofibration, and n : X → G is a pointwise acyclic
fibration. Furthermore, if m : F → G is a pointwise weak equivalence, and so a
pointwise acyclic cofibration, then s : F → X is a projective trivial cofibration.

Proof. First, recall that by Lemma 3.2.4, m′ : F ′ → G′ is a projective cofibration.
To construct the required factorisation, we use the 2-naturality of the counit of the
2-adjoint in (10). We define s : F → X as the pushout of m′ : F ′ → G′ along
qF : F ′ → F . The 2-naturality of the counit determines a canonical 2-natural
transformation n : X → G fitting in the following diagram:

(12)

F ′ G′

F X

G

m′
//

qF

��
t

��
qG

��

s //

m 11

n

$$JJJJJJJ

Recall that, being defined as the maps having the left lifting property with respect
to the pointwise acyclic fibrations, projective cofibrations are closed under pushouts.
Therefore s : F → X is a projective cofibration, since it is the pushout of m′ : F ′ →
G′, which is a projective cofibration.

To show that n : X → G is a pointwise acyclic fibration, we begin by showing that
it is a pointwise weak equivalence. In order to do this, we want to apply pointwise
the Three-for-Two Axiom to the commuting triangle involving qG : G′ → G and
t : G′ → X. We have already seen that qG is a pointwise weak equivalence. For
A ∈ A, to show that tA : G′A → XA is a weak equivalence, observe that it is the
pushout of qF A along m′

A, since pushouts in [A,K] are also computed pointwise.
But qF A : F ′A → FA is a weak equivalence and m′

A : F ′A → G′A is a cofibration,
since every projective cofibration is also a pointwise cofibration. Since every object
in K is cofibrant, we can apply a result of Reedy [13, Proposition 13.1.2] and deduce
that tA, being the pushout of a weak equivalence between cofibrant objects along a
cofibration, is a weak equivalence.

Finally, we need to show that n : X → G is a pointwise acyclic fibration, which
amounts to showing that it is a pointwise surjective equivalence. This follows by
the commutativity of triangle involving n and qG in (12), since qG : G′ → G is a
pointwise surjective equivalence, as shown in Lemma 3.2.3.

The second claim follows from the construction given above. First, observe that
if m : F → G is a pointwise acyclic cofibration, then m′ : F ′ → G′ is a projective
trivial cofibration by Lemma 3.2.4. Since s : F → X is a pushout of m′ : F ′ → G′, it
inherits from m′ the left lifting property with respect to the pointwise fibrations. �

We can now prove the existence of the projective model structure. The axioms
for a Quillen model category, Three-For-Two (Q1), Retracts (Q2), Lifting (Q3),
and Factorisations (Q4) are recalled in Appendix A. We also prove that it satisfies
the additional axiom of a model 2-category, recalled in Definition 2.2.1.



HOMOTOPY LIMITS FOR 2-CATEGORIES 9

Theorem 3.2.6. Let K be a 2-category with finite limits and colimits, considered
as equipped with its natural model 2-category structure. If K is cocomplete, then for
every small 2-category A the 2-category [A,K] admits the projective model structure.
The projective model structure equips [A,K] with a model 2-category structure.

Proof. The verification of (Q1) and (Q2) is straightforward. For the rest of the
proof, let us refer to a map that is both a projective cofibration and a pointwise
weak equivalence as a projective acyclic cofibration. Also, recall that a projective
trivial cofibration is a 2-natural transformation with the left lifting property with
respect to pointwise acyclic fibrations.

We verify (Q4), which involves providing two factorisations. Suppose we wish
to factor m : F → G as a projective cofibration followed by a pointwise acyclic
fibration. First, apply Lemma 3.2.2 so as to factor m as a pointwise cofibration
followed by a pointwise acyclic fibration. Secondly, apply Lemma 3.2.5 and factor
the pointwise cofibration just obtained as a projective cofibration followed by a
pointwise acyclic fibration. The projective cofibration is the first component of the
required factorisation, while the second is given by a composition of pointwise acyclic
fibrations, which is an acyclic fibration. Next, suppose we wish to factor m : F → G
as a projective acyclic cofibration followed by a pointwise fibration. First, apply
Lemma 3.2.2 and factor m as a pointwise acyclic cofibration followed by a pointwise
fibration. Secondly, apply Lemma 3.2.5 and factor the pointwise acyclic cofibration
as a projective cofibration followed by a pointwise acyclic fibration. Now, observe
that the projective cofibration is in fact a pointwise equivalence by Three-For-Two,
and hence it is a projective acyclic cofibration. This provides the first part of the
required factorisation. The second part is the composite of a pointwise fibration
followed by a pointwise acyclic fibration, and hence it is a pointwise fibration, as
required.

