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PI-FLAME : A Parallel Inmune System
Simulator using the FLAME GPU
environment

Shailesh Tamrakar', Paul Richmond? and Roshan M. D’Souza'

Abstract

Agent-based models (ABMs) are increasingly being used to study population dynamics in complex systems such as the
human immune system. Previously, Folcik et al. developed a Basic Immune Simulator (BIS) and implemented it using
the RePast ABM simulation framework. However, frameworks such as RePast are designed to execute serially on CPUs
and therefore cannot efficiently handle large model sizes. In this paper, we report on our implementation of the BIS
using FLAME-GPU, a parallel computing ABM simulator designed to execute on Graphics Processing Units (GPUs). To
benchmark our implementation, we simulate the response of the immune system to a viral infection of generic tissue
cells. We compared our results with those obtained form the original RePast implementation for statistical accuracy. We

observe that our implementation has 13 x performance advantage over the original RePast implementation.
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1. Introduction

The immune system consists of biological structures
and processes that protect an individual against various
pathogens. In order to function effectively, the immune
system should be capable of detecting and eliminating
various pathogens such as virus, bacteria, and parasitic
multi-cellular organisms while at the same time not harming
the individual’s healthy tissue. The immune system in higher
organisms such as humans is the result of evolution for
over 300 million years. It consists of a complex system
of specialized cells, signalling chemicals, and pathogen
destroying antibodies. It provides a multi-layered protection
against pathogens with each layer providing increasing
specificity.

The first line of defence against pathogens are barriers
such as the skin. If this physical barrier is breached, there
are two main classes of immune responses. The Innate
immune system is the first line of defence. It provides
a non-specific Alberts et al. (2002) immediate maximal
response. The response is cell-mediated Matzinger (2002a)
with humoral components. However, there is no memory
associated with the innate immune response. If the innate
response fails to clear the pathogen, vertebrates in particular
posses a second layer of immune system called the adaptive
immune system that is activated by the innate response.
The adaptive immune system is responsible for exponential
proliferation of antigen-specific cells. Unlike innate immune
cells, the anitgen-specific adaptive immune cells develop an
immunological memory so that host response is much faster
when the same pathogen infects the functional cells of the
body at a later date Pancer and Cooper (2006).
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Mathematical Modelling of the Immune system

The immune system is a complex system with a vast network
of interactions between different cells and chemical signals.
The shear complexity of the dynamics associated with these
interactions makes experimental studies very challenging.
While in vitro experimentation with a few cells might show
some local interactions, separation of these cells from their
natural environment causes non-physiological behavior.
On the other hand in vivo studies may enable study of the
overall behavior, but the local interactions are difficult to
resolve. The main challenge is to connect individual level
interactions and connect them to large-scale phenomena.
It is here that mathematical modelling can provide some
insight.

Among the first mathematical tools to model immune
system were through a system of ordinary differential
equations (ODEs) Merrill (1981); Varela and Stewart (1990);
Fouchet and Regoes (2008). This system of ODEs described
the temporal dynamics of various immune/pathogen cells
as well as the bio-chemicals (cytokines, chemokines,
cytotoxins etc.). The main advantage of ODEs is the fact
that they allow analysis of the dynamics of the system
at a level of abstraction similar to how experimentalists
conduct their investigation, i.e., monitoring the dynamics of
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concentrations and density of various chemicals and cells
respectively. Moreover, fairly sophisticated techniques exist
to solve and analyze these ODEs. The disadvantage is the
lack of representation of spatial dynamics. Furthermore,
local interactions between cells is not accounted for properly.
Systems of Partial differential equation (PDEs) resolve the
spatial dynamics Antia et al. (2003); Onsum and Rao (2007).
The downside being that these systems are difficult to solve
as well as to analyse. Most of these PDEs take the form of
reaction-diffusion-decay type PDEs. The origins of these
methods can be traced to the work by Alan TuringTuring
(1952). As in the case of ODEs, PDEs can only resolve
physiological-level behavior, albeit with space. Local
interactions between cells cannot be captured. To capture
the stochastic nature of some of the processes in the immune
dynamics, some researchers have used stochastic ODEs and
PDEs Figge (2009); Figueredo et al. (2014); Yuan and Allen
(2011). Once again, only physiological-level stochasticity
can be captured.

All the methods described above operate under
continuum/bulk assumptions, i.e., cell populations are
large and therefore the effective measure of population sizes
is concentration which are represented as real numbers. In
quite a few situations, this assumption may not be true,
especially in case of modelling an immune response in the
early stages of an infection. Some researchers have used
the Gillespie algorithm Gillespie (1977), a variation of the
Monte Carlo, which has traditionally been used to model
chemical kinetics in bio-chemical networks. The Gillespie
algorithm is applicable in cases where the number of cells
are finite and the interaction/reaction between these cells is
stochastic Figueredo et al. (2014). Spatial dynamics have
been incorporated in compartmentalized versions of this
algorithm Stundzia and Lumsden (1996).

