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 Thf Journal of Symbolic Logic
 Volume 71. Number 1. March 2006

 THE GENERALISED TYPE-THEORETIC INTERPRETATION
 OF CONSTRUCTIVE SET THEORY

 NICOLA GAMBINO AND PETER ACZEL

 Abstract. We present a generalisation of the type-theoretic interpretation of constructive set theory

 into Martin-L?f type theory. The original interpretation treated logic in Martin-L?f type theory via the

 propositions-as-types interpretation. The generalisation involves replacing Martin-L?f type theory with

 a new type theory in which logic is treated as primitive. The primitive treatment of logic in type theories

 allows us to study reinterpretations of logic, such as the double-negation translation.

 Introduction. The type-theoretic interpretation of Constructive Zermelo-Frankel
 set theory, or CZF for short, provides an explicit link between constructive set theory
 and Martin-L?f type theory [1, 2, 3]. This interpretation is a useful tool in the proof
 theoretical investigations of constructive formal systems [17] and allows us to relate
 the set-theoretic and type-theoretic approaches to the development of constructive

 mathematics [5, 28, 32].
 A crucial component of the original type-theoretic interpretation of CZF is the

 propositions-as-types interpretation of logic. Under this interpretation, arbitrary
 formulas of CZF are interpreted as types, and restricted formulas as small types.
 By a small type we mean here a type represented by an element of the type universe
 that is part of the type theory in which CZF is interpreted. The propositions-as
 types representation of logic is used in proving the validity of three schemes of CZF,
 namely Restricted Separation, Strong Collection, and Subset Collection. Validity
 of Restricted Separation follows from the representation of restricted propositions
 as small types, while the validity of both Strong Collection and Subset Collection
 follows from the type-theoretic axiom of choice, that holds in the propositions-as
 types interpretation of logic [28]. Another ingredient of the original type-theoretic
 interpretation is the definition of a type V. called the type of iterative sets, that is
 used to interpret the universe of sets of CZF. In this way, it is possible to obtain
 a valid interpretation of CZF in the Martin-L?f type theory ML] + W. which has
 rules for the usual forms of type, for a type universe reflecting these forms of type,
 and for W-types (see Section 1 for details).

 Our first aim here is to present a new type-theoretic interpretation of CZF. The
 novelty lies in replacing the pure type theory like MLi + W with a suitable logic
 enriched type theory. By a logic-enriched intuitionistic type theory we mean an
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 68  NICOLA GAMBINO AND PETER ACZEL

 intuitionistic type theory like MLi + W that is extended with judgement forms
 that allow us to express, relative to a context of variable declarations, the notion of
 proposition and assertions that one proposition follows from others. Logic-enriched
 type theories have a straightforward interpretation in their pure counterparts that
 is obtained by following the propositions-as-types idea. When formulating logic
 enriched type theories that extend pure type theories with rules for a type universe,
 like MLi + W. it is natural to have rules for a proposition universe to match the
 type universe. Elements of the proposition universe should be thought of as repre
 sentatives for propositions whose quantifiers range over small types.

 The new interpretation generalises the original type-theoretic interpretation in
 that logic is treated as primitive and not via the propositions-as-types interpretation.
 In particular, we will introduce a logic-enriched type theory, called ML(COLL),
 that has two collection rules, corresponding to the collection axiom schemes of CZF.

 Within the type theory ML(COLL) we define a type V, called the type of iterative
 small classes, that can be used to interpret the universe of sets of CZF. The particular
 definition of V allows us to prove the validity of Restricted Separation without
 assuming the propositions-as-types interpretation of logic, and the collection rules
 of ML(COLL) allow us to prove the validity of Strong Collection and Subset
 Collection. We will therefore obtain a type-theoretic interpretation of CZF that
 does not rely on the propositions-as-types treatment of logic and in particular
 avoids any use of the type-theoretic axiom of choice.

 A fundamental reason for the interest in the generalised interpretation is that it
 allows us to provide an analysis of the original interpretation. This is obtained
 by considering a logic-enriched type theory ML (AC + PU) with special rules ex
 pressing the axiom of choice and a correspondence between the proposition and
 type universes. These rules are valid under the proposition-as-types interpreta
 tion, so that ML(AC + PU) can be intepreted in the pure type theory MLi + W.
 Furthermore, the collection rules of ML(COLL) follow from the special rules of
 ML(AC + PU), and therefore it is possible to view the generalised interpretation of
 CZF as taking place in ML(AC + PU). We then prove that the original interpre
 tation of CZF in MLi + W can be seen as the result of composing the generalised
 interpretation of CZF in ML(AC + PU) followed by the propositions-as-types in
 terpretation of ML(AC + PU) into MLi + W.
 Another goal of this paper is to describe how logic-enriched type theories with

 collection rules, like ML(COLL), have a key advantage over logic-enriched type
 theories with the axiom of choice, like ML(AC + PU). The advantage is that the
 former can accomodate reinterpretations of their logic, while the latter cannot.

 We focus our attention on reinterpretations of logic as determined by a map j
 that satisfies a type-theoretic version of the properties of a Lawvere-Tierney local
 operator in an elementary topos [21] or of a nucleus on a frame [19]. We will call such
 aya local operator, and the reinterpretation of logic determined by it will be called
 the j -interpretation. A typical example of such an operator is provided by double
 negation. In our development, we consider initially a subsystem ML(COLL~) of
 ML(COLL), and ML(COLL) at a later stage. There are two main reasons for
 doing so. A first reason is that the Strong Collection rule is sufficient to prove the
 basic properties of y-interpretations. A second reason is that the Strong Collection
 rule is preserved by the j -interpretation determined by any local operator j. while
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 THE GENERALISED TYPE-THEORETIC INTERPRETATION  69

 the Subset Collection rule is not. In order to obtain the derivability of the j
 interpretation of the Subset Collection rule, we will introduce a natural further
 assumption. These results allow us to define a type-theoretic version of the double
 negation translation, which in turn leads to a proof-theoretic application.

 The generalised type-theoretic interpretation is related to the study of categorical
 models for constructive set theories [7, 29, 30. 13]. Indeed, one of our initial
 motivations was to study whether it was possible to obtain a type-theoretic version
 of the results in [30] concerning the interpretation of CZF in categories whose
 internal logic does not satisfy the axiom of choice. An essential difference, however,
 between the development presented here and the results in the existing literature on
 categorical models is that the interaction between propositions and types is more
 restricted in logic-enriched type theories than in categories when logic is treated
 assuming the proposition-as-subobjects approach to propositions. In particular,
 logic-enriched type theories do not generally have rules that allow us to form types
 by separation, something that is instead a direct consequence of the proposition
 as-subobjects representation of logic in categories [29, 30]. The category-theoretic
 counterpart to the logic-enrichment of a pure dependent type theory is roughly
 a first-order fibration over a category that is already the base category of a fibration
 representing the dependent type theory. See, for example, [18, Chapter 11] or
 [22, 23].

 Extensions of pure type theories that allow the formation of types by separation
 have already been studied. One approach is via minimal type theories [24, 39].
 Minimal type theories may be understood as extensions of logic-enriched type the
 ories with extra rules asserting that each proposition represents a type, that is to
 be thought of as the types of proofs of the proposition. Using these rules and
 the standard rules for E-types of the underlying pure type theory, the formation
 of types by separation can be easily obtained. Another approach is offered by the
 pure type theories with bracket types [6]. These are obtained by extending pure
 type theories with rules for a new form of type, called bracket type, that allows the
 representation of propositions as types with at most one element. This approach
 provides essentially a type-theoretic version of the proposition-as-subobjects idea.
 In the development of the generalised type-theoretic interpretation we preferred
 however to work within logic-enriched type theories, and avoid the assumption of
 extra rules allowing formation of types by separation. In this respect, the gener
 alised type-theoretic interpretation presented here is more general than the existing
 categorical models for CZF.

 The results presented here are part of a wider research programme, originally
 sketched in [4]. The present paper contributes to that programme in two respects:
 first, by giving precise proofs of the results announced in [4] regarding the gener
 alised type-theoretic interpretation of CZF and the reinterpretations of logic, and
 secondly by presenting new results concerning the analysis of the original type
 theoretic interpretation via the generalised one. We regard these new results as
 fundamental, since they show that the generalised intepretation allows us to gain
 further insight into the original intepretation. Section 6 contains an informal dis
 cussion of the overall research effort.

 For the convenience of the reader, we present here a concise review of the axiom
 system of CZF. For a discussion of the development of constructive mathematics in
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 70  NICOLA GAMBINO AND PETER ACZEL

 constructive set theories, see [5]. For proof-theoretical investigations on construc
 tive set theories we invite the reader to refer also to [10. 14. 20. 33. 35. 34. 36]. The
 axioms of CZF are presented below in an extension of the language of first-order
 logic with primitive restricted quantifiers (Vx G a) and (3x G a). The membership
 relation can then be defined by letting

 ot G/? =def (3x G ?){x = a).

 A formula is said to be restricted if all the quantifiers in it are restricted. We use
 letters u, v, z, x, y,w,... for variables of the language, and greek letters a.?.y,... to
 denote sets. Other greek letters are used to denote formulas. For formulas </> and y/,
 we write 0 D y/ for their implication and define (/> = y/ =def ((/>D ^) A (i//D </>).

 The axiom system of CZF includes both logical and set-theoretic axioms and
 schemes. We will refer to axioms and schemes collectively as axiom schemes.
 The logical axioms schemes include the standard ones for intuitionistic logic with
 equality and the following axiom schemes for restricted quantifiers:

 (Vx G ol)c?) = (Vx)(x e a D (?>) , (3x G a)<j) = {3x)(x G a A 0).

 The set-theoretic axiom schemes of CZF can be conceptually divided into three
 groups: structural, basic set existence, and collection. The structural axiom schemes
 of CZF are Extensionality (1) and Set Induction (2).

 (1) (Vx)(x ea = xe?) D {a = ?)
 (2) (Vx)((VjGx)</>[j/x]D</>) D (Vx)0

 The Extensionality axiom asserts that if two sets have the same elements, then they
 are equal. The Set Induction scheme is the intuitionistic counterpart of the classical
 Foundation axiom, and it is formulated as a scheme in which 0 is an arbitrary
 formula. The first basic set existence axioms of CZF are Pairing (3), Union (4),
 and Infinity (5).