Finally, we prove that (Q3) holds. The first part of the statement follows by the
very definition of projective cofibration. For the second part, it suffices to verify
that a projective cofibration m : F → G is a pointwise weak equivalence if and only
if it is a projective trivial cofibration. Let m : F → G be a projective cofibration.
First, we assume that it is a pointwise weak equivalence. By Lemma 3.2.5 we can
factor m as a projective trivial cofibration followed by a pointwise acyclic fibration.
Next, we use the lifting property of projective cofibrations with respect to pointwise
acyclic fibrations to exhibit m as a retract of the projective trivial cofibration that
we obtained in the factorisation, which implies that m is a projective trivial cofi-
bration as well. For the converse implication, let m : F → G be a projective trivial
cofibration. Then, we can factor it as a pointwise cofibration followed by a pointwise
acyclic fibration. The lifting property of projective trivial cofibrations with respect
to pointwise acyclic fibrations shows that m is a retract of the pointwise acyclic
cofibration with which we factored it, and hence it is a pointwise weak equivalence,
as required.

To check that the projective model structure is a model 2-category structure, we
use part (ii) of Lemma 2.2.2. Since cotensors in diagram 2-categories are computed
pointwise, the required statement follows from the corresponding fact for K. �

As an instance of the general definition of flexible algebra for a 2-monad [4], a
diagram F is said to be flexible if qF : F ′ → F has a section in [A,K]. By the
same argument used in the proof of [21, Theorem 4.12] we obtain that F is flexible
if and only if it is projectively cofibrant. The 2-adjunction in (10) determines a
2-comonad on [A,K] whose underlying 2-functor Q : [A,K] → [A,K] is defined by
letting QF = (IF )′. The counit of the 2-adjunction is the counit of the 2-comonad,
and so we can write its components as qF : QF → F . Since every 2-functor of
the form QF is projectively cofibrant, the acyclic fibrations qF : QF → F provide
2-functorial cofibrant replacements for the projective model structure. Comonadic
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cofibrant replacements of this type are studied in [8]. It is immediate to see instead
that every diagram is projectively fibrant.

4. Injective model structures on 2-categories of diagrams

4.1. The dual of the natural model structure on a 2-category. The notion
of equivalence being self-dual, a map is an equivalence in K if and only if it is an
equivalence in Kop. We say that a map is an isocofibration in K if it is an isofibration
in Kop. By duality, we obtain the following result.

Proposition 4.1.1. Every 2-category K with finite limits and colimits admits a
model 2-structure in which the weak equivalences are the equivalences and the cofi-
brations are the isocofibrations.

Proof. The natural model structure on the 2-category Kop determines a model
structrure on (Kop)op whose weak equivalences are the weak equivalences in the
natural model structure on Kop and whose cofibrations are the fibrations in the
natural model structure on Kop. Since (Kop)op is nothing but K, we obtain the
required model structure on K. The fact that it is a model 2-structure follows
easily from the fact that the natural model structure is so. �

We refer to the model structure of Proposition 4.1.1 as the dual of the natural
model structure on K. The acyclic cofibrations in the dual of the model structure
are the injective equivalences. We wish to relate the natural model structure on K
and its dual. Let us write J for the category with two objects and an isomorphism
between them. We can identify functors J → K(X, B) with the data of a pair of
maps b0 : X → B, b1 : X → B and an invertible 2-cell β : b0 → b1 in K. For X ∈ K,
the universal property of tensors in (3) implies that the J-tensor of X, written J⊗X,
comes equipped with a canonical functor e : J → K(X, J ⊗ X) which induces by
composition a natural isomorphism of categories with components K(J ⊗X, B) ∼=
Cat(J,K(X, B)). The map e0 : X → J ⊗X is an injective equivalence, and hence
an acyclic cofibration in the dual of the natural model structure on K.