A shortcoming of the above methods is the difficulty in
representing memory which is essential for modelling adap-
tive immune response. Models based on cellular automata
(CA) Seiden and Celada (1992); Mallet and De Pillis (2006);
Puzone et al. (2002); Castiglione and Bernaschi (2004)
and agent-based modelling (ABMs)Chiacchio et al. (2014);
Noble (2002); Van Dyke Parunak et al. (1998); Folcik et al.
(2007) address this shortcoming. Both CA and ABMs are
designated as "individual-based models" in ecology because
of the fact that both models are bottom-up. The global/sys-
tem level behaviors emerge from the local interactions of
discrete individual entities comprising the system Clarke
(2014). Local interactions are modelled in terms of rules
which are typically derived from experimental observations.
The CA models are used when space is represented in terms
of a grid. The individuals in this case are grid nodes. ABMs
on the other hand are not restricted to a grid architecture. In
ABMs the individual/agent is an autonomous generic finite
state machine that is mobile and can locally interact with
other agents and/or environment and effect state transitions.
The term "local" is not restricted to spatial locality but can
include networks. Furthermore, space can be represented
continuously or discretely as in CAs. Therefore, ABMs are
preferred for complex dynamic systems that include mobile
interacting entities. Due to the emergent nature of CAs
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and ABMs, model sizes (agent populations) must reflect
numbers in the representative volume element in the real
world Bonabeau (2002). Moreover, due to the stochastic
nature of the models, several model runs have to be computed
to generate sufficient data for statistical analysis. Traditional
serial computing on central processing units (CPUs) cannot
handle this computational load. Increasingly, researchers
have developed parallel computing techniques to address
computational complexityBernaschi et al. (1998); Collier
and North (2013); Massaioli et al. (2005).

Parallel Execution of ABMs on Graphics
Processing Units (GPUSs)

Beginning in 2007, a new off-the-shelf commodity parallel
computing platform, the graphics processing unit (GPU),
has emerged as an attractive hardware platform for
parallel computing on desktop computers. GPUs were
initially developed for accelerating 3D graphics rendering.
Computational scientists used this rendering functionality
to accelerate scientific computing Owens et al. (2007).
Subsequently, GPU vendors developed APIs to directly
access the parallel hardware without invoking the graphics
pipeline. Several recent efforts have investigated parallel
acceleration of agent-based models on GPUs Richmond et al.
(2009); DSouza et al. (2007, 2009).

GPUs follow the data-parallel model where the same

-
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Figure 1. Execution hardware and memory hierarchy on GPUs.
Each serial processor (SP) executes one thread and therefore
processes one data element. Threads are grouped into warps to
be executed in lock-step. Multiple thread warps are scheduled
on a time sharing basis to execute on the multi-processor. The
order of execution of thread warps on the SMs is random.

set of instructions act on individual elements of a data
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set. Furthermore, there are no interdependencies between
different data set elements at a given processing step. This
greatly simplifies the memory access and control. Therefore,
most of the GPU transistors are allocated to computation as
opposed to control. The simplified memory architecture also
lends itself to much higher bandwidth as compared to CPUs.
At the hardware level, several serial processors (SPs) are
organized into a streaming multiprocessor (SMs) (Figure 1).
The SPs in a SM share on-chip user-controlled cache called
shared memory, special function units, instruction dispatch
units, and warp schedulers. The texture cache and constant
cache are read only automatic cache for read-only texture
data (used in graphics rendering), and for storing system
wide constants respectively. The lowest execution unit is a
thread and is executed on a SP. Threads are organized into
thread-warps which are executed in lock-step on SPs in a
single SM. In software, threads are organized into thread
blocks (TBs). Threads in a TB can communicate through
shared memory and can be synchronized. All threads in a
TB, split into appropriate number of warps, are executed
on the same SM. TBs are further arranged into a grid.
Threads across TBs can only communicate through off-chip
random access memory (RAM). Threads across all TBs are
automatically synchronized at the end of the execution of
the parallel program called a kernel. As opposed to current
generation multi-core CPUs, GPUs can have thousands of
cores (SPs) and operate efficiently only when executing
thousands of threads.

Basic Immune Simulator (BIS)

The Basic Immune Simulator Folcik et al. (2007) employs
an ABM to study the interaction between different cells
in the immune system. In this particular model, immune
cells are modelled as agents which produce chemical
signals based on what they detect from their proximal
location and interact with other cells in a computer
simulated environment. The previous version of Basic
Immune Simulator was implemented using an open source
software library called Recursive Porous Agent Simulation
Toolkit (RePast) North et al. (2006). It used serial JAVA
code to simulate the interaction between immune cells.
Consequently, this implementation cannot efficiently handle
models with population sizes exceeding 20000.

ABM Simulation on GPU

GPUs are well suited for executing ABMs efficiently.
The state attributes of the agents are maintained in a data
structure. The state transition functions are mapped to
kernels that execute in parallel. In this paper, we have
employed a highly parallel framework designed especially
for agent based model called Flexible Large-scale Agent
Modeling Environment on the GPUs (FLAME GPU)
Richmond et al. (2010) to implement a GPU-based parallel
version of the BIS. As opposed to RePast, FLAME GPU
leverages the computational power of GPUs and greatly
increases the model sizes that can be handled. We have
implemented a simplified viral infection that infects a
generic tissue and observed the response of immune cells
upon infection of generic tissue by a virus. We have
compared execution time for this model on RePast and
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FLAME GPU. Additionally, we carried out tests to verify
the statistical accuracy of immune simulator in FLAME
GPU when the same initial conditions as in the RePast
implementation, for the immune win condition were used.

We begin by briefly discussing about the FLAME GPU
framework and its features. Next, we describe the simulation
domain and different agent types participating in simulation
along with their algorithms. Finally, we conclude our paper
with discussion of results i.e. statistical comparison and a
performance benchmark between FLAME GPU and RePast.

The FLAME GPU Agent Simulation
Framework

Unlike the traditional frameworks for ABMs such as Repast
which are based on algorithms that are executed serially on
CPUs, FLAME GPU utilizes the data parallelism of GPUs
to improve computational performance. A key mechanism
to leveraging this performance is abstracting the underlying
architecture through use of a high level modelling syntax
and an automated technique for code generation Richmond
and Romano (2011) which avoids users having to understand
architectural complexities, the mapping of agents to GPU
memory, or even the ideas of parallelism. The FLAME GPU
technique results in highly efficient simulations allowing
model scale to be increased beyond sizes which can be
computed in reasonable time in CPU targeted frameworks
such as RePast. Additionally, visualization is relatively
inexpensive to achieve since agent data is located in GPU
memory where it can be rendered directly without any
additional computational overhead.