 (3) {3u){Nx){xeu = (x = aNx = ?))
 (4) (3u){Nx){x eu = (3v G a)(x G y))

 (5) (3w)((3x)(x G u) A (Vx G u){3y G u)(x G y))

 They are formulated as in classical set theory. A further basic set existence scheme
 of CZF is Restricted Separation. It is the scheme in (6). where 6 is a restricted
 formula in which the variable u does not appear free.

 (6) (3u){Nx)(x eu = xeaA?)
 The Restricted Separation scheme is a weakening of the classical scheme of Full
 Separation, obtained by limiting the kind of formulas allowed in the scheme. To
 formulate the two collection schemes of CZF we use the abbreviation

 (V3 fff ) 0 =def (Vx G a)(3y G ?)</> A (Ny G ?)(3x G a)</>

 where <fi is an arbitrary formula. Note that in the formula

 (V3 fff)?
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 THE GENERALISED TYPE-THEORETIC INTERPRETATION  71

 free occurrences of x and y in 4> get bound by the operator (VE3 ^| ). The Strong
 Collection (7) and Subset Collection (8) schemes are given below.

 (7) (Vx e a)(3y)? D (3u)(\/3 f?) </>

 (8) (3v)(Wz)[(Vx e a)(3y G ?)(f> D (3u G v)(V3 fg) fl

 Note that in the Subset Collection scheme (8) the formula <j> may have free occur
 rences of z which get bound by the universal quantifier (Vz). The Strong Collection
 scheme is a mild strengthening of the Collection scheme, needed in order to derive
 the Replacement scheme in a set theory without the Full Separation scheme [10].
 The Subset Collection scheme is instead a weakening of the Power Set axiom and
 a strengthening of Myhill's Exponentiation axiom, which asserts that the class of
 functions between two sets is again a set [31]. In [20] it is shown that, in the
 presence of axioms (1) - (7), the Subset Collection scheme is independent of the
 Exponentiation axiom.

 Outline of the paper. A review of Martin-L?f pure type theories is presented in
 Section 1, which also serves to fix the notation used in the reminder of the paper,
 while the list of rules for the type theories used here is contained in Appendix A.
 Logic-enriched type theories are introduced in Section 2, where we also describe
 their propositions-as-types interpretation. In Section 3 we define the generalised
 type-theoretic interpretation of CZF. The relationship between the original and the
 generalised type-theoretic interpretations is then described in Section 4. Section 5
 discusses the reinterpretations of logic. The paper ends in Section 6 with conclusions
 and a perspective of future work.

 ?1. Pure type theories.

 Standard pure type theories. A standard pure type theory has judgements of form
 (r) 33, where F is a context consisting of a list of declarations x\ : A\,..., xn : An
 of distinct variables x\,... ,xn. and 38 has one of the following forms.

 (9) A : type A ? A' : type a : A a = a' : A
 For the context T to be well-formed it is required that the judgements

 () Ai : type (x\ : A\) A2 : type ... (x{ \ Ax,... ,xn^x : An-\) An : type

 are derivable. The well-formedness of the forms of judgement in (9) has other pre
 suppositions: in a well-formed context T. the judgement A ? A' : type presupposes
 that A : type and A' : type, the judgement a : A presupposes that A : type, and the
 judgement a = a' : A presupposes that a : A and a' : A. In the rest of the paper
 we prefer to leave out the empty context whenever possible, so that ( ) A : type will
 be written simply as A : type.

 Any standard type theory will have certain general rules for deriving well-formed
 judgements, each instance of a rule having the form

 J\ Jk
 J

 where J\,... ,Jk,J are all judgements. In stating a rule of a standard type theory it
 is convenient to suppress mention of a context that is common to both the premisses
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 72  NICOLA GAMBINO AND PETER ACZEL

 and the conclusion of the rule. For example we write the reflexivity rule for type
 equality as just

 A : type

 A = A : type

 but when we apply this rule we are allowed to infer (T) A = A : type from (T) A :
 type for any well-formed context T.

 Martin-L?f type theory. We use ML to stand for a variant of Martin-L?f 's stan
 dard type theory without universes or W-types [28, 32]. We prefer to avoid having
 any identity types. Also, rather than have finite types N^ for all A: = 0,1,... we
 will just have them for k = 0,1,2 and use the notation 0,1,2 for them. We do not
 assume binary sums as primitive but define them. To do so, we allow dependent
 types to be defined by cases on 2 as follows: under the assumption that A\ : type
 and A2 : type we allow the formation of R2(c,A\,A2) ' type whenever c : 2.
 Furthermore there are rules stating that the judgements

 RiihMuAi) = A\ : type R2{22, AUA2) = M : type
 are derivable. Here I2 : 2 and 22 : 2 are the canonical elements of the type 2. This
 form of type allows us to define binary sums. For types A\ and A2 we define

 Ax+A2=?d (2z :2)R2{z,AuA2)
 Binary product and function types are defined as usual

 A\ x A2 =def (?_ : Ai)A2 Ax -> A2 =def (n. : A\)A2

 Here and in the following the symbol _ indicates an anonymous bound variable. To
 fix notation let us also recall that there are derivable rules expressing the first and
 second projection of an element of a Z-type, as follows

 c:(Tx:A)B c : (Sx : A)B
 c.l :A c2:B[c.l/x]

 In summary, the primitive forms of type of ML are

 O, 1, 2, R2(e,Ai,A2), (Ix : A)B, {Ux : A)B.
 Table 1 presents the raw syntax for the expressions of ML that we are going to use
 throughout the paper. For the convenience of the readers, the complete set of rules
 of ML is recalled in Appendix A.

 Form of type Canonical expression Eliminating expression
 O
 1
 2
 N

 (Ix : A)B
 {Ux : A)B

 Oi
 h;22

 0, succ(e)
 pair(a, ?)
 (ax : A)b

 ro(e)
 x\{e,c)

 *i{e,c\,c2)
 rn(e,c, (x,y)d)
 split(e, (x,y)c)

 app(/,?)
 Table 1. Types and expressions of the ML type theory.
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 THE GENERALISED TYPE-THEORETIC INTERPRETATION 73

 Wellfounded trees. Types of wellfounded trees, or W-types for short, play a crucial
 role in the intrerpretation of constructive set theories in dependent type theories.
 Let us then briefly review the rules concerning this form of type. The formation
 rule and introduction rules for W-types are the following

 A : type (x : A) B : type a : A t: B[a/x] -> (Wx : A)B
 (Wx : A)B : type sup(a, t) : (Wx : A)B

 A canonical element sup(a, t) of W =?ief (Wx : A)B should be thought of as the
 tree with a root labelled by sup(a, t). The branches departing from the root are
 indexed by elements of B[a/x] with nodes labelled by the elements app(t,b) for
 b : B[a/x].

 In the formulation of the elimination and computation rules, we suppress mention
 of the judgement (z : W) C : type that is part of the premisses. Let

 (r) =def U ' A, u : B -> W , v : (Tly : B)C[app(u,y)/z])
 so that we can write the elimination rule as

 e : W (T)c : C[sup(x, u)/z]

 vyj(e,(x,u,v)c) : C[e/z]

 and the computation rule as

 a: A t : B[a/x] - W (T) c : C[sup(x, u)/z]
 rec(sup(a, t)) =c[a,t,(Xy : B[a/x])rec(app(t,y))/x,u,v] : C[sup(a,t)/z]

 where rec(e) =def r\v(^ (x, u, v)c), for e : W.

 Type universes. We will consider type theories that include rules for a type universe
 U of small types, or rather of representatives for small types. We adopt a slight
 variant of the so-called Tarski-style formulation of type universes, that we now
 present. The type universe has formation rule

 U : type

 For each a : U, we write T(a) : type for the small type represented by a. Therefore,
 the elimination rule for the type universe is stated as

 a :U

 T(a) : type
 The introduction and computation rules for the type universe express that U reflects
 all the forms of type of ML. For example, to express that U reflects the type O we
 have the introduction rule

 ? :U
 which has an associated computation rule asserting

 T(O) = O : type

 To reflect S-types, there is the introduction rule

 a : U (x : T(a)) b : U
 (Sx : a)b : U
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 74 NICOLA GAMBINO AND PETER ACZEL

 and its associated computation rule

 T((Sx : a)b) = (Sx : T(a))Y(b) : type

 The complete set of rules for the type universe is given in Appendix A. Note that
 the symbol S appears both in the judgement (Sx : d)b : U and in the judgement
 (Sx : T(a)) T{b) : type. Similar notation is used to reflect the type formation rules
 of ML in the type universe. Since the forms of judgement in which the same symbol
 appears are different, there is no reason for confusion.
 We write MLW and MLi for the type theories that are obtained from ML by

 adding rules for W-types and rules for a type universe, respectively. The type theory
 MLWi is like MLi except that the rules for the W-types are added and the type
 universe U also reflects W-types. A particularly important role will be played in
 the following by the natural subtheory MLi + W of MLWi, which has W-types but
 they are not reflected in U. Many proof-theoretical results concerning these pure
 type theories are presented in [17].

 ?2. Logic-enriched type theories.

 Adding Predicate Logic. Given a standard pure type theory we may consider
 extending it with two additional forms of judgement (T) f$f, where F should be
 a well-formed context as before, and ?3 has one of the forms

 <f> : prop 0i,...,0m => cf)

 These judgements express, relative to the context (T), that 0 is a proposition and
 that (p follows from <fi\_, (?)m, respectively. In the context T, the well-formedness
 of the judgement (?>\,..., 4>m => (/) presupposes that </>z : prop (for i = l,..., m)
 and ? : prop. Using these new judgement forms it is straightforward to add the
 standard formation and inference rules for the intuitionistic logical constants, i.e.,
 the canonical true and false propositions T, _L, the binary connectives A. V, D and
 the quantifiers (Vx : A),(3x : A) for each type A. For example, the rules for the
 existential quantifier are as follows.

 A : type (x : A) (j) : prop (x : A) </) : prop a : A. <j)[a/x]
 (3x : A) (j) : prop (3x : A)<j)

 {3x : A)(j) y/ : prop (x : A) (? => y/

 The negation -10 of a proposition cj) is defined by letting -k?) =def (^Dl, and logical
 equivalence is expressed with the proposition

 (11) <t> = y/ =def (</> D y/) A (y/ D 0)

 where (p and y/ are propositions. As always, in the statement of formation rules we
 suppress a context that is common to the premisses and conclusion. In the inference
 rules we will also suppress a list of assumptions appearing on the left hand side of
 the => in the logical premisses and conclusion of each inference rule. Moreover we
 will write (T) cj) rather than (T) => 0 and just </> rather than the judgement => (j).
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 Induction Rules. It is possible to extend a standard logic-enriched type theory
 with additional non-logical rules to express properties of the various forms of type.
 For example, it is natural to add a rule for mathematical induction to the rules
 concerning the type of natural numbers and there are similar rules for the other
 inductive forms of type. For each inductive type C of MLW. we have an induction
 rule of the form

 (z : C) (j) : prop e : C  INDr

 rh\ejz]

 where the correspondence between the form of C and the premisses INDc is de
 scribed in Table 2. Note that IT-types are absent from this correspondence, since
 they are not a form of inductive type.