Lemma 4.1.2. Let K be a 2-category with finite limits and colimits.
(i) If a map has the right lifting property with respect to the injective equivalences,

then it is an isofibration.
(ii) If a map has the left lifting property with respect to the surjective equivalences,

then it is an isocofibration.

Proof. First, observe that (i) and (ii) are equivalent by duality. We prove (i).
Let f : A → B be a map with the right lifting property with respect to injective
equivalences. Given a diagram as in (5), the 2-cell β : b ⇒ fa induces a functor
J → K(X, B). By the universal property of J⊗X, we obtain a map 〈β〉 : J⊗X → B
making the following diagram commute

X
a //

e0

��

A

f

��
J ⊗X

〈β〉
// B

Since f : A → B has the right lifting property with respect to injective equivalences
and e0 : X → J ⊗ X is an injective equivalence, there is a filler for the diagram,
which can be used to construct the appropriate 1-cells and 2-cells for the diagram
in (6), thus showing that f : A → B is an isofibration, as required. �

Proposition 4.1.3. Let K be a 2-category with finite limits and colimits. The
natural model structure on K and its dual are Quillen 2-equivalent.
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Proof. We consider the identity 2-functor as going from K equipped with its natural
model structure to K equipped with the dual of the natural model structure. We
wish to show that it is left Quillen 2-functor. The identity 2-functor clearly preserves
weak equivalences. Since the cofibrations in the natural model structure are the
maps with the left lifting property with respect to the surjective equivalences, and
the cofibrations in the dual of the natural model structure are the isocofibrations,
part (ii) of Lemma 4.1.2 shows that the identity preserves cofibrations. Hence the
identity 2-functor preserves weak equivalences and acyclic cofibrations, as required.

�

The natural model structure on Cat and its dual not only are Quillen 2-equivalent,
but actually coincide.

4.2. The injective model structure. Let A be a small 2-category and K be a
model 2-category. A 2-natural transformation between diagrams is said to be an
injective fibration if it has the right lifting property with respect to the pointwise
acyclic cofibrations. Relative to the model 2-structure on K, we define the injective
model structure on [A,K] as follows:

[A,K]Inj =

 Weak equivalences = pointwise weak equivalences,
Fibrations = injective fibrations,
Cofibrations = pointwise cofibrations.

By duality, Theorem 3.2.6 implies Corollary 4.2.1.

Corollary 4.2.1. Let K be a 2-category with finite limits and colimits, considered
as equipped with the dual of its natural model 2-category structure. If K is com-
plete, then for every small 2-category A the 2-category [A,K] admits the injective
model structure. The injective model structure equips [A,K] with a model 2-category
structure.

Proof. The 2-category [A,K] can be identified with the 2-category [Aop,Kop]. Con-
sidering the dual of the natural model structure K and the injective model structure
on [A,K] is the same as considering the natural model structure on Kop and the
projective model structure on [Aop,Kop]. The latter exists by Theorem 3.2.6. �

Duality can be used also to observe that the inclusion 2-functor in (10) admits
not only a left 2-adjoint but also a right 2-adjoint:

(13) [A,K]
I //

Psd[A,K]
( · )∗
⊥oo

The unit of the 2-adjunction in (13) has components given by 2-natural transforma-
tions rF : F → F ∗ that are pointwise injective equivalences, and so pointwise acyclic
cofibrations in the injective model structure. The 2-adjunction in (13) determines
a 2-monad on [A,K] whose underlying 2-functor R : [A,K] → [A,K] is defined by
letting RF = I(F ∗). Here, the unit of the 2-monad provides 2-functorial fibrant
replacements for the injective model structure, since its components rF : F → RF
are acyclic cofibrations in the injective model structure, and each RF is injectively
fibrant. When A is a category and K is Cat, we will give explicit formulas for RF
in Section 6.4. We conclude this section by proving that the projective and the
injective model structures are Quillen 2-equivalent.

Lemma 4.2.2. Let A be a small 2-category. Let K be a 2-category with finite limits
and colimits.