XML Agent
Schemag Function
Files
Dynamic
XMML - |
Model File =) Slmxlpaluon

XSLT
Simulation
Templates

Figure 2. FLAME GPU process flow: XSLT processor
generates compilable simulation code from XMML templates
and a model file.

FLAME GPU is based on a concept called X-machine
Eilenberg and Tilson (1974); Holcombe (1988) which is
an extension of Finite State Machine (FSM) with internal
memory. The X-machine consists of X-machine agents and
transition functions. X-machine agents are the state machines
which communicate with other agents by iterating through
message lists from a message board stored in global memory
of the GPU. Transition functions, on the other hand, handle
the state changes of agents based on their state transition
rules. After the transition function causes the state change,
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agents update their internal memory which is either used as
an input to subsequent transition functions or as an output
which is passed as messages for other agents to read.

Figure 2 illustrates the process flow for the generation
of compilable FLAME GPU C simulation code Richmond
et al. (2010). XMML model file along with extensible
style-sheet language transformation (XSLT) templates is
processed through XSLT processor to generate compilable
simulation code along with agent data structures, agent and
message API functions. Two XMML schemas are used to
validate the syntax the of the XMML model files. First,
a XMML base schema which verifies the syntax of base
XMML model file and the second, a GPUXMML schema
which adds any additional GPU specific model parameters.
The simulation can be run in either visualization or console
mode. The visualization mode allows a user to view the
simulation in real time while console mode allows a user to
generate XML output for predefined number of iterations.

Agent model specification

The variables, functions and layers associated with X-
machine agent are defined within XMML model file. An
example of specification of one cell type i.e. generic tissue
(Parenchymal cell) is demonstrated in Figure 3. The memory
XML element contains the variables and its type associated
with Parenchymal cell. Figure 4 shows the initial value of
variables for Parenchymal cells.

The function XML element includes an agent function
definition (Figure 5) which handles the state change of
agents, input or output of messages. Agent function file
incorporates script for the rules which are logical statements
that lead to behavior of agents based on information
gathered from their local environment. For example, agent
function state_pcells determines whether Parenchymal
cell is healthy or infected by a virus. The message names
(agent_bcells and agent_pcells) defined within
inputs and outputs create message functions to access
message variables from message board for the purpose of
reading and writing respectively. Layer defines the order in
which the agent functions are executed.

Agent communication

Agents communicate by iterating the input message list
through optimized message iteration function.The message
type is defined within XMML model file which can be
either non partitioned or spatially partitioned message
communication. The method we used in our implementation
for agent communication is the spatially partitioned
technique. This method is based on interaction of particle
systems Green (2008) which divides the simulation domain
into uniform sized grids. Agent messages are binned based
on the grid index and are sorted using fast radix sort
algorithm Satish et al. (2009).

A scatter kernel is used to find the first and last
index (Figure 6) of the agent messages in the sorted list
which is later used to iterate through messages in all 27
neighboring partitions (for 3-D environment). The agent
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<xagents>
<gpu:xagent>
<name>Parenchymal_cell</name>
<memory>
<gpu:variable>
<type>int</type>
<name>id</name>
</ gpu:variable>
<gpu:variable>
<type>float</type>
<name>x</name>
</gpu:variable>
<gpu:variable>
<type>float</type>
<name>y</name>
</gpu:variable>
<gpu:variable>
<type>float</type>
<name>z</name>
</ gpu:variable>
<gpu:variable>
<type>int</type>
<name>state </name>
</gpu:variable>
<gpu:variable>
<type>int</type>
<name>bearAb</name>
</ gpu:variable>
<gpu:variable>
<type>float</type>
<name>signal_PK1</name>
</gpu:variable>
<gpu:variable>
<type>float</type>
<name>signal_virus</name>
</gpu:variable>
<gpu:variable>
<type>float</type>
<name>signal_apoptic</name>
</gpu:variable>
<gpu:variable>
<type>float</type>
<name>signal_necrotic</name>
</gpu:variable>
<gpu:variable>
<type>int</type>
<name>stressedTime</name>
</gpu:variable>
</memory>
<functions>...</functions>
<states>
<gpu:state>
<name>default_pcells</name>
</ gpu:state>
<initialState>default_pcells</
initialState>
</states>
<gpu:type>continuous</gpu:type>
<gpu:bufferSize>5457</
gpu:bufferSize>
</gpu:xagent>
</xagents>

Figure 3. XMML model file definition for Parenchymal cells:
variables (position coordinates, chemical signals, stressed
time), agent function definitions, agent population, state
variables and layers are defined within XMML model file.
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message within a predefined radius of influence is considered
for communication.

<xagent>
<name>Parenchymal_cell</name>
<id>0</id>
<x>—I</x>
<y>—l1</y>
<z>0</z>
<state>4</state>
<bearAb>0</bearAb>
<signal PK1>0</signal PK1>
<signal_virus>0</signal_virus>
<signal_apoptic>0</signal_apoptic>
<signal_necrotic>0</signal_necrotic
>
<stressedTime>0</stressedTime>
</xagent>

Figure 4. State initialization values of variables for one
Parenchymal Cell.

<xagents>
<gpu:xagent>
<name>Parenchymal_cell</name>
<memory>...</memory>
<functions>
<gpu:function>
<name>state_pcells</name>
<currentState>default_pcells</
currentState>
<nextState>default_pcells</
nextState>
<inputs>
<gpu:input>
<messageName>agent_bcells</
messageName>
</gpu:input>
</inputs>
<outputs>
<gpu:output>
<messageName>agent_pcells</
messageName>
<gpu:type>single_message</
gpu:type>
</ gpu:output>
</outputs>
<gpu:reallocate>false</
gpu:reallocate>
<gpu:RNG>false</gpu:RNG>
</gpu:function>
</functions>
</gpu:xagent>
</xagents>

Figure 5. Agent state transition function definitions for
Parenchymal Cells which determines whether they are healthy,
challenged, stressed or dead based on influence of other
agents.