 C  INDr
 (D
 1
 2
 N

 (Sx : A)B
 (Wx :A)B

 4>[0i/z]
 0[l2/z],</>[22/z]
 0[O/z], (x : N) </>[x/z] => 0[succ(x)/z]
 (x : A. y : B) 0[pair(x, y)/z]
 (x : A,u : B -> C) (Vv : B)(j)[app(u,y)/z  cj)[sup(x,u)/z]

 Table 2. Inductive types and premisses of their induction rules.

 The proposition universe. When adding logic to a standard pure type theory T
 that includes MLi it is natural to also add a proposition universe P to match the
 type universe U. The formation rule for this type is

 P : type

 The rules for P express that elements of this type are to be thought of as repre
 sentatives for propositions whose quantifiers range over small types. Indeed, the
 elimination rule

 z(p) : prop

 expresses that each object p : P represents a proposition. To express that the false
 proposition has a representative in P we have the introduction rule

 1 :P
 For the type P it seems convenient to avoid the use of an equality form of judge
 ment for propositions in order to express that P reflects logic. Instead we use
 logical equivalence as defined in (11). For example, the rule relative to the false
 proposition is

 tU)
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 76  NICOLA GAMBINO AND PETER ACZEL

 Similarly, existential quantification over small types is reflected in P with the intro
 duction rule

 a:V (x:T(a))p:F
 (3x :a)p : P

 and the rule

 t((3x :a)p) = (3x :T{a))z(p).
 The set of rules for the proposition universe P is presented in Appendix A.

 Some logic-enriched type theories. Given a pure type theory T, we write T + IL
 for the logic-enriched type theory that is obtained from T by adding rules for
 predicate logic. We then write T + IL + IND for the logic-enriched type theory
 that has induction rules for each of the forms of inductive type of T. When the
 pure type theory T includes MLi then we write T + ILi for the enrichment of T
 with intuitionistic predicate logic and also the rules for P, and T + ILi + IND for
 its extension with induction rules.

 In the following we will be interested in an extension of the logic-enriched type
 theory MLi + W + ILi + IND, whose primitive forms of type are the following.

 O, 1, 2, N, R2Ui, A2, e), (Sx : A)B, (Ux : A)B (Wx : A)B , U, T(e), P.

 There are predicate logic rules, induction rules for O, 1, 2, N, (Sx : A)B and
 (Wx : A)B, and rules for the type P. We will work informally in the logic-enriched
 type theory MLi + W + ILi + IND in Section 3.
 Propositions-as-types. The logic-enriched type theory ML + IL has a straight

 forward interpretation into the pure type theory ML that is obtained by following
 the propositions-as-types idea. Each induction rule can also be justified under the
 propositions-as-types interpretation of logic by using the elimination rule of the in
 ductive type to which the induction rule is associated. Furthermore, the derivability
 of the type-theoretic axiom of choice [28] implies that the rule

 A : type (x : A) B : type (x : A, y : B) cj) : prop

 (Vx : A)(3y : B)</> D (3u : (ux : A)B)(Nx : A)(?[^p(u,x)/y]
 has a valid propositions-as-types interpretation in the pure type theory ML. Hence,
 the propositions-as-types interpretation reduces the logic-enriched type theory

 ML + IL + IND + AC to the pure type theory ML. An analogous result holds
 when we add rules for W-types on both sides.

 The propositions-as-types idea extends to logic-enriched type theories with a pro
 position universe. The extension is obtained by interpreting the proposition universe
 P as the type universe U, and representatives for small propositions as representatives
 for small types, again following the propositions-as-types idea. The logic-enriched
 type theory MLi + ILi has then an interpretation into the pure type theory MLi.
 Since the rules for the proposition universe P are completely analogous to the rules
 for the type universe U it is possible to see that also the proposition

 (PU) (V/> : P)(3w : U)(t(/0 = (3- : T(?))T)

 is interpreted as an inhabited type by this extension of the propositions-as-types
 interpretation. As a consequence of these facts, the logic-enriched type theory
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 ML(AC + PU) =def MLi + W + ILi + IND + AC + PU admits an interpretation
 into the pure type theory MLi + W. In Section 3 we will introduce collection
 principles and show that the rules (AC) and (PU) allow us to derive them. The
 following lemma will be helpful to do so.

 Lemma 2.1. Assuming (AC) and (PU) there exists t : P ?? U such that, for p : P,
 the judgement z(p) = (EL : T(app(t, p))T is derivable.

 Proof. To prove the claim, it is suffient to apply (AC) to (PU). 3

 ?3. The generalised type-theoretic interpretation.

 Some notions of collection. Given a type A what is a collection of objects of
 type Al We may consider three approaches to this question: logical, combinatorial,
 and hybrid. The logical approach is to take a collection to be a class on A, i.e.,
 a propositional function (x : A) </> : prop. The objects of such a collection are the
 a : A such that 4>[a/x] holds. By contrast the combinatorial approach is to take a
 collection to be a family (x : I) b : A indexed by a type /. This time the objects are
 the b[i/x] \ A for i : I. Finally, the hybrid approach takes a collection to consist of
 a pair given by a family (x : I) b : A and a class (x : I) <f> : prop on the index type
 /. The objects of such a collection are the b[i/x] : A for those i : / such that 4>[i/x]
 holds.

 A problem with each of these notions of collection is that we cannot generally
 expect there to be a type of all collections of objects of type A for all types A. What
 we can expect is to be able to form types of small collections using the type and
 proposition universes. For example, the type of small collections for the logical
 approach is given by

 C\a(A) =def A -> P.

 We get the following types of small collections for the combinatorial and hybrid
 notions of small collection of objects of type A. We shall refer to these types as the
 types of small families and of small subclasses of A, respectively:

 (12) FamU) =def (Sx : U)(T(x) -> A)
 (13) SubU) =def (Ix : U)((T(x) -+ P) x (T(x) -+ A))

 The properties of these types play an essential role in the development of the
 original and generalised type-theoretic interpretations of CZF, and it is therefore
 convenient to introduce some notation to manipulate efficiently their elements. We
 do so by exploiting the notation for projections of elements of I-types as given
 in (10). Given a : Fam(^) define

 el(a) =def a.l : U.

 We will write el(a) : type to denote also the small type T(el(a)), associated with
 el(a) : U, since the judgement makes clear whether we are considering a small type
 or the element in the type universe that represents it. We deal analogously with the
 elements in type and proposition universes that we define below. For x : el (a), let

 val(a, x) =def app(a.2,x) : A.

 Using the definitions introduced above, we can form propositions by quantifying
 over a small family, i.e., if (x : A) <fi : prop and a : Fam(A) we can define the
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 propositions (Vx G a)cp and (3x G a)<?) as follows.

 /14n (Vx ea) (j) =def (Vx : el(a)) </>[val(a. x)/x] : prop.
 (3x G a) cj) =def (3x : el(a)) 0[val(a.x)/x] : prop.

 In a similar way, it is possible to form elements of the proposition universe by
 quantifying over a small family. For (x : A) p : P we define

 ,1sn (Vx ea) p =def (Vx : el(a)) /?[val(a,x)/x] : P.
 U j (3x G a) /> =def (3x : el(a)) /?[val(a,x)/x] : P.

 The notation introduced in (14) and (15) does not lead to confusion, since the rules
 for the proposition universe P imply that the judgements

 (Vx e a)r{p) = t ((Vx G a)p).
 ^ ' {3x e a) t(p) = t ((3x G a)p

 are derivable. We now develop an analogous system of abbreviations for the type
 of small subclasses of a type, as defined in (13). For a : Sub{A) we define

 el(a) =def ol.\ : U.

 For x : el (a) we define

 dom(a.x) =def app(a.2.1.x) : P.
 val(<x x) =def app(<x2.2. x) : A.

 For (x : A) (?) : prop we define

 / 17n (Vx G a) (f) =def (Vx : el(a)) (dom(a.x) D </>[val(a, x)/x]) : prop.
 (3x e a) (?) =def (3x : el(a)) (dom(a.x) A 0[val(a, x)/x]) : prop.

 Finally, for (x : A) p : P we define

 ( , (Vx ea) p =def (Vx : el (a)) (dom(a.x) D /?[val(a,x)/x]) : P,
 ^ j (3x G a) p =def (3x : el(a)) (dom(a, x) A /?[val(a, x)/x]) : P.

 Judgements analogous to those in (16) are easily derivable, so that the definitions
 in (17) and (18) are compatible.

 Separation in type theory. The set theory CZF. like the systems of classical ax
 iomatic set theory, allows the formation of sets of sets of sets of ... but does not
 allow non-well-founded sets. So to interpret the universe of sets of CZF as a type in
 type theory we need a type of iterative sets obtained by inductively iterating some
 notion of 'set o(\ When we use the combinatorial approach to interpret the no
 tion of'set of there is a problem with the justification of the Restricted Separation
 scheme of CZF if we wish to avoid the propositions-as-types representation of logic.
 The problem can be explained as follows. In CZF. for a set a and a restricted for
 mula 9, Restricted Separation, as stated in (6), asserts that there is a set y such that

 (Vx) (x G y = (x G a A 6)). It is then straightforward to see that for a formula <p
 the following sentences are provable in CZF.

 (]C)) (Vx G >')(/> = (VxEa)(0D0).
 1 j (3xey)(t> = {3x ea) {6 Act)).

 An analogous fact holds in the logic-enriched type theory ML(AC + PU). Given
 a : Fam(A) and (x : A) p : P. let 0 =def r(p) for x : el(a). We can then define y :
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 Fam(A) such that for (x : A) (?> : prop the following judgements, corresponding to
 the sentences in (19). are derivable in ML(AC + PU)

 (Vxey)0 = (Vx ea) (0 d </>).
 ?3xey)<t> = (3x ea) (6 A(?>).