(i) If a 2-natural transformation has the right lifting property with respect to point-
wise injective equivalences, then it is a pointwise isofibration.
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(ii) If a 2-natural transformation has the left lifting property with respect to sur-
jective equivalences, then it is a pointwise isocofibration.

Proof. We prove (i). Let m : F → G be a 2-natural transformation and assume that
it has the the right lifting property with respect to pointwise injective equivalences.
By part (i) of Lemma 4.1.2, to prove that it is a pointwise isofibration it is sufficient
to prove that every component mA : FA → GA has the right lifting property with
respect to injective equivalences in K. But this follows immediately since m : F → G
has the right lifting property with respect to pointwise injective equivalences. �

Proposition 4.2.3. The identity 2-functor induces a Quillen 2-equivalence between
the projective and the injective model structure.

Proof. The claim follows from Lemma 4.2.2 by the same reasoning used in the proof
of Proposition 4.1.3. �

5. Model structures for homotopy limits

5.1. Quillen 2-adjunctions in two variables. To study homotopy limits for 2-
categories, we use a straighforward 2-categorical analogue of the notion of a Quillen
adjunction in two variables [14]. A 2-functor of the form Φ : K × L → M, where
K, L, and M are 2-categories, will be referred to as a 2-functor in two variables.
Given Φ : K × L → M, for u : X → Y in K and v : V → W in L, we have the
commutative diagram

Φ(X, V )
Φ(u,V ) //

Φ(X,v)

��

Φ(Y, V )

Φ(Y,v)

��
Φ(X, W )

Φ(u,W )
// Φ(Y, W )

When M has pushouts, the commutativity of the diagram determines a canonical
map

(14) 〈u, v〉 : Φ(X, W ) tΦ(X,V ) Φ(Y, V ) → Φ(Y, W ) .

When the underlying categories of K,L,M are equipped with model structures,
we say that Φ : K × L → M is a left Quillen 2-functor in two variables if Φ
is cocontinuous in each variable, and if u : X → Y is a cofibration in K and
v : U → V is a cofibration in L, then 〈u, v〉 is a cofibration in M, which is also
a weak equivalence when either u or v is so. We say that Φ : K × L → M is a
right Quillen 2-functor in two variables if its dual Φop : Kop ×Lop →Mop is a left
Quillen functor in two variables. Quillen 2-functors in two variables often arise in a
special kind of situation, which is convenient to isolate. Recall that a 2-adjunction
in two variables consists of 2-functors

Φ : K × L →M , Θ : Lop ×M→ K , Ψ : Kop ×M→ L ,

and 2-natural isomorphisms, for X ∈ K, Y ∈ L, and Z ∈M
K

(
X, Θ(Y, Z)

) ∼= M
(
Φ(X, Y ), Z

) ∼= L
(
Y,Ψ(X, Z)

)
.

In these circumstances, Φ is a left 2-adjoint in two variables, while Ψ and Θ are
right 2-adjoints in two variables. This notion of two-variable adjunction for enriched
categories has been studied in [11].

When the underlying categories of K,L and M are equipped with model struc-
tures we have a Quillen 2-adjunction in two variables if the following equivalent
conditions hold:

(i) Φ : K × L →M is left Quillen 2-functor in two variables,
(ii) Θ : Lop ×M→ K is right Quillen 2-functor in two variables,
(iii) Ψ : Kop ×M→ K is right Quillen 2-functor in two variables.
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The equivalence between these conditions is in [14, Lemma 4.2.2]. For example,
when K is tensored and cotensored, the 2-adjunctions in (3) and (4) allow us to
obtain a 2-adjunction in two variables involving the following 2-functors:

Φ : Cat×K → K , Φ(A,X) =def A⊗X

Θ : Kop ×K → Cat , Θ(X, Y ) =def K(X, Y )

Ψ : Catop ×K → K , Ψ(A, Y ) =def Y A .

Lemma 2.2.2 can then be rephrased as follows.

Lemma 5.1.1. Let K be a 2-category with finite limits and colimits, whose underly-
ing category is equipped with a model structure. When K is tensored and cotensored,
K is a model 2-category if and only the following equivalent conditions hold.