Simulation Domain

The simulation domain implemented in FLAME GPU is
adapted from previous version of Basic Immune Simulator
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0 1 2

Figure 6. An example of 2D spatially partitioned technique. The
agent with ID 8 located in grid 4 iterates through all the agent
messages present in 9 grids (0-2, 3-5, 6-8). Agent messages
located within fixed radius are considered for interaction.

(BIS) to preserve the qualitative nature of the simulation.
The simulation domain is divided into three zones namely:
Zone 1, Zone 2, and Zone 3 Folcik et al. (2007). Figure
7 shows the virtual representation of three different zones.
Zone 1 is a representation of site for viral infection of generic
parenchymal cells. The healthy parenchymal cells are
represented by yellow spheres and the infected parenchymal
cells are represented by green spheres as shown in Figure 7a.
These cells are arranged in a rectangular grid. Zone 1 is also
a residence for tissue surveilling innate immune cells called
Dendritic cells (DCs). Zone 2 (Figure 7b) is a residence
for adaptive immune cells (B-cell agents, T-cell agents and
Cytotoxic T Lymphocyte agents) and represents lymph nodes
or spleen. Zone 3 (Figure 7c) is a representation of blood
circulation system which acts as a media to supply adaptive
immune cells to site of viral infection i.e. Zone 1.

Adaptive immune cells move randomly in Zone 3 for
some period of time before they move to Zone 1. Zone 3
also contains granulocyte agents which are the type of white
blood cells for fighting the infection. Each zone contains
portal agents which represent lymphatic and blood vessels.
These portal agents are responsible for transferring immune
cells from one zone to the other.

Agent types

The agents that take part in immune system simulation are
generic functional tissue cells (Parenchymal cells), innate
immune cells (Macrophages, Natural Killers, Dendritic cells
and Granulocytes) and adaptive immune cells (B-cells, T-
cells and CTLs). Innate immune cells originate in bone
marrow Shortman and Naik (2007). These immune cells
are the first ones to respond to distressed signals Matzinger
(2002b) produced by infected Parenchymal cells. They enter
Zone 1 via portals present in this zone. Natural Killers kill
infected Parenchymal cells. Macrophages are responsible for



Journal Title XX(X)

] Ll R . R . ',
-
ol [l el ¢ 1o o 0’ SN L oo, oq
| || PO - e .
el~]el d 1+ o° N T
s * 2% @ 7 T
| | | : ™ e %
o 1] e -. g RIS e
™ 1 o % a Y e,
% o . &
o) BOED 1o w "oy ® 02t St ete .
1 - & 2% veed o -
- - o T L ,‘-.: ‘: TR LI
. P % ¢,
o S,e0, e %
. . ol 1* WL e Al He
E il € of - .
- ]_ . ...-.. .3-‘.:1‘ '.s.t
3 o NV e
ORONE , : e

Figure 7. Virtual representation of three different zones. (a)
Zone 1: Site for infection of Parenchymal Cells by a virus. (b)
Zone 2: Representation of lymph node or spleen. (c) Zone 3:
Representation of blood circulation system

killing infected Parenchymal cells as well as scavenging
of dead Parenchymal cells. The process of scavenging of
dead Parenchymal cells sets up a necessary condition for
regeneration of healthy Parenchymal cells. Dendritic cells
gather antigens from infected Parenchymal cells and travel
to Zone 2 i.e lymph node through portals and present
antigens to adaptive immune cells that match its specificity.
Activation, proliferation, as well as transition of adaptive
immune cells (B-cells, T-cells, CTLs) to memory cells take
place in Zone 2 when they come in contact with Dendritic
cells or with each other. The activated adaptive immune
cells first move to Zone 3 where they randomly move for
some time and finally travel to Zone 1. T-cells represent
helper T-cells which manage activities of macrophages and
B cells by releasing cytokines Janeway et al. (2001). CTLs
are killer cells responsible for killing infected Parenchymal
cells that match their antigen specificity. B cells, on the
other hand, produce antibodies against the antigens making
them primary targets for killer immune cells. Agent motion
is influenced by chemical signal detected in the proximal
environment. Immune cells would tend to move randomly if
there isn’t any chemical signal around them. If they detect
any chemical signal in their vicinity, they will follow the
signal with highest concentration Beilhack and Rockson
(2003).The rules for the state change of different types of
cells participating in simulation is described in the sub-
section below:
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Parenchymal cell agents

Algorithm 1 State change : Parenchymal Cells

1: procedure STATE_PARENCHYMAL_CELLS()

2 if (state==HEALTHY & virus>Abl+Ab2) then

3 state=CHALLENGED

4 end if

5 if (state==CHALLENGED) then

6 PK1=outputSignal

7 if (Abl1+Ab2>virus & (bearAb==FALSE) &

(Ab2>0) then
8: state=TARGETED
9: end if
10: if (NK||Ts||M®s ) then
11: state=APOPTIC
12: end if
13: end if
14: if (C’>0) & ((Abl-(virus+Ab2)>Ab_Lysis) then
15: state=NECROTIC
16: end if
17: if (state==STRESSTED) then
18: PK1=outputSignal
19: if (life>stressedTime+DURATION_STRESSED)
then
20: state=HEALTHY
21: end if
22: end if