 The reason is that in ML(AC + PU) it is possible to prove the existence of a function
 t : P ?> U as in Lemma 2.1. and so to define y : Fam(^) such that

 (20) el(y) = (Ix : el(a)) app(t, p[va\(a, x)/x]) : U
 and

 (21) val(y,z) =val(a,z.l) : A

 forz : el(y). But without the assumption of (AC) and (PU), the proof of Lemma 2.1
 cannot be carried out. To overcome this difficulty we adopt the hybrid notion of
 small collection instead of the combinatorial one. Note that the purely logical
 notion of small collection cannot be used to get any kind of iterative notion of
 set essentially because C\a(A) is not positive in A. So it seems that the use of the
 hybrid notion is the natural way to incorporate the necessary logical ingredient in
 the notion of small collection. We are therefore led to study the properties of small
 subclasses of a type.

 Small subclasses. To define explicitly small subclasses of a type A it will be
 convenient to adopt the following convention. For derivable judgements of the
 form a : U, (x : 1(a)) p : P, and (x : T(a)) t : A. we will define an element
 of Sub(^) by saying that it is the small subclass y such that

 (22) el(y) = T(a) : type

 and that, for x : T(a), the judgements

 /23x dom(y.x) = z(p).
 ^ } val(y, x) = t : A

 are derivable. Note that if y = ? : Sub(^4), where

 S =def pair(a.pair(Ux : T(a))p, (?x : T(a))t)) : SubU)

 then the judgements in (22) and (23) can actually be derived. We begin our discus
 sion of set-theoretic constructs with the empty set. Recalling that T(O) = O : type,
 we define

 9a : Sub(^)
 to be the small subclass y of A such that el(y) = O : type and, for x : O, the
 judgements dom(y, x) = J_ and val(y, x) = Yo(x) \ A are derivable.

 Lemma 3.1. There exists y : Sub(^4) such that the judgements

 (Vx ey)(j) = T.
 (3x G y) (?) = _L

 are derivable.

 Proof. Let y = %A ' Sub(y4). The required conclusion follows directly by the
 definition of quantification over small subclasses in ( 17). 3
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 To introduce the pairing operation, let us recall that T(2) = 2 : type. For 01,02:^
 we can then define

 {01,02} : Sub(A)

 as the small subclass y of A such that el(y) = 2 : type and, for x : 2, the judgements
 dom(y, x) = T and val(y, x) = r2(x, a\, 02) : A are derivable. The properties of this
 operation are stated in the next lemma.

 Lemma 3.2. Let a\,ai : A. There exists y : Sub(v4) such that

 (Vx Gy)0 = 0[ai/x]A0[a2/x],
 (3x e y) <\) = <t>[a\/x] V <?>[a2/x\

 are derivable.

 Proof. Let y = {?21,02} Sub(^). Unfolding the definition of quantification
 over y, we derive the following judgement.

 (Vx e y) (j) = (Vx : 2) 0[r2(ai,02,*)/*]

 Now, note that the following holds.

 (Vx : 2) ^[r2(fli, 02, x)/x] = cj)[a\/x] A </>[?2/x]

 The left-to-right implication is obtained with the V-elimination, and the right
 to-left implication follows by the 2-induction rule. We have therefore obtained
 that (Vx e y) 0 is equivalent to <j>[a\/x] A 4>[ailx] as required. We can derive
 the equivalence between (3x e y) 4> and cj)[a\/x] V <j)[a2/x] with an analogous
 reasoning: first unfold the definitions of restricted quantifiers, then use the 2
 induction rule and the V-elimination rule. 3

 As a special case of the pairing operation defined above, we obtain the definition
 of singletons. For a : A, we define

 {a} =def {0,0} : SubU).

 Lemma 3.3. Let a : A. There exists y : Sub(^4) such that the judgements

 (Vx G y) (f) = (f)[a/x],
 (3x ey) (f) = (j)[a/x]

 are derivable.

 Proof. Let y =def {0} ' Sub(^). The proofs of the claims follow directly from
 Lemma 3.2. 3

 Let Sub2U) =def Sub(SubU)). For a : Sub2U) we define

 Ua :SubU)
 as the small subclass y of A such that el(y) = (Zy : el(o;))el(val(a,?y)) and, for
 z : el(y), the judgements

 dom(y, z) = dom(a, z.l) A dom(val(o!, z.l), z.2),

 val(y, z) = val(val(a, z.l), z.2) : A

 are derivable. The next lemma shows that this operation has the properties of the
 set-theoretic union.
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 Lemma 3.4. Let a : Sub (A). There exists y : Sub(^) such that the judgements

 (Vx G y) (p = (Vy G a)(Vx G y) (p,
 (3x G y) (p = {3y e a){3x e y) (p

 are derivable.

 Proof. Let y = [Ja : Sub(^). By the computation rules for S-types we obtain
 that for y : el(a) and x : el(val(a, y))

 val(y,pair(x,j)) = val(val(?,j;),x) : A

 holds. We want to show that (Vx G y)(p is equivalent to (Vy G a)(Vx e y)cp.
 It is convenient to consider y/ =def (Vz : el(y)) dom(y, z) d </>[val(y, z)/x]. Let
 9 =def dom(a,j^) : prop, // =def dom(val(a;,>>),x) : prop, for y : el(a) and
 x : el(val(a,j>))> and consider

 ?=def(V^:el(a))(Vx:el(val(a,j;))) {9 Arj D 0 [ val ( y, pair (x,y))/x]).

 We claim that (Vx G a)<?> = y/ = ? = (V_y G <z)(Vx G j>)0 holds, which would
 give us the desired result. The first equivalence follows by simply unfolding the
 definitions, y/ implies ? by the V-elimination rule and ? implies y/ by the S-induction
 rule, and the third equivalence is a consequence of predicate logic rules. The
 proof of the claim involving the existential quantifier follows the same pattern of
 reasoning. H

 To define a separation operation we exploit essentially that we are assuming the
 hybrid approach to the problem of representing the notion of a small collection of
 elements of a type. Let a : Sub(^) and (x : A) p : P. We define

 {x G a | p } : SubU)

 as the small subclass y of A such that el(y) = el(a) : type and, for x : el(a),
 the judgements dom(y, x) = dom(a,x) A r(p) and val(y, x) = val(a, x) : A are
 derivable.

 Lemma 3.5. Let a : Sub(^4) and (x : A) p : P. There exists y : Sub(^) such that
 the judgements

 (Vx Gy)0 = (VxGa)(r(/?) d 0),
 (3x G y)(?> = (3x G ?O(t(/?) A cp)

 are derivable.

 Proof. If y = {x e a | p} : Sub(yl) then it holds that

 (Vx G y)cp = (Vx : el(a))((dom(a,x) Atp[\a\{a,x)/x]) D 0[val(a,x)/x])
 The rules of predicate logic imply that the right-hand side in the above equivalence
 is in turn equivalent to (Vx G a){x(p) D cp) as required. The proof of the statement
 involving existential quantification is analogous. H

 The next definition introduces a type-theoretic analog of the constructions al
 lowed by the Replacement axiom of set theory [5]. For A, B : type, a : Sub(A)
 and (x : A) b : B, define

 {b | x G a} : Sub{B)
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 as the small subclass ? of B such that el(/?) = el(a) : type and, for x : el(a),
 the judgements dom(?.x) = dom(a.x) and wal(?.x) ? ?[val(a. x)/x] : B are
 derivable.

 Lemma 3.6. Let a : Sub(^4). (x : A) b : B and (y : B) y/ : prop. There exists
 ? : Sub(i?) such that the judgements

 (V>< e?)\f/ = {Vx ea)y/[b/y].

 (3ye?)yy = (3xea)y/[b/y]
 are derivable.

 Proof. First of all. observe that we can assume that x is not a free variable in

 y/. Let ? =def {b | x G a} : Sub(B). By unfolding definitions and performing the
 appropriate substitutions we can derive that (V_y G ?)y/ is logically equivalent to

 (Vv : d(a))(dom(a.y) D y/[b[va\(a. y)/x]/y])

 and this is in turn equivalent to (Vx G a)y/[b/y], since we assumed that x is not
 a free variable in y/. The statement involving existential quantification can be proved
 in a similar way. 3

 We conclude this series of lemmas by transferring to logic-enriched type theories
 a familiar fact of constructive set theories: the correspondence between the class of
 subsets of a singleton set and restricted sentences, as discussed in [5] and [12. Section
 2.3]. In logic-enriched type theories the role of the class of all subsets of a singleton
 set is played by the type of small subclasses of the type 1 and the role of restricted
 sentences is played by elements of P. Define

 Qxt(p) : Sub(l)

 as the small subclass y of 1 such that el(y) = 1 : type and. for x : 1, the judgements
 dom(y, x) =z(p) and val(y, x) = x : 1 are derivable.

 Lemma 3.7. Let p : P and y/ : prop. There is y : Sub(l) such that the judgements

 (V_ G y) y/ = t(p) d y/

 (3-G y) y/ = t(p) Ay/
 are derivable.

 Proof. Let y = ext(p) : Sub(l). The conclusion then follows by unfolding the
 definitions. 3

 We now formulate the collection rules for small subclasses. Given A : type,
 B : type, and (x : A. y : B) (?> : prop, for a : Sub(v4) and ? : Sub(i?) we define

 (V3 ft?) <P =def (Vx G a) (3y G ?)</> A (Vj G ?) (3x G a)</> : prop.
 The Strong Collection rule is

 A. B : type a : Sub(/1) (x : A, y : B) cp : prop

 (Vx G a)(3y : B)</> => (3v : Sub(B))(\J3 fff ) 0
 and the Subset Collection rule is

 A.B.C : type a : Sub(A) ? : Sub(B) (x : A. y : B,z : C) <j> : prop

 (3u : Sub2(i?))(Vz : C)((Vx G a)(3y G ?)(? D (3v G u)(\/3 fff ) cf>)
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 We will show in Section 4 that these rules are derivable under the propositions
 as-types interpretation of logic. We write ML(COLL) for the extension of the
 logic-enriched type theory ML] -f W -f ILj + IND obtained by adding the Strong

 Collection and the Subset Collection rules. Recalling that CZF~ is the subsystem
 of CZF obtained from CZF by leaving out the Subset Collection axiom scheme,
 and that in CZF- it is not possible to derive the Exponentiation axiom, asserting
 that the class of functions from a set to a set is again a set [20]. it is natural to define

 ML(COLL" ) as the type theory obtained from ML(COLL) by omitting the Subset
 Collection rule and the rules reflecting n-types in the type universe.