(i) The tensor 2-functor is a left Quillen 2-functor in two variables.
(ii) The hom 2-functor is a right Quillen 2-functor in two variables.
(iii) The cotensor 2-functor is a right Quillen 2-functor in two variables.

5.2. Homotopical aspects of weighted limits. Existence of conical 2-limits in a
2-category K can be expressed by saying that for every small 2-category A we have
a 2-adjunction of the form

(15) K
∆

⊥
//
[A,K] .

lim
oo

The left 2-adjoint is the diagonal 2-functor, and the right 2-adjoint sends a diagram
to its limit. When K is equipped with the dual of its natural model structure and
[A,K] with the injective model structure, we obtain a Quillen 2-adjunction, since
the diagonal 2-functor clearly preserves weak equivalences and cofibrations. As
an enriched category, however, K admits more general notions of limits, known as
weighted limits [18, 27], whose homotopy-theoretic behaviour is less straighforward.

To recall weighted limits, we refer to 2-functors J : A → Cat as weights. Exis-
tence of weighed limits for a fixed diagram F can be expressed as the existence of
a 2-adjunction of the form

(16) K
K(∆(−), F )

⊥
//
[A,Cat]op

{−, F}
oo

The left 2-adjoint sends X ∈ K into the weight K(X, F (−)) : A → Cat, while the
right 2-adjoint sends a weight J : A → Cat to the J-weighted limit of F , denoted
{J, F} as usual [17]. Thus, the J-weighted limit of F is characterized by 2-natural
isomorphisms of form

[A,Cat]
(
J(−),K(X, F (−))

) ∼= K
(
X, {J, F}

)
.

When K is tensored, for a fixed weight J : A → Cat, existence of J-weighted limits
can be expressed equivalently as the existence of a 2-adjunction of the form

(17) K
J⊗∆(−)

⊥
//
[A,K]

{J,−}
oo

The left 2-adjoint should be thought of as ‘J-weighted diagonal’: it sends X ∈ K
into the diagram J(−) ⊗ X : A → K. The right 2-adjoint sends a diagram to its
J-weighted limit. Therefore, we can characterize {J, F} also by the existence of
2-natural isomorphism with components

[A,K]
(
J(−)⊗X, F (−)

) ∼= K
(
X, {J, F}

)
.

It should be noted how the 2-adjunction in (15) is analogous to that in (17). Writ-
ing 1 : A → Cat for the weight with constant value the terminal category, it is
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immediate to see that weighted limits subsume conical limits [17, §3.8], since the
limit of a diagram F can be viewed as the weighted limit by the existence of an
isomorphism

limF ∼= {1, F} .

The map assigning to a weight and a diagram the corresponding weighted limit
determines a 2-functor in two variables. By the 2-adjunctions in (16) and (17), the
weighted limit 2-functor is a right 2-adjoint in two variables. It follows that there
is a 2-adjunction in two variables involving the following 2-functors:

Φ : [A,Cat]×K → [A,K] , Φ(J,X) =def J(−)⊗X(18)

Θ : Kop × [A,K] → [A,Cat] , Θ(X, F ) =def K(X, F (−))(19)

Ψ : [A,Cat]op × [A,K] → K , Ψ(J, F ) =def {J, F} .(20)

From now on, we assume that K is complete and cocomplete, so that we have
both the projective and the injective model structure. We establish that there are
two choices of model structures on functor 2-categories that allow us to regard the
weighted limit 2-functor as a right Quillen 2-functor in two variables, and so the
2-adjunction in two variables above as a Quillen 2-adjunction in two variables. The
first possibility is stated in Proposition 5.2.1.

Proposition 5.2.1. Considering both the 2-category of weights [A,Cat] and the
2-category of diagrams [A,K] as equipped with the projective model structure, the
weighted limit 2-functor is a right Quillen 2-functor.

Proof. It suffices to verify that the 2-functor Θ defined in (19) is a right Quillen
functor in two variables. This follows from the fact that the hom-category 2-functor
is so, which holds by Lemma 5.1.1 and the fact that the natural model structure on
K is a model 2-structure. �

As stated in Proposition 5.2.2, there exists a second choice of Quillen model
structures that makes the weighted limit 2-functor into a right Quillen 2-functor in
two variables.