Parenchymal cells are the generic functional tissue cells
that remain stationary throughout the course of simulation.
These agents are initialized in a HEALTHY state during
the start of the simulation.The viral infection starts at the
center of Zone 1 which gradually spreads out infecting all
neighboring Parenchymal cells. The infected Parenchymal
cells release a distressed signal, Parenchymal-kine 1 (PK1)
in the form of heat shock proteins Srivastava (2002),
uric acid Shi et al. (2003) or chemerin Wittamer et al.
(2003). The infected PCs then make a state transition
to one of three states: STRESSED, CHALLENGED or
TARGETED. The challenged PCs are target for Natural
Killers, pro-inflammatory T-cells or CTLs and are killed
upon contact. They may undergo lysis in presence of
complement products (C’) and antibody Abl Guo and
Ward (2005). The challenged PCs make a transition to
state. TARGETED when they are bounded by antibody
produced by B cells making them susceptible for killing
by pro-inflammatory Macrophage agents Casadevall and
Pirofski (2003). This causes neighboring parenchymal cells
to become stressed as a result of reactive oxygen species
released by pro-inflammatory macrophages Ricevuti (1997).
The granulocytes also act upon the stressed PCs and kill them
by a release of lethal degranulation product 1 (G1) Ricevuti
(1997); Segal (2005). The dead Parenchymal cells are
scavenged by macrophages facilitating necessary conditions
for regeneration of healthy PCs Huynh et al. (2002).

Dendritic cell agents

The DCs begin in an INACTIVE state in zone 1 and are of
two types: pro-inflammatory (DC1) and anti-inflammatory
(DC2). The DCs in INACTIVE state can transition to
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two possible states: ACTIVATED or AG-PRIMED (antigen
primed) depending upon the type of signal it detects.

Algorithm 2 State change : Dendritic Cells - Zone 1

1: procedure STATE_DENDRITIC_CELLS_ZONEI()
2 if (life < LIFE_DC_ZONE]1) then
3 if (state==INACTIVE) then
4 if (PK1>0) then
5: state=ACTIVATED
6: if (MK1>MK?2 & type==DC1) then
7 type=DC2
8 end if
9: end if
10: if (virus>200) then
11: state = AG-PRIMED
12: if (Ab1>200 & Ab2>200 & type==DC1)
then
13: type=DC2
14: end if
15: if (CK1>200) & type==DC2 then
16: type=DC1
17: end if
18: end if
19: end if
20: if (state==ACTIVATED) then
21: if (virus || CHALLENGED PC contact) then
22: state=AG-PRIMED
23: end if
24: end if
25: end if
26: if (life>LIFE_DC_ZONEI) then
27: state=APOPTIC
28: end if

The dendritic cells of type DC1 or DC2 move randomly
until they detect shock signal (PK1) produced by infected
parenchymal cells. The detection of PK1 in its immediate
environment causes DCs to change to ACTIVATED state
Gallucci et al. (1999). The activated DCs produce a
chemical signal MK1 (Mono-kine 1) or MK2 (Mono-kine
2) depending on their type. For example, INACTIVE DC1
changes to ACTIVATED DC1 and INACTIVE DC2 changes
to ACTIVATED DC2 upon detection of PK1. However,
if signal MK2 (Mono-kine 2) is greater than signal MKl
(Mono-kine 1), it converts to ACTIVATED DC2 Koch et al.
(1996). The DCs attain antigen-primed (AG-PRIMED) state
under three conditions. First, the detection of virus signal in
proximal location of DC1 or DC2 causes them to convert
to AG-PRIMED DCI1 or AG-PRIMED DC2 Zuniga et al.
(2004). Second, the presence of virus along with antibody
changes INACTIVE DC1 to AG-PRIMED DC2 Anderson
et al. (2004). INACTIVE DC2 is transitioned to AG-
PRIMED DClI in presence of virus and signal CK1 (cyto-
kine 1) Vieira et al. (2000). Third, the DCs in ACTIVATED
state when make contact with virus infected PCs change
to AG-PRIMED state respective of their type Hart (1997).
The AG-PRIMED DCs move to Zone 2 via portals present
in Zone 1 to present the antigen to adaptive immune cells
(B-cells, T-cells and CTLs) Hart (1997).The DCs undergo
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apoptosis if they fail to detect any infected PCs or stress
signal within their lifetime Hou and Van Parijs (2004).

Algorithm 3 State change : Dendritic Cells - Zone 2

1: procedure STATE_DENDRITIC_CELLS_ZONE2()
2 if (life < LIFE_DC_ZONEI1 & zone==2) then

3: if (state==AG-PRIMED) then

4 if (type==DC1 || type==DC2) then

5 if (timerMK<DURATION_MK_ZONE2)

then
6: MKI1 or MK2 = outputSignal
7: timerMK1 or timerMK?2 += 1
8 end if
9: if (Ag-matched B1 or B2) then
10: life=0
11: end if
12: if (Ag-matched T1 or T2) then
13: MK1 or MK2 =0
14: NumTsContact += 1
15: end if
16: end if
17: end if
18: end if
19: if (numTsContact>12) then
20: state=APOPTIC
21: end if
22: if (life>LIFE_DC_ZONE]1) then
23: state=APOPTIC
24: end if

After the DCs move to Zone 2, they move randomly for
some time and become stationary. They continue to produce
MK1 or MK2 in Zone 2 as well. At this moment, DCs wait
for antigen matched adaptive immune cells (B-cells, T-cells
and CTLs) to make contact with them. The contact with DCs
affects the state of adaptive immune cells as well as the state
of themselves. For example, contact with antigen matched B
cells extends the life of DCs Miga et al. (2001) and contact
with antigen matched T-cells resets the production of MK1
or MK2. The DCs undergo apoptosis if they reach allocated
life time in Zone 2 or exceed threshold for T- cells contact
Ingulli et al. (1997); Kriehuber et al. (2005).