 Iterative small classes. Let us begin by defining the type

 V =def (W: : (Sx : U)(T(x) -> P)) T(z.l).
 A canonical element ofV has form sup(pair(#. p). f) : V where 6/ : U. p : Y (a) ?* P
 and / : T(a) ?> V. Such an object can be thought of as the 'set of app(/\ x) : V
 for x : T(a) such that r(app(/?; x)) holds. We will refer to the elements of this type
 as iterative small classes. As usual, it is convenient to introduce some explicitly
 defined expressions. We define, for a : Sub(V)

 set(a) =def sup(pair(a.l.a.2.1).a.2.2) : V
 and. for a : V

 sub(a) =def rw(<x (w,v) pair(w.l.pair(w.2. t?)) : Sub(V).

 Observe that there is a correspondence between elements of V and elements of
 Sub(V). The next lemma shows a first property of this correspondence.

 Lemma 3.8. For a : U. p : T{a) ?> P. and f : T{a) ?> V the judgements

 set(pair(?7.pair(/?,/))) = sup(pair(a. p).f) : V.

 sub(sup(pair(tf. p).f) = pair (a. pair (/?,/')) : Sub(V)
 are derivable.

 Proof. The judgements follow from the computation rules for W-types and S
 types. H

 Lemma 3.9. For (x :?)</>: prop and (y : Sub V) y/ : prop the judgements

 (Vx : ?)</> = (V>' : Sub(V))0[set(v)/x].

 (3x : V)(P = (3y : Sub(V))0[set(^)/x]
 are derivable.

 Proof. To prove the judgement

 (Vx : V)(? = (Vv : Sub(V))^[set(>^)/x]
 we consider

 yj =def (Vx : U)(Vv : T(x) -^ P)(Vz : T(x) -^ V)0[sup(pair(x. v). z)/x].
 We show that

 (24) (Vx : V)cp = y/ ~ [Ny : Sub(V))0[set(j)/x].

 The first equivalence in (24) can be proved as follows: the left-to-right implication is
 proved with the V-elimination rule, while the right-to-left is proved by W-induction.
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 The second equivalence in (24) can instead be obtained as we describe now. The left
 to-right implication is a consequence of the Z-induction rule, while the right-to-left
 implication follows by the V-elimination rule and Lemma 3.8. 3

 We introduce versions of quantification over iterative small classes using Lem
 ma 3.8 and the definitions expressing quantification over a small subclass of a type
 in (17) and (18). For a : V, and (x : V) <fi : prop we define

 (Vx G a)4> =def (Vx G sub(a))0 : prop,

 (3x G a)4> =def (3x G sub(a))0 : prop

 and, for (x : V) p : P, we let

 (Vx G a)p =def (Vx G sub(a))p : P,

 (3x G a)p =def (3x G sub(a))p : P.

 Again, these definitions can easily be shown to be compatible.
 We now want to apply a special instance of the elimination rule for the W-type V

 of iterative small classes and define a type-theoretic counterpart to the set-theoretic
 extensional equality relation. To do so, let us introduce some auxiliary definitions.
 Define A =def (Ex : U)(T(x) -> P) and, for u : A, let

 ?=defTU.l)->P,
 C=defT(W.l)->(V-+P)

 and finally D =def V ?> P. For u : A, z : B, and w : C we can then define

 g-def Uv:V)(gi Ag2) :D

 where, for v : V we let

 g\ ?def (Vx : u.l)app(u.2,x) D (3y G v)app(app(w,x),y) : P,
 gi ?def (Vy G v)(3x : u.l)app(u.2,x) A app(app(w, x),y) : P

 We can then apply the following instance of the elimination rule for V

 D : type (u : A,z : B,w : C) g : D a : V

 rw(?, (u,z,w)d) : D
 and define

 (25) a^? =def app(rw(a, (w, z, w)g), ?) : P

 for a, ? : V.

 Lemma 3.10. For a,? : V the judgement

 a^? = (V3 fff) x?j
 ?? derivable.

 Proof. The proof involves unfolding the appropriate definitions and applying
 the computation rule for the W-type V of iterative small classes. 3
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 Sets-as-trees. We now define the generalized type-theoretic interpretation of
 CZF. Recall from the introduction that we are assuming that CZF is formu
 lated in a language ?g with equality and primitive restricted quantifiers, in which
 the membership relation is defined. Let us also assume that the symbols for vari
 ables for sets of CZF coincide with the symbols for variables of type V. We define
 two interpretations. The first is indicated with [ ] and applies to arbitrary formu
 las. The second is indicated with (|-D and applies only to restricted formulas. Both
 interpretations are defined in Table 3, where * is A, V or D, and V is V or 3.

 [x = yj =def x&y (|x = y\) =def x^j;
 [01 * (hi =def M * M fl?i ?2D =def (|0lD * m

 [(Vx G a) 0] =def (Vx G a)M (|(Vx G a)#} =def (Vx G a)^
 [(Vx)0]=def (Vx:V)[0]

 Table 3. Interpretation of the language of CZF.

 Lemma 3.11. Let 9, <p be formulas of S? with free variables x\,...,xn, and assume
 that 9 is restricted. Then the judgements

 (xi :V,...,x?:V) \<p\ : prop,
 (x! :V,...,x?:V) (\9\) : P,
 (xi :V,...,x?:V) t^ = ?9}

 are derivable.

 Proof. Reasoning by structural induction suffices to prove the claim. H

 Definition 3.12. A formula <p of S? with free variables x\,..., xn will be said to
 be valid if the judgement

 (xi:V,...,x?:V) \<P\
 is derivable. We say that the generalized type-theoretic interpretation of CZF is
 valid if each axiom scheme is valid.

 We begin by establishing that the logical axioms of CZF are valid.

 Lemma 3.13. Let (x : V) (p : prop anda, ? : V. Then the judgement

 \4>[a/x]\ A la = ?\ D Iffl/x]}
 is derivable.

 Proof. The claim follows by structural induction on (p. H

 Given Lemma 3.13, the predicate logic rules imply that all the logical axioms for
 CZF, and in particular the ones regarding restricted quantifiers, are valid. The next
 lemma takes care of the structural axioms of CZF.

 Lemma 3.14. Extensionality and Set Induction are valid.

 Proof. Validity of Extensionality follows from Lemma 3.10. Validity of Set
 Induction is a consequence of the induction rule for the W-type V of iterative small
 classes. H
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 Lemma 3.15. Pairing. Union. Infinity and Restricted Separation are valid.

 Proof. Lemma 3.2 helps us to prove validity of Pairing. Let a. ? : ? and define
 y =def set({a. ?}) : V. By Lemma 3.2 we have

 (Vx G y)(x^a V x&?) = (Vx G {a. ?})(x^a V x&?)
 = (a^a V ottt?) A (?^a V ?^?)

 Similarly we get

 a G y A? e y = (3x G {a. ?})(x^a) A (3x G {a.?})(x^?)
 = (a^a V ottt?) A (?^a V ?^?)

 as required. Soundness of Union follows in a similar way from Lemma 3.4. For
 Infinity we exploit Lemma 3.1 and Lemma 3.3. We let oj : Sub(V) be the small
 subclass ofV such that el (co) = N : type, and for n : N, the judgements dom(co,n) ?
 T and

 val(co. n) = vN(n, set(0v), (x, y) set({y})) : V

 are derivable, where we used the elimination rule for the type N given in Appendix A.
 It is immediate to see that set(co) : V can be used to show the soundness of Infinity.
 Validity of Restricted Separation follows from Lemma 3.5. 3

 The collection rules for small subclasses that are part of ML (COLL) allow us to
 prove the validity of all the instances of the collection axiom schemes of CZF.

 Lemma 3.16. Strong Collection and Subset Collection are valid.

 Proof. The interpretation of each instance of these axiom schemes can be proved
 from a suitable instance of the corresponding type-theoretic rule using the corre
 spondence between V and Sub(V). 3

 These results provide a proof of our first main result.

 Theorem 3.17. The logic-enriched type theory ML(COLL) proves that the gener
 alised type-theoretic interpretation of CZF in (V. ~) is valid.

 ?4. An analysis of the original type-theoretic interpretation. The original inter
 pretation of CZF in the type theory MLi + W can be viewed as taking place in two
 steps: an interpretation of CZF in the logic-enriched type theory ML (AC + PU) fol
 lowed by the propositions-as-types interpretation of ML(AC + PU) in MLi -f W.
 The generalised interpretation of CZF presented in Section 3 is concerned with
 a strengthening of the interpretation of CZF into ML (AC + PU) so as to inter
 pret CZF in the logic-enriched type theory ML(COLL) obtained from MLi 4- W+
 ILi + IND by adding two type-theoretic collection principles corresponding to the
 two collection principles of CZF. In this section we describe how the interpre
 tations of CZF in ML(COLL) and in ML(AC + PU) are related. In particular,
 we will prove that the two type-theoretic collection principles can be derived in
 ML (AC + PU) so that the new interpretation is indeed a refinement of the old one.

 The interpretation of CZF in the logic-enriched type theory ML (AC + PU) as
 sumes the combinatorial notion of small collection, as discussed in Section 3. to

 interpret the notion of 'set of. We will therefore refer to this interpretation as the
 combinatorial interpretation of CZF. The combinatorial approach leads naturally
 to the use of the type V =def (Wx : U) T(x) to interpret the universe of sets of CZF.
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 Indeed, for each small collection pair (a. /) : Fam(V). there is sup(#. /) : V. Each
 formula <p of CZF with free variables x\.xn is then interpreted as [0] such that
 the judgement

 (xi :V.....xw:V)M:prop
 can be derived, and each restricted formula 9 with free variables x\_, xn is inter
 preted as d^D such that the judgements

 (xi :V;...,x,:V)M:P
 and

 (xi:V.x?:V)t|8|e[?]
 can be derived. The validity of the axioms of CZF under the original type-theoretic
 interpretation relies on the properties of the types of small families of objects. We
 isolate the relevant properties below, but we prefer to avoid giving detailed proofs,
 since we have presented detailed proofs of the corresponding statements for small
 subclasses in Section 21.

 Small families. The next lemma states that small families support the definition
 of some basic set-theoretical constructs: the empty set, pairing, and union.

 Lemma 4.1. Let A : type and (x : A) <p : prop.

 (i) There exists y : Farn (/I) such that the judgements

 (Vx G y) (p = T,
 (3x G y) (P = JL

 are derivable.