Proposition 5.2.2. Considering both the 2-category of weights [A,Cat] and the
2-category of diagrams [A,K] as equipped with the injective model structure, the
weighted limit 2-functor is a right Quillen 2-functor in two variables.

Proof. It is sufficient to establish that the 2-functor Φ defined in (18) is a left Quillen
2-functor in two variables. To prove this, it is sufficient to recall that the dual of the
natural model structure is a model 2-structure and so, by Lemma 5.1.1, the tensor
functor for K is a left Quillen 2-functor in two variables. �

There are counterparts of these statements for weighted colimits, which we prefer
to avoid stating to avoid repetition. To make the weighted colimit functor into
a left Quillen 2-functor in two variables there are again two possible choices of
model structures. The first involves the projective model structure on weights
and the injective model structure on diagrams; the second involves the injective
model structure on weights and the projective model structure on diagrams. The
development in Section 6 has an evident analogue for colimits.

6. Homotopy limits

6.1. Relating pseudo-limits and homotopy limits. We wish to relate the no-
tion of a pseudo-limit, as discussed in [3, 18, 27], to that of a homotopy limit. The
notion of a conical pseudo-limits can be obtained from that of a conical limit by
replacing 2-natural transformations with pseudo-natural transformations in the 2-
categories of diagrams involved in the definition of conical limits. More precisely,
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the existence of conical pseudo-limits in K is expressed by saying that for every
small 2-category A we have a 2-adjunction of form

(21) K
∆

⊥
//
Psd[A,K] .

pslim
oo

Here the left 2-adjoint is obtained by composing the diagonal 2-functor in (17) with
the inclusion 2-functor in (8). Note that, even if we are considering pseudo-natural
transformations, we are still requiring that (21) is a 2-adjunction. Therefore, the
pseudo-limit of a diagram F is characterized by a 2-natural isomorphism

Psd[A,K](∆X, F ) ∼= K(X, pslimF ) .

Note that a pseudo-natural transformation ∆X → F can be seen as a cone com-
muting up to coherent isomorphism.

The connection between pseudo-limits and homotopy limits follows from a se-
quence of observations. First, recall from [21, §2.4] that the localisation functor
λ : Cat → Ho(Cat) preserves finite products. Hence, every 2-category K has an
associated Ho(Cat)-category Kλ whose enrichement is defined by applying λ to the
hom-categories of K. Secondly, let us recall that the homotopy limit functor is part
of a Ho(Cat)-enriched adjunction of the form

(22) Ho(K)
Ho(∆)

⊥
//
Ho([A,K]) .

holim
oo

Such a Ho(Cat)-adjunction exists since we may consider K as equipped with the
dual of its natural model structure and [A,K] as equipped with the corresponding
injective model structure. Thirdy, we may observe that Ho(K) and Ho([A,K]) can
be identified with the Ho(Cat)-categories Kλ and Psd[A,K]λ associated to the 2-
categories K and Psd[A,K], respectively. This remark, inspired by an analogous
observation in [21, §4.14], follows by a direct calculation that involves instaciating
the general definition of the Ho(Cat)-enriched category associated to a model 2-
category. As a consequence of this, the Ho(Cat)-adjunction in (22) is nothing but
the Ho(Cat)-adjunction associated to the 2-adjunction in (21) by the localisation
functor λ : Cat → Ho(Cat).

This reasoning implies that a pseudo-limit, when regarded as an object of the
homotopy Ho(Cat)-category, is a homotopy limit. An analogous statement holds for
weighted pseudo-limits, which can be defined by replacing 2-natural transformations
with pseudo-natural transformations not only in 2-categories of diagrams, but also
in 2-categories of weights. In the following, we write {J, F}p for the J-weighted
pseudo-limit of F .

6.2. Two resolutions. Proposition 5.2.1 and Proposition 5.2.2 allow us to apply
the general theory of model V-categories [9, 14] and conclude the existence of the
total derived Ho(Cat)-enriched functor of the weighted limit 2-functor. We refer
to it as the weighted homotopy limit functor. We wish to show how the two differ-
ent ways of expressing homotopy weighted limits as weighted limits suggested by
Proposition 5.2.1 and Proposition 5.2.2 correspond exactly to two ways of expressing
weighted pseudo-limits as weighted limits.