Macrophage agents

The macrophages (M®s) enter Zone 1 in naive state (M®0)
when portals present in Zone 1 sense PK1 emitted by
infected PCs. The state change of M® is determined by type
of signals it senses from its local environment.

The presence of PK1, CKI1, C* (complement products)
and necrotic debris Guo and Ward (2005) causes M®s
to transition to ACTIVATED M®1s (pro-inflammatory)
whereas sensing of apoptic signal and antigen-antibody
(Ag-Ab) complexes Casadevall and Pirofski (2003) cause
M®s to change to ACTIVATED M®2s (anti-inflammatory).
Both M®1 and M®2 in activated state have the ability of
scavenging dead PCs which provides necessary condition for
regeneration of healthy PCs. M®1 also has the ability to kill
infected PCs. M®1 and M®2 in activated state produce the
signals MK1 and MK2 respectively. The killing of infected
PCs and scavenging of dead PCs causes M®s to attain
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Algorithm 4 State change : Macrophages

Algorithm § State change : Natural Killers

1: procedure STATE_MACROPHAGES()
2: if (life < LIFE_M®_ZONE]I) then

3: if (state==M®0) then
4: if (PK1>0 || CK1>0 || C’>0 || Nec. debris>0
) then

5: state=ACTIVATED M®1

6: end if

7: if Apop.Signal>0 || Ab-Ag complexes then
8: state=ACTIVATED M®2

9: end if
10: end if
11 if (state==ACTIV. M®1 || ACTIV. M®2) then
12: if (kill PCs || scavenge PCs) then
13: state = AG-PRIMED M®1 or M®2
14: end if
15: end if
16: end if
17: if (life>LIFE_M®_ZONE]1) then
18: state=APOPTIC
19: end if

antigen-primed (AG-PRIMED) state respective of their type.
The M®s in AG-PRIMED state posses ability from previous
state to scavenge dead PCs as well as kill PCs bound by an
antibody. If M®s in this state make a contact with antigen-
matched T-cells, they extend the life of M®s. The M®s in
activated and antigen primed state undergo apoptosis when
their time is over.

Natural Killer agents

Natural Killers (NKs) are introduced to Zone 1 when portals
in Zone 1 sense PK1 from PCs. They move randomly for
some time. When they detects PK1 that is being emitted from
infected PCs, they follow PK1 with highest concentration
eventually seeking for infected PCs. If signal PK1 is greater
than CK1 around the Natural Killer of interest, killing of
infected PCs take place upon contact. At this time, release
of chemical signal CK1 by NKs also take place Stetson
et al. (2003). After the killing of infected PCs and CK1
production, NKs return to the state where they continue to
move randomly. They have a limited number of kills and
lifetime, after which they undergo apoptosis.

B cell agents

B cells (Bs) reside in Zone 2 in an INACTIVE state waiting
for antigen matched DCs to make contact with them Dubois
et al. (1997). If they make contact with DC1, B cells of type
B1 are produced and type B2 is the result of contact with DCs
of type DC2. B cells of type (B1 or B2) get ACTIVATED
when they make contact with activated, antigen-matched T1
or T2. Bs in ACTIVATED state may transition into either of
two states: GERMINAL or PLASMA.

Germinal cells in activated state produce antibodies and
remain in Zone 2 whereas Plasma B cells, on the other hand,
travel to Zone 1 and produce antibodies there. Contact with
Ts also leads to birth of B cells. ACTIVATED Bs make
a transition to MEMORY Bs when they make series of
contacts with antigen matched DC1 or DC2, thus, extending
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1: procedure STATE_NATURAL_KILLERS()
2 if (life < LIFE_NK_ZONE]1) then
3 if (PK1>0) then
4 followPK1=TRUE
5: end if
6 if (PK1>CK2 & followPK1==TRUE) then
7 killPC = TRUE
8 end if
9: if (killPC==TRUE) then
10: killCount+=1 ;
CK1Timer=DURATION_NK_CK1
11: end if
12: if (CK1Timer>0) then
13: CKI1=outputSignal ; CK1Timer -=
14: end if
15: if (CK1Timer==0) then
16: followPK1 = FALSE ; randomMotion =
TRUE
17: end if
18: if (killCount > NK_KILL_LIMIT) then
19: state=APOPTIC
20: end if
21: end if
22: if (life > LIFE_NK_ZONE]1) then
23: state=APOPTIC
24: end if

Algorithm 6 State change : B cells - Zonel

1: procedure STATE_BCELLS_ZONE1()
2: if (life < LIFE_Bs_ZONE]1) then

3: if (type==B1 or B2 & CK1 or CK2>0) then
4: if (AbTicker < DURATION_AB_ZONEI)
then

5: Abl or Ab2 = outputSignal

6: AbTicker +=1

7: end if

8 end if

9: end if

10: if (life > LIFE_Bs_ZONE]1) then

11: state=APOPTIC

12: end if

life of B cells. Memory Bs are again activated when they
make contact with antigen matched Ts in presence of
cytokines (MK1, CK1 or MK2, CK2). ACTIVATED Bs
undergo apoptosis after their life surpasses allocated lifetime.

Plasma B cells travel to Zone 1 from Zone 3 via portals
present in Zone 1. They move randomly in Zone 1 where
they produce antibodies in the presence of CK1 or CK2 for
predefined period of time. If they don’t detect CK1 or CK1
in their proximal location, they stop producing antibodies.
They undergo apoptosis after their life is over.