 (ii) Let a\,a2 : A. There exists y : F&m(A) such that the judgements

 (Vx G y) (p = (p[ax/x] A <p[a2/x],

 (3x G y) (p = cp[ax/x] N (p[a2/x]
 are derivable.

 (iii) Let a : Fam2(^4), where Fam2(^t) = Fam(Fam(.4)). There exists y : Fam(y?)
 such that the judgements

 (Vx ey)(p = (Vy e a){Nx e y) (p,
 [3x ey) </> = (3y e a){3x e y) cp

 are derivable.

 Proof. The proofs of the three parts of the Lemma are analogous to the ones of
 Lemma 3.1, Lemma 3.2, and Lemma 3.4 respectively. H

 The previous lemma states the key facts needed to obtain the validity of Pairing
 and Union in the original type-theoretic interpretation. As we discussed in Section 3
 it is necessary to assume the rule (PU) in order to obtain a version of Restricted
 Separation when the combinatorial notion of small collection is assumed.

 Lemma 4.2. Let A : type, a : Fam(^4) and (x : A) p : P. Assuming (PU) there
 exists y : Fam(^4) such that, for (x : A) (p : prop, the judgements

 (Vx ey)(p = {yx ea){r{p) D 0).
 (3x G y) (p = {3x G a)(z{p) A (p)

 can be derived.
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 Proof. The definition of the appropriate y : Sub(A) is given in (20) and (21).
 The required judgements follow by unfolding the relevant definitions. 3

 The type-theoretic axiom of choice is crucial to prove the validity of the two
 collection schemes of CZF in the original type-theoretic interpretation. Indeed, the
 rule (AC) allows us to prove the next lemma, from which the two collection rules
 concerning small families follow easily.

 Lemma 4.3. Assuming (AC), the rules

 a : Fam(A) B : type (x : A, y : B) <\> : prop

 (Vx G a)(3y : B) =? (3f : el(a) - B)(Vx G a)4>[app(f,x)/y]
 and

 a : Fam(^) ? : Fam(i?) (x : A, y : B) <fi : prop

 (Vx G a)(3y G ?)</> =* (3f : el(a) - el(/?))(Vx G a)c?[va\(?,app(f,x))/y]
 are derivable.

 For types A and i?, a : Fam(A) and /? : Fam(i?) and (x : A, y : B) </> : prop we
 define

 (V3 fff ) 0 -def (Vx G a)(3>> G ?)<t> A (yy G /?)(3x G a)0 : prop
 We can now obtain the collection rules for small families. These rules are formulated

 just like those rules for small collections presented in Section 3.

 Proposition 4.4. Assuming (AC), the rules

 A, B : type a : Fam(^) (x : A, y : B) (j) : prop

 (Vx G a)(3y : B)c?> => (3v : Fam(?))(V3 fg)0
 0/2 0"

 A,B,C : type a : Fam(yl) /? : Fam(B) (x : A, y : B, z : C) y/ : prop

 (3u : Fam2(?))(Vz : C)((Vx G a)(3j> G /?)*// D (3v G k)(V3 ff*) y/)
 are derivable.

 Proof. To derive the Strong Collection rule for small families, let us assume that
 (Vx G a) (3y : B) (j) holds. By Lemma 4.3 there is / : el(a) ? B such that
 (Vx G a) 0[app(/, x)/j/] holds. Once we define

 jff =def pair(el(a),/) : Fam(B)

 it is straightforward to show that (V3 f0) 0 holds, as required.
 We now derive the Subset Collection rule for small families. Let z : C and

 assume (Vx G a)(3j> G /?)</>. An application of Lemma 4.3 shows that there is
 / : el(a) -> el(/J) such that

 (VxGel(a))0[val(^,app(/,x))/^]
 holds. Define

 ?' =def pair(el(a), (Ax : el(a)) val(jff,app(/,x))) : Fam(?)

 We define an element ? : Fam2(i?), independent of 0 and z : C, such that q\(?) ?
 el(a) -> elQ?) : U and, for A: : el(a) -> el(j8)

 \a\(3,k) = pair(el(a), (Xx : el(a)) va\(?, app(k, x)))) : Fam(i?).
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 Observe that / : el (a) ?> el(/?) and val(<5,/) = ?' : Fam(i?). We have therefore
 obtained ? : Fam2(i?) such that

 (3v??)(V3 f?)4>
 holds, as required. H

 The interpretation of CZF in ML(AC + PU) can now be developed analogously
 to the generalised type-theoretic interpretation of Section 3, except that we use the
 type V =def (Wx : U) T(x) instead of the type V to interpret the universe of sets of
 CZF. Let us sketch the general outline of this interpretation. First, it is necessary
 to develop the appropriate notation to express quantification over an element of V.
 This involves proving counterparts of Lemma 3.8 and Lemma 3.9. Secondly, one
 defines an analog for the type V of the extensional equality that we defined for the
 type Vin (25). For ax,a2 : V we write ax^a2 : prop to denote it. Finally, one gives
 an interpretation of the language of CZF in ML(AC + PU) as in Table 3 except
 that the type V is used instead of the type V to interpret unrestricted quantifiers.
 The following result can then be proved.

 Theorem 4.5. The logic-enriched type theory ML (AC + PU) proves that the com
 binatorial interpretation of CZF in (V, ?) is valid.

 Proof. Validity of Extensionality and Set Induction follows from the definition
 of the extensional equality on V and from the induction rule of the W-type V,
 respectively. Lemma 4.1 implies the validity of Pairing and Union, and Lemma 4.2
 the validity of Restricted Separation. The proof of validity of Infinity is essentially
 as in the generalised type-theoretic interpretation. Finally, the validity of the Strong
 Collection and Subset Collection schemes follows from Proposition 4.4. H

 Propositions-as-types interpretation of collection rules for small subclasses. We
 now want to relate the interpretations of CZF in ML(COLL) and in ML(AC + PU).
 To do so, we show that the Strong Collection and Subset Collection rules for small
 subclasses are justified under the propositions-as-types interpretation of logic. Let
 us use the function t : P ?> U of Lemma 2.1 to define, for a : Sub(^4)

 comp(a) =def (Sx : el(a)) app(t, dom(a,x)) : U.

 For a : Sub(^4) and a : Fam(^) we can then let

 i (a) =def pair(comp(a), {Xz : comp(a)) val(a, z.l)) : Fam(^),

 j{v) =def pair(el(cr),pair((/L : el(cr))T, {Xx : el(cr)) val(cr, x))) : Sub(^).

 The next lemma relates the definitions in (14) and (15) with the ones in (17) and (18).

 Lemma 4.6. Let {x : A) <p : prop. Assuming (AC) and (PU), for a : Sub(v4) and
 g : Fam(^4) the judgements

 (Vx ea)(p = (Vx G i{a))(p,
 {Vxea)(P = {Vxej{a))(P

 where V is either Nor3, are derivable.

 Proof. Let us prove the judgements involving universal quantification. For the
 first part, observe that the rule (PU) implies

 (Vx : el(a))dom(a, x) D </>[val(a,x)/x] = (Vz : comp(a))0[val(a, z.l)/x].
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 By unfolding the definitions it follows that (Vx G a)(f> ? (Vx G i(a))</> holds. For
 the second part, observe that

 (Vx G el(<r))0[val(cr,x)/x] - (Vx G j(a))<p

 holds, and this proves the desired claim. 3

 Theorem 4.7. Assuming (AC) and (PU), the Strong Collection and Subset Col
 lection rules are derivable.

 Proof. The claim follows from Proposition 4.4 and Lemma 4.6. 3

 We now have two interpretations of CZF in ML(AC + PU), one using V and
 the other using V. But in fact these are essentially the same. This is because
 in ML(AC + PU) one can prove that there are inverse isomorphisms between the
 structure on V with extensional equality and extensional membership and the same
 structure on V. The key advantage of ML(COLL) over ML(AC + PU) is the fact
 that the former allows for reinterpretations of the logic which are not available for
 the latter, as we discuss in Section 5.

 ?5. Reinterpreting logic.

 Local operators in logic-enriched type theories. In this section we introduce the
 notion of a local operator on the proposition universe, and discuss the reinter
 preation of logic determined by it. Before introducing local operators, however,
 it is convenient to fix some notation and establish a simple fact that will be
 useful in the development of reinterpretations of logic. For p,q : P we define
 p < q ?def t(p) ^ t(q) prop. It is also convenient to define, for p : P and
 4> : prop

 P<<t> =def t{p) D <t>.

 We then have the following result.

 Lemma 5.1. Let B : type, p : P and (y : B) y/ : prop such that

 p<(3y:B)y/.
 Then there is ? : Sub(B) such that p < (3y G ?)y/ and (V> G ?)(z(p) A y/).

 Proof. Let a =def ext(/?) : Sub(l). Use Lemma 3.7 and then apply the Strong
 Collection Rule to (V_ G a)(3y : B)y/. 3

 Definition 5.2. We say that j : P -? P is a local operator if the following judge
 ments

 (i) P < JP>
 (ii) p <q => jp < jq,
 (iii) jp Ajq<j(p Aq),
 (iv) j(jp) <jp

 are derivable, where jp =def app(y, p), for p : P.

 From now on we assume given an arbitrary local operator j. For (?> : prop we
 define

 J<\> =def (3y : P)[tO? A (tQO d </>)].
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 First of all, we note that / and j are extensionally equal on elements of the propo
 sition universe. The following result can be obtained by expanding the relevant
 definitions.

 Lemma 5.3. For p : P, the judgement J(r(p)) = z(jp) is derivable.
 We now show that the operator / inherits all the properties of the local operator j.

 Lemma 5.4. Let <j> : prop and p : P such that p < J (p.Then there is q G P such that
 q < cp and p < jq.

 Proof. As p < Jcp, we have that p < {3y : F)y/, where y/ =def (z(jy) A y < cp).
 Then, by Lemma 5.1, there is ? : Sub(P) such that

 (26) p<{3ye?)ys
 and

 (27) {Vye?){T{P)A?).
 Let q =def Oy e ?)y : P. Then q < (p, as (Vy G ?){y < (p), by (27). Also,
 by (26), p < {3y G ?)t(jy). As (Vy G ?)(y < q) and j is monotone we get that
 (Vy t ?)?y < Jq)and hence p < Jq- H

 The next proposition shows that the properties of j can be lifted to /. In its proof
 we will apply Lemma 5.4, and thus make use of the Strong Collection rule.