If we consider both the 2-category of diagrams and the 2-category of weights as
equipped with the projective model structure, Proposition 5.2.1 leads us to define
the total right derived functor of the weighted limit 2-functor by letting, for J :
A → Cat and F : A → K
(23) {J, F}R =def {QJ, F} .

Here QJ denotes the cofibrant replacement of the weight J with respect to the
projective model structure, as in Section 3.2. Note that it is not necessary to
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replace F since every diagram is projectively fibrant. This formula is closely related
to a well-known result showing that the existence of weighted limits implies the
existence of weighted pseudo-limits [3, 18]. Indeed, using the left 2-adjoint in (10),
we have the sequence of 2-natural isomorphisms

K(X, {J, F}p) ∼= Psd[A,Cat]
(
J,K(X, F (−))

)
∼= [A,Cat]

(
QJ,K(X, F (−))

)
∼= K(X, {QJ,F})

The Yoneda lemma for 2-categories implies the existence of an isomorphism

(24) {J, F}p
∼= {QJ,F} .

There is a different, but equivalent, definition for the total right derived functor
of the weighted limit 2-functor, which follows from Proposition 5.2.2. If we consider
the weighted limit 2-functor as a Quillen 2-functor in two variables with respect to
the injective model structures, its total right derived Ho(Cat)-enriched functor can
be defined by letting

(25) {J, F}R =def {J,RF} .

Here RF : A → K denotes the fibrant replacement of a diagram F : A → K
with respect to the injective model structure, as in Section 4.2. Note that we do
not need to make any replacement for J , since any weight is injectively cofibrant.
This corresponds to a different way of expressing pseudo-limits in terms of weighted
limits, which does not seem to appear in the existing literature. Assuming that K
has tensors, and using the right 2-adjoint in (13), we have the sequence of 2-natural
isomorphisms

K(X, {J, F}p) ∼= Psd[A,K]
(
J(−)⊗X, F (−)

)
∼= [A,K]

(
J(−)⊗X, RF (−))

)
∼= K(X, {J,RF})

Hence, we conclude as before that there is an isomorphism

(26) {J, F}p
∼= {J,RF} .

6.3. Homotopy limits. The two choices of model structures making the weighted
limit functor into a right Quillen 2-functor can be used also in the computation of
homotopy limits. Let us now consider K as being equipped with its natural model
2-structure. We can therefore define the homotopy limit of a diagram F by letting

(27) holim F =def {1, F}R

A first way to compute the homotopy limit is to apply the formula in (23) and
obtain

holim F = {Q1, F}
This is in fact a consequence of a well-known formula [3, 18, 27] expressing the
pseudo-limit of a diagram F : A → K as the weighted limit {Q1, F}. The formula
has at least two noteworthy aspects. First, it involves only the projective model
structures. Hence, in the context of model 2-categories, homotopy limit 2-functors
can be defined without injective model structures. Secondly, Q1 is the cofibrant
replacement of the constant weight 1 : A → Cat with respect to the projective
model structure on [A,Cat]. Even if cofibrant replacements with respect to projec-
tive model structures are generally rather involved, the very simple nature of the
weight simplifies the task considerably. If we apply the formula in (25), instead, we
obtain

holim F = lim RF .
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This is the simplest homotopy-theoretic formula for the homotopy limit of a dia-
gram, which involves considering the injective model structure on [A,K] and com-
puting the right derived functor of the limit functor. Remarkably, this corresponds
to a way of expressing pseudo-limits in terms of conical 2-limits and of the 2-
adjunction in (13) which does not seem to appear in the existing literature on
2-categories. Indeed, using the right 2-adjoint in (13), we get

K(X, pslimF ) = Psd[A,K](∆X, F )
= [A,K](∆X, RF )
∼= K(X, lim RF ) .

Hence, we obtain an isomorphism

pslimF ∼= lim RF .