T-cell agents

T-cells begin in Zone 2 i.e. lymph nodes in an INACTIVE
state where they move randomly until they find DCs
matching their antigen specificity. The contact with DC1
or DC2 results in activation and proliferation of T1 or T2
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Algorithm 7 State change : B cells - Zone2

Algorithm 8 State change : T-cells - Zone2

1: procedure STATE_BCELLS_ZONE2()
2 if (Ag-matched DC1 or DC2) then
3 if (type==B1 or B2 & state==ACTIV.) then
4 DCcontacts + =1 ; life += ADD_LIFE
5: end if
6 if (type==B1 or B2 & state==MEM_Bs) then
7 DCcontacts + =1
8 end if
9: if (type==B0) then ; type = B1 or B2
10: end if
11: end if
12: if (Ag-matched T1 or T2) then
13: if (state==INACTIVE) then
14: if (type==B0) then
15: type = B1 or B2
16: end if
17: if (type==B1 or B2) then
18: state=ACTIVATED ; flag=rand()
19: Birth_Bs = ADD_Bs
20: mode=(flag>0.5)?GERMINAL:PLASMA
21: end if
22: end if
23: if (state==MEMORY _Bs) then
24: state=ACTIVATED ; mode=PLASMA
25: BIRTH_Bs=ADD_Bs
26: end if
27: end if
28: if (state==ACTIVATED & DCcontacts>1 then
29: if (mode==GERMINAL) then
30: state = MEMORY_Bs ; life += ADD_LIFE
31: end if
32: end if
33: if (state==MEMORY _Bs & DCcontacts>1) then
34: life += ADD_LIFE
3s: end if
36: if (state==ACTIVATED & type==B1 or B2) then
37: if (AbTimer<DURATION_AB_ZONE?2) then
38: Abl or Ab2=outputSignal ; AbTimer +=1
39: end if
40: end if
41: if (life > LIFE_B_ZONE]1) then
42: state=APOPTIC
43: end if

respectively Amsen et al. (2004); Hart (1997); Ingulli et al.
(1997); Tanaka et al. (2000) and release of signal CK1 or
CK2.

Additionally, contact with antigen-matched B cells as
well as series of contacts with DCs extend the life of Ts.
ACTIVATED Ts make a transition to MEMORY Ts if there
is an absence of CK1 or CK2 in the environment. However,
contact with antigen-matched DC makes MEMORY T-cells
to be ACTIVATED again. T-cells move to Zone 3 where
they randomly for some time before traveling to Zone 1. If
ACTIVATED Ts fail to make contact with DC within certain
period of time, they undergo apoptosis.
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1: procedure STATE_TCELLS_ZONE2()
2 if (state==INACTIVE TO) then
3 if (Ag-matched DC1 or DC2) then
4 state=ACTIVATED T1 or T2
5: end if
6 end if
7 if (state==ACTIVATED T1 or T2) then
8 if timerCK < DURATION_CK_ZONE2 then
9: CK1 or CK2 = outputSignal
10: timerCK1 or timerCK2 += 1
11: end if
12: if (Ag-matched DC1 or DC2) then
13: life += ADD_LIFE
14: Birth_Ts = ADD_Ts
15: end if
16: if MK1==0 || CK1 == 0 then
17: state = MEMORY T1 or T2
18: end if
19: end if
20: if (state==ACTIVATED & life >
LIFE_Ts_ZONE2) then
21: state=APOPTIC
22: end if

Algorithm 9 State change : T-cells - Zonel

1: procedure STATE_TCELLS_ZONEI1()
2: if (life < LIFE_Ts_ZONE]I) then

if (state==ACTIVE_Ts||state==MEMORY _Ts)
then

w

4 if (Ag-matched M® contact) then
5 CK1 or CK2 = outputSignal

6: end if

7 if (CHALLENGED PC) then

8 killPC = TRUE ; killCount += 1
9: end if

10: if (killCount>MAX_T_KILLS) then
11: state=APOPTIC

12: end if

13: end if

14: end if

15: if (life>LIFE_Ts_ZONEI then

16: state=APOPTIC

17: end if

T-cells enter Zone 1 in response to detection of PK1 signal
by portals present in Zone 1. T-cells of type T1 seek for
infected PCs by following PK1 with strongest attraction and
kill them upon contact. If T1 or T2 cells make contact with
antigen-matched macrophages (M®s), they start to produce
CK1 or CK2 depending upon type of macrophages Anderson
and Mosser (2002). T-cells of type T1 undergo apoptosis if
they reach beyond the threshold for number of kills Green
et al. (2003) or exceed allocated lifetime in Zone 1.

CTL agents

Like other adaptive immune cells, CTLs begin in an
INACTIVE state in Zone 2 where they move randomly
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waiting to make contact with an antigen-matched DC1s. The
contact with DC1s makes them ACTIVATED.

Algorithm 10 State change : CTLs - Zone2

1: procedure STATE_CTL_ZONE2()

2 if (Ag-matched DC1) then

3 if (state==INACTIVE) then

4: state = ACTIVATED

5: end if

6 if (state==ACTIVATED & CKI1==0) then
7 state = MEMORY_CTLs

8

9

end if
: if (state==MEMORY_CTLs & CKI1>0) then

10: state = ACTIVATED
11: end if
12: end if
13: if (life < LIFE_CTLs_ZONE2) then
14: if (state==ACTIVATED) then
15: CK1 = outputSignal
16: BIRTH_CTLs = ADD_CTLs
17: end if
18: end if
19: if (life > LIFE_CTLs_ZONE?2) then
20: state=APOPTIC
21: end if

In an ACTIVATED state they proliferate and release CK1
signal. ACTIVATED CTLs transition to MEMORY CTLs
if they make contact with a DC1 in absence of CK1 signal
Badovinac et al. (2005). But, presence of CK1 signal and
contact with DC1 extends the life of CTLs. ACTIVATED
CTLs then migrate to Zone 3 and eventually to Zone 1 where
they kill infected PCs. CTLs enter Zone 1 in an activated
state and continue to produce CK1 signal for a finite period
of time. Like T-cells (Ts), they seek virus-infected PCs by
following PK1 emitted by such PCs and kill them upon
contact. The contact with infected PCs also extends the
duration of emission of CK1 signal by CTLs. ACTIVATED
CTLs are transitioned to MEMORY CTLs in absence of PK1
or CKI in their immediate environment. The contact with
infected PCs causes MEMORY CTLs to be ACTIVATED
again. CTLs undergo apoptosis after their life is over.