 Proposition 5.5. For cp, y/ : prop, the judgements

 (i) (p D Jcp,
 (ii) <p D y/ => J(p D Jyj,
 (iii) J(p A Jy/ D J((p A y/),
 (iv) J(J(p) D Jcp

 are derivable.

 Proof. Direct derivations suffice to prove the first three claims. The proof of the
 last one uses Lemma 5.4 and the fact that j is monotone. H

 We define the y-interpretation of ML(COLL~ ) into itself determined by the local
 operator j. This interpretation acts solely on the logic, leaving types unchanged.

 We define the j -interpretation by structural induction on the raw syntax of the type
 theory. The interpretation on formulae is defined in Table 4, where is either A, V
 or D and V is either V or 3.

 (T)j =def T
 (?)j =def 1

 (<l>*y/)j =defJ(<t>)j*J(y/)j

 ((Vx:A)cP)j=?d(Vx:A)J((p)J
 (t(a))j =def *r(a)

 Table 4. Definition of the j -interpretation of formulas.

 The definition of the y-interpretation of judgement bodies follows in Table 5.
 Given these definitions, we let the j -interpretation of judgements to be defined as
 follows:

 ((r)&)j=?d(r)(?B)j.
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 (A : type); =def A : type

 (A = A' : type); =def A = A' : type

 (a : A)j =def 0 : A
 (a ? a' \ A)j =def 0 = 0; : v4

 (0 : prop); =def (0>7- : prop

 (( 01,- ,(?)n => 0 )); =def J(<t>\)j,- ' ' ,J((/>n)j => ^(0)y

 Table 5. Definition of the y -interpretation of judgment bodies

 Definition 5.6. The y-interpretation of a rule

 (rpffi (rw)^gw
 (??

 is said to be sound if the judgement ((F) &)j is derivable from the judgements
 ((ri)^i)7,...,((r,)^);.
 Proposition 5.7. The j-interpretation of the predicate logic and induction rules of

 ML(COLL) w sound.
 Proof. The result follows by a series of routine calculations. 3

 We now prove three lemmas that will lead us to a proof of the result that the
 j -interpretation of the Strong Collection rule is sound. For z : Sub(l), let

 o-(z) =def /(3. G z)T : prop.

 Lemma 5.8. For <f) : prop, the judgement

 J(j) - (3z : Sub(l))(a(z) A (V_ G z)<?>)
 is derivable.

 Proof. This is a consequence of the definition of / and of Lemma 3.7. 3

 Lemma 5.9. For A,B : type, (x : A, y : B) </> : prop, a : Sub(A) andy : Sub2(?),
 the judgement

 (1) =* (2)
 can be derived, where

 (1) =def (V3 ?f) (3z : Sub(l))[(7(z) A (V3 7??)<?]
 and

 (2) =def (Vx ea)J(3y eUy)<t>A(Vy e{Jy)(3x ea)<f>.
 Proof. Assume (1). Then

 (Vx G a)(3w G y)(3z : Sub(t)[a(z) A (V_ G z)(3y G w)</>]
 so that

 (Vx G a)(3z : Sub(l))[a(z) A (V_ G z)(3w G y)(3y G w)</>]

 and hence, by Lemma 5.8,

 (Vx ea)J(3y e\Jy)(f).
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 Also,

 (Nw G y)(3x G a)(3z : Sub(t))[a(z) A (Ny e w){3. G z)</>]

 so that (Nw G y)(Vy G w)(3x e a)cp and hence

 (Vye{Jy)(3xea)cp.
 Thus we have proved (2). H

 Lemma 5.10. For A,B : type, (x : A, y : B) cp : prop, a : Sub(A), the judgement

 (Vx ea)J(3y : B) cP =>

 (3v :Sub(?))((Vx Ga)/(3^ e v) 0 A (Vy G v)(3x G a) 0)
 w derivable.

 Proof. Assume (Vx G a) /(3y : B) cp. By Lemma 5.9 it suffices to show that
 there is y : Sub2 (B) such that (1) ofthat lemma holds. By Lemma 5.8

 (Vx G a)(3z : Sub(l)) [a(z) A (V_ G z)(3,y : B) 0].

 By Strong Collection

 (Vx G a)(3z : Sub(l)) [o(z) A (3w : Sub(B))(N3 ^) 0]
 so that

 (Vx G a)(3u; : Sub(B))(3z : Sub(l)) [<r(z) A (V3 ^) </>].

 By Strong Collection again there is y : Sub2(i?) such that (1) of Lemma 5.9 holds.
 H

 Proposition 5.11. The j-interpretation of the Strong Collection rule is sound.

 Proof. The claim is a direct consequence of Lemma 5.10. H

 As we will see, it is not possible to prove that the j -interpretation of the Subset
 Collection rule is sound for an arbitrary local operator j. We therefore introduce
 the notion of a set-presentable local operator and show that if j is set-presentable
 then the y-interpretation of the Subset Collection rule is sound. The notion of set
 presentable local operator is closely related to the notion of set-presentable closure
 operator or nucleus [5, 12,16] and inductively generated formal topology [8, 37, 38].

 Definition 5.12. A local operator j on P is said to be set-presentable if there
 exists p : Sub(P) such that the judgement

 (Np:F)T(jp) = (3qep)(q<p)
 is derivable.

 From now on we work assuming the Subset Collection rule.

 Proposition 5.13. Let A,B,C : type and (x : A, y : B, z : C) y/ : prop. If
 a : Sub2 (.4) and ? : Sub(i?) then there is y : Sub2(?) such that the judgement

 (Nwea)(Nz:C)((Nxew)(3ye?)? D (3v G y)(V3 ^) y)
 is derivable.

This content downloaded from 129.11.23.117 on Tue, 05 Sep 2017 12:56:53 UTC
All use subject to http://about.jstor.org/terms



 94 NICOLA GAMBINO AND PETER ACZEL

 Proof. For w : Sub(A), u : Sub2(?), z : C let

 6(w,u,z) =def [(Vx G w)(3y G ?) y, D (3v G h)(V3 ff^) y/].
 By Subset Collection

 (Vw G a)(3u : Sub2(?))(Vz : C) 6(w,u,z).

 By Strong Collection there is ? : Sub(Sub2(?)) such that

 (Vw G a)(3w G <5)(Vz : C) 0(w, w, z).

 Let y =def U? : Sub2(?). Then

 (Vw G a)(Vz : C)6(w,y,z)
 as desired. H

 The next lemma is a consequence of Lemma 3.6 and Lemma 3.7.

 Lemma 5.14. If j is a set-presentable local operator, then there exists k : Sub (l)
 such that, for (/> : prop the judgements

 J(?) - (3u G ?)(V_ eu) (j)
 and

 (Vw G ?) cr(w)

 0re derivable.

 Let us now assume that the local operator j is set-presentable and that k : Sub (1)
 satisfies the properties of Lemma 5.14.

 Lemma 5.15. Let A,B,C : type and (x : A, y : B,z : C) 0 : prop. 7/" a : Sub(^4)
 and ? : Sub(i?) then there is y : Sub (B) such that the judgement

 (Vz : C) {(Vx ea)J(3y e ?) <f> D
 (3v e y)[(Vx G a)/(3y G v) <j> A (Vy G v)(3x G a) 0]}

 w derivable.

 Proof. Let? : Sub2 (1) satisfy the properties of Lemma 5.14. For^ \B,z'\ AxC
 let

 <t>' =def ^[z'.^z'^/x^].
 By Proposition 5.13 there is yo Sub2(?) such that

 (V? G ?)(Vz' : A x C) [(V_ G k)(3j> G jff) </>' D (3v G y0)(V3 j??) </>'].
 It follows that

 (Vu G ?)(Vx : ?)(Vz : C) [(V_ G k)(3^ g ?) </> D (3v G y0)(V3 j?^) 0].
 Forx : A,z : C,u : Sub(B) let

 ^ =def (3? : Sub(l)) [o(u) A (V3 ^) 0].
 By Subset Collection there is <5 : Sub(Sub2(?)) such that

 (Vz : C) [(Vx G a)(3u G y0) ? D &w G ?)(V3 ff ) y/].
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 Let y =def {\Jw \ w e ?} : Sub2(?). To complete the proof of the lemma let
 z : C such that (Vx G a)J(3y G ?) cp. By Lemma 5.14

 (Vx G a)(3m G ?)(V_ G w)(3y G ?ff) 0.

 so that

 (VxGa)(3WG/,)(^Gyo)(V3 ^f) </>.
 As (Vw G ?) g(u)

 (Vx G a)(3v G yo) y/
 so that

 (a?,e<s)(V3 *?*) ^
 and hence, by Lemma 5.9,

 (3w G<S)[(Vx ea);(3j/ e\Jw)cP A (Ny e[jw)(3xea)cPl
 It follows that

 (3v G y)[(Vx G a)J(3y e v) cp A (Ny e v)(3x e a) cp]. H

 Observe that the soundness of the j -interpretation of the Subset Collection rule
 follows directly from the previous lemma. We can then summarise the results
 obtained in this section in the next theorem, that is our second main result.

 Theorem 5.16. Let j be a local operator.

 (i) The j-interpretation of each rule o/ML(COLL~ ) is sound.
 (ii) Assuming the Subset Collection rule o/ML(COLL), if j is set-presentable, then

 the j-interpretation of the Subset Collection rule is sound.

 Double-negation interpretation. As an application of the results just obtained we
 present a type-theoretic version of the double-negation interpretation. We define
 the double-negation local operator as follows:

 (x : P) jx =def ?x : P
 where

 ^x =def x D _L : P

 for x : P. It is easy to prove that j is a local operator.
 Let us point out that the operator J determined by the double negation local

 operator need not to be logically equivalent to double negation. In fact, for cp : prop
 it holds

 Jcp = (3p :F)(^x(p) Az(p) D ^P)
 where -<</> =def cp d _l, for cp : prop. In general it will hold only that Jcp implies
 ^^cp but not viceversa. This observation seems to isolate the main reason for
 which it is possible to prove the soundness of the j -interpretation of the Strong
 Collection rule. Since [9] it is well-known that there is a standard double-negation
 translation of classical Zermelo-Frankel set theory, ZF, into its intuitionistic coun
 terpart, IZF. A close inspection of the proofs reveals however that the derivation of
 the standard double-negation interpretation of Collection makes use not only of the
 Collection axiom but also of the Full Separation axiom scheme of IZF, that is not
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 available in generalised predicative systems like CZF or ML(COLL). This use of
 Full Separation seems essential if one is working with the standard double-negation
 translation [11]. Our definition of a variant of the double-negation translation
 overcomes this problem. These observations arose first in connection with the de
 velopment of Hey ting-valued interpretations for CZF [14]. The double-negation
 nucleus on the Heyting algebra of truth values corresponds indeed to a double
 negation interpretation [9, 15].