This isomorphism, which is a special case of (26), expresses pseudo-limits in terms
of conical 2-limits and the 2-adjunction in (13). The assumption that K is complete
is necessary to do so. Indeed, as discussed in [3, §2], the full sub-2-category of Cat
whose objects are the categories with at most one object has all conical limits, but
not all pseudo-limits.

6.4. Some formulas. When A is an ordinary category and K is Cat, it is possible
to provide some explicit formulas for the 2-monad and 2-comonad providing the
fibrant replacement and cofibrant replacement in the injective and projective model
structures, respectively, discussed in Section 3.2 and Section 4.2. For notational con-
venience, we prefer to consider contravariant functors. The right 2-adjoint admits
a simple description, which is determined by the Yoneda Lemma for 2-categories.
For A ∈ A, an object of F ∗A can be identified with a 2-natural transformation
y(A) → F ∗, where y(A) : Aop → Cat denotes the Yoneda embedding of A. By
2-adjointness, this 2-natural transformation should correspond to a pseudo-natural
transformation y(A) → F . Hence, we are led to define the 2-monad for fibrant
replacements as

RF (A) =def Psd[A,Cat](y(A), F ) .

The right-hand side can be described equivalently in terms of cartesian sections of
Grothendieck fibrations, as in [10, §I.2.4.4.1].

A formula for the 2-comonad follows by a direct application of the results in [10,
§I.2.4]. We write Fib(A) for the 2-category of Grothendieck fibrations over A,
cartesian functors, and fibred natural transformations [10, §I.1.8]. The familiar
Grothendieck construction [12, §VI.8] provides a 2-functor Tot : [Aop,Cat] →
Fib(A) mapping a functor F : Aop → Cat into a split Grothendieck fibration
TotF → A. By [10, §I.2.4.3] this 2-functor has a left 2-adjoint L : Fib(A) →
[Aop,Cat]. Hence we obtain the following isomorphisms

[Aop,Cat]
(
L(TotF ), G

) ∼= Fib(A)
(
TotF,TotG

) ∼= Psd[Aop,Cat]
(
F,G

)
The first isomorphisms follows by the 2-adjointness L a Tot, while the second follows
by the identification between pseudo-natural transformations F → G and cartesian
functors TotF → TotG. We can therefore define the 2-comonad for cofibrant
replacements by letting

QF =def L(TotF ) .

We wish to unwind this definition. For A ∈ A, let us write A\A for the category
whose objects are the arrows in A with domain A, and with maps the evident
commuting triangles. There is then a canonical functor A\A → A mapping an
arrow into its codomain, and we write Tot(F )\A → A\A for the Grothendieck
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fibration obtained by pulling back the Grothendieck fibration TotF → A along it.
By the definitions in [10, §I.2.4.3] we obtain

QF (A) = Lim
−→

(Tot(F )\A
/A\A) ,

The right-hand side denotes the category obtained by localizing the category Tot(F )\A

with respect to the set of its cartesian morphisms, with universal properties as in [2,
§VI.6].
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Appendix A. Quillen model categories

A Quillen model structure on a category K consists of three classes of maps
W, F , C, whose elements are called respectively weak equivalences, fibrations, and
cofibrations, satisfying the axioms (Q1)-(Q4) stated below. In stating these axioms,
we refer to maps in W ∩ F as acyclic fibrations and to maps in W ∩ C as acyclic
cofibrations.

(Q1): For every commutative diagram of the form

A
f //

h ��@
@@

@@
@@

B

g
��~~

~~
~~

~

C

if two out of f , g, and h are weak equivalences, then so is the third.
(Q2): For any commutative diagram of the form

A
s //

f

��

X
t //

u

��

A

f

��
B p

// Y q
// B

such that ts = 1A and qp = 1B , if u is a weak equivalence, fibration, or
cofibration, then so is f .
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(Q3): For any commutative square of the form

A //

f

��

X

u

��
B //

>>

Y

such that f is a cofibration and u is a fibration, if either of f or u is a weak
equivalence, then there exists a dotted filler.

(Q4): Every map in K can be factored both as an acyclic cofibration followed
by a fibration and as a cofibration followed by an acyclic fibration.

A Quillen model category consists of a finitely complete and cocomplete category
equipped with a Quillen model structure.
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