 Since the j -interpretation of a proposition is logically equivalent to its double
 negation only for small propositions, it is natural to consider the following Restricted
 Excluded Middle principle (REM),

 (REM) (x :P) t(x) V -t(x)
 and we can also consider a type-theoretic principle asserting that the double
 negation local operator is set-presentable

 (DNSP) (3r : Sub(P))(V/? : P) -.-i i(p) - (3q G r)q D x(p).
 Theorem 5.17.

 (i) The double-negation interpretation of ML (COLL- ) + REM is sound.
 (ii) Assuming (DNSP), the double-negation interpretation o/ML(COLL) + REM

 is sound.

 Proof. The claims are direct consequences of Theorem 5.16. 3

 We conclude the paper with a lower bound for the proof-theoretic strength of the
 logic-enriched type theory ML(COLL) + DNSP.

 Corollary 5.18. Second-order arithmetic is proof-theoretically reducible to the
 logic-enriched type theory ML(COLL) + DNSP.

 Proof. Consider the set theory CZF + REM that is obtained from CZF by
 adding a scheme asserting the law of exclued middle for restricted formulas. Using
 the generalised type-theoretic interpretation, this semi-classical set theory is inter
 pretable in the logic-enriched type theory ML(COLL) + REM, which can in turn
 be interpreted in ML(COLL) + DNSP via the double-negation translation. The
 set theory CZF + REM has proof-theoretic strength at least above that of Bounded
 Zermelo set theory, which is obtained from Zermelo set theory by replacing the
 Full Separation axiom scheme with its restricted counterpart. This is because the
 Power Set axiom is derivable in CZF + REM, and Bounded Zermelo set theory
 has a double-negation interpretation into its intuitionistic counterpart, which is
 a subsystem of CZF + REM. 3

 ?6. Conclusions and future work. This paper is the first in a series of papers devel
 oping a research effort intended to contribute to establishing the exact relationship
 between different settings for constructive mathematics. These different settings
 are the type-theoretical, set-theoretical, and categorical. Our effort is concerned
 with getting a precise result relating CZF and a suitably formulated type theory.
 A sketch of the ideas involved in getting this result was presented without proofs
 in [4]. In the present paper we have focussed on two of the crucial ingredients in our
 effort, namely the introduction of logic-enriched type theories and the generalised
 type-theoretic interpretation.
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 In a sequel to this paper, we will treat the other two main ideas involved in
 proving the precise result relating CZF and a logic-enriched type theory. The
 first idea is to weaken the type-theoretic rules concerning Il-types and W-types
 so as to allow the development of a types-as-classes interpretation of the resulting
 logic-enriched type theory into CZF. The second idea is the development of the
 generalised type-theoretic interpretation with these weaker rules, so as to bring CZF
 in exact correspondence with a logic-enriched type theory. The planned sequel to
 the present paper will also contain detailed results characterising the propositions
 as-types translation of a logic-enriched type theory into its pure part.

 A related topic is the development a general theory of dependently-sorted logic,
 which could be applied to logic-enriched type theories as a special case. The study
 of such a theory, only hinted at in [4], was originally explored by the second author
 in an unpublished note, and developed further by his PhD student Joao Belo. This
 dependently-sorted logic can be compared with the the formulation of First-Order
 Logic with Dependent Sorts (FOLDS) [25, 26, 27]. The motivation for FOLDS is
 quite different to ours, and leads to a different technical focus. In particular, the
 development of FOLDS does not involve languages that have function symbols.
 This simplifies the formulation of the syntax. From the point of view of logic
 enriched type theories functions symbols are essential and cannot be avoided, thus
 leading to a more complex theory, which will be the subject of a further paper.

 Acknowledgements. The first author wishes to thank the Department of Com
 puter Science, University of Manchester, where part of the research described here
 was carried out.

 Appendix A. Type-theoretic rules.

 The pure type theory ML. We present the rules of the pure type theory ML,
 discussed in Section 1. Informal explanations for the rules of this type theory can
 be found in [28].

 Assumption rule. The following rule applies under the side-condition that x ^
 FV(r)uFV(A).

 (r, A) & A\ type
 (r,x :A,A)^

 Equality rules. From now on we suppress mention of a context that is common
 to both the premisses and the conclusion of a rule.

 A : type Ax = A2 : type Ax ? A2 : type A2 = A3 : type
 A = A : type A2 = Ax : type Ax = A3 : type

 a : A ax = a2 : A ax = a2 : A a2 = a3 : A
 a = a : A a2 = ax : A ax = a3 : A

 a : Ax Ax = A2 ax = a2, : Ax Ax = A2
 a : A2  ax = a2\ A2
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 98 NICOLA GAMBINO AND PETER ACZEL

 Substitution rule.

 (x : A,A) 38 a : A
 (A[0/x]) ??[a/x]

 Congruence rules.

 (x : A, ?) C : type 01 = 02 : A (x : A, ?) c : C 01 = 02 : A
 (A[0i/x]) C[0i/x] = C[a2/x] : type (A[ax/x]) c[a{/x] = c[a2/x] : C[0i/x]

 For V that is either n, I or W:

 (x : A) Bx= B2: type (x : A) b\ = b2 : B
 (Vx : A)Bi = (Vx : A)B2 : type (Xx : A)b\ = (Xx : A)b2 : (nx : A)B

 Analogous rules should also be formulated for other symbols, but we omit for
 brevity.

 Basic types. We write 0,1, and 2 for the types with zero, one, and two canonical
 elements, respectively. We thus have the following formation and introduction rules.

 O : type 1 : type 2 : type
 The type with no canonical elements does not have an introduction rule. We thus
 have only the following introduction rules.

 Oi : 1 12 : 2 22 : 2
 The elimination rules follow the usual pattern.

 (z : O) C : type e : O
 ro(e) : C[e/z]

 (z : 1) C : type e :1 c : C[0{/z]
 n(e,c):C[e/z]

 (z : 2) C : type e : 2 c\ : C[l2/z] c2 : C[22/z]
 *2(e,c\,c2) : C[e/z]

 Finally, we give the computation rules for these types.

 (z : 1) C : type c : C[Oi/z]

 ri(0,c) = c : C[Oi/z]

 (z : 2) C : type cx : C[l2/z] c2 : C[22/z]
 riih,c\,c2) = ci : C[l2/z]

 (z : 2) C : type cx : C[\2/z] c2 : C[22/z]

 1*2(22,c\,c2) = c2 : C[22/z]
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 Natural numbers type.

 N : type

 The introduction rules for this type are standard.

 n :N
 0N :N -

 succ(rc) : N

 In the elination and computation rules below the premisses should include the
 judgement (z : N) C : type that we omit for brevity.

 n : N c: C[0/z] (x : N,y : C[x/z]) d : C[succ(x)/z]

 rm(n,c,(x,y)d) : C[n/z]

 0 : N c: C[0/z] (x : N,y : C[x/z]) d : C[succ(x)/z]

 rN(0,c,(x,y)d) = c : C[0/z]

 n : N c : C[0/z] (x : N, j> : C[x/z]) rf : C[succ(x)/z]

 rN(succ(rc),c, (x,j)?/) = d[n,Yfq(n,c, (x, y)d)/x, y] : C[succ(?)/z]

 R2-rules.

 e : 2 yli : type ^42 : type
 R2(e,Ax,A2) :type

 R2(l2,^i,^2) = ?1 R2(22,AX,A2) = ?2

 S-rw/es.

 yl : type (x : A) B : type

 (Sx : A)B : type

 a : A b : 5[a/x]
 pair(a, 6) : (Ex : v4)?

 Similarly to what we did for the natural numbers type, we suppress the premiss
 (z : (Sx : A)) C : type in the elimination and computation rules.

 e : (Sx : A)B (x :A,y : B) c : C[pair(x,.y)/z]

 split(e, (x, y)c) : C[e/z]

 a \ A b : i?[?/x] (x : ,4, y : ?) c : C[pair(x, y)/z]

 split((pair(<z,6), (x, y)c) ? c[a,b/x,y] : C[pair(a,?)/z]
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 Fl-rules.

 A : type (x : A) B : type

 (nx : A)B : type

 (x :A)b : B
 (Xx : A)b : (nx : A)B

 f : (nx : A)B a : A
 app(/,?) : B[a/x]

 (x :A)b : B a : A
 app((Ax : A)b,a) = b[a/x] : B[a/x]

 Rules for the type universe.
 Formation rule.

 U : type
 Introduction rules.

 (D:U 1:U 2 :U N:U

 e : 2 0i : U 02 : U

 R2(<?,0i,02) :U

 0:U (x:T(fl))6:U 0:U (x : T(a)) b : U
 (Zx :a)b:V (Ux :a)b:U

 Elimination rule.
 a :U

 . T(0): type
 Computation rules.

 T(O) = O : type T(?) - 1 : type T(2) = 2 : type T(N) = N : type

 e : 2 0i : U 02 : U

 T(R2(e,0i,02)) =R2(e,T(ax),T(a2)) : type

 0 : U ' (x : T(a)) b : U
 T((Zx : a)b) = (Zx : T(?))T6 : type

 0:U (x:T(0))e:U
 T((Ilx : a)b) = (Ux : T(a))T(b) : type
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 Rules for the proposition universe.
 Formation rule.

 P : type
 Introduction rules.

 T :P 1 :P

 p\ : P /?2 : P p\ : P /?2 : F />i : P />2 : P
 ^iA^:P />i V p2 : P /?! d /72 : P

 a:U (x:T(a))/?:P a : U (x : T(a)) p : P
 (Vx : a)p : P (3x : a)/? : P

 Elimination rule.

 p :P
 t(/>) : prop

 Computation rules.

 t(T) = T t(1) = I.

 /?i : P ^2 : P /?i : P /?2 : P
 t(/?i A p2) = x(px) A z(p2) z(px V p2) = z(px) V z(p2)

 Pi : F i?2 : P
 t(/?i D/>2) =t(/?i) D t(/?2)

 ?:U (x:T(a))p:? a:V (x\T(a))p:F
 t((Vx : a)/?) = (Vx : T(a)) x(p) t((3x : ?)/?) = (3x : T(a)) r(/?)
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