Granulocyte agents

Granulocytes begin in Zone 3 where they are moving
randomly. They travel to Zone 1 when portals present in Zone
3 sense presence of complement products Guo and Ward
(2005) or MK1. After entering Zone 1, they move randomly
until they detect complement products around them and
eventually follow signal of highest concentration. They
release degranulation product which is capable of killing
any stressed PCs Segal (2005). They undergo apoptosis after
their time is up.

Results

In this section we present results of our comparison with the
previous implementation done in the RePast agent-modeling
system. The first comparison tests the statistical accuracy of
our implementation. There is a possibility that the results
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Algorithm 11 State change : CTLs - Zonel

1: procedure STATE_CTL_ZONEI()
2: if (CHALLENGED or TARGETED PC contact)
then

3 if (state==ACTIVATED) then

4 killPC = TRUE

5: end if

6: if (state==MEMORY _CTLs) then

7: state = ACTIVATED

8 end if

9 end if
10: if (life<LIFE_CTL_ZONEI & state==ACTIV.)

then

11: if (No CK1 or PK1) then
12: state = MEMORY_CTLs
13: end if
14: if (ticker<DURATION_CK1_ZONE]I) then
15: CK1 = outputSignal ; ticker += 1 end if
16: end if
17: if (life > LIFE_CTL_ZONE]I) then
18: state=APOPTIC
19: end if

Algorithm 12 State change : Granulocytes - Zone 1

1: procedure STATE_GRANULOCYTES_ZONEI1()
2 if (life < LIFE_GRAN_ZONE]) then

3 Gl=outputSignal

4: end if

5 if (life > LIFE_GRAN_ZONE]1) then

6 state=APOPTIC

7 end if

obtained from immune simulator implemented in FLAME
GPU may deviate from results obtained from their RePast
implementation due to the difference in implementation
of randomized motion of immune cells. Furthermore,
discrepancies in the order at which the state change of
immune cells are executed could also lead to difference in
results. For this reason, statistical comparison is required
to ensure that results from immune simulator in FLAME
GPU lie within statistical limits of results obtained from
its RePast implementation. The second comparison tests the
performance advantage. For statistical accuracy, we chose
to set initial conditions, similar to as initialized in RePast,
for an immune win situation as shown in Table 1 Folcik
et al. (2007). Immune win is a condition in which all the
infected parenchymal cells are eliminated by immune cells
and sets up necessary conditions for regeneration of healthy
parenchymal cells Folcik et al. (2007).
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Parameter Value
Number of PCs 5457
Viral_Infection_Threshold 50
Ab_Lysis_Threshold 100
Duration_Stressed 25
Number of DCs (Zone 1) 50
NumDC_ToSend 3
Life_DC_Zonel 50
Life_ DC_Zone2 100
Duration_MK_Zonel/Zone2 25
NumBs_ToSend 1
Life B_Zonel 25
Life B_Zone2 10
Life_B_Zone3 25
Duration_Ab_Zonel 150
NumTs_ToSend 2
Life T Zonel 20
Life T _Zone2 13
Life_T_Zone3 50
Duration_CK_Zonel/Zone2 25
T Max_Kills 10
NumM® ToSend 5
Life M® Zonel 50
NumNK_ToSend 4
NK_Kill_Limit 15
NumCTL_ToSend 4
Life_CTL_Zonel/Zone2 25
Table 1. Initial values for immune win condition which are

derived from RePast implementation of BIS

The initial number of parenchymal cells (PCs) that take
part in simulation was set to 5457. Out of 5457 PCs, 192
cells are infected with virus. We ran 50 trials each for
both the FLAME GPU and the Repast Implementation. As
the simulation progresses, the infection spreads out, thereby
infecting all the neighboring PCs. Figure 8 and Figure 9
show the counts of T-cells, B-cells, CTLs and Dendritic
cells at Zone 2. The immune cells (innate and adaptive)
counts gradually increase as number of PCs infected by virus
rises and eventually reaches a peak value when all PCs are
infected. The count of immune cells (innate and adaptive)
gradually decreases as infected PCs are killed and scavenged
by them. As the infected PCs are killed and scavenged, new
healthy PCs are regenerated replacing the infected ones.

The results obtained from the simulation were used to
measure accuracy of Basic Immune Simulator implemented
in FLAME GPU with the previous RePast implementation
utilizing available statistical tools such as mean value and
standard deviation. We compared T-cell, B-cell, Dendritic
cell, and CTL counts in Zone 2. The standard deviation
bars in Figures 8,9 indicate that immune cells counts for our
FLAME GPU implementation lie within the range of Basic
Immune Simulator implemented in RePast. This verifies the
statistical accuracy of our implementation in FLAME GPU.
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Figure 8. Immune cells count with standard deviation bars for
immune win condition. a) T-cell count for Zone 2. b) B cell count
for Zone 2.

Initial Agent count Initial DC count Speed Up
8000 500 3.43
10000 1000 4.03
12000 1500 4.55
14000 2000 5.04
16000 2500 6.35
18000 3000 8.1
20000 3500 13.002

Table 2. Initial count of DCs for different agent populations and
simulation speed-up with FLAME GPU

Besides this statistical comparison, we benchmarked the
performance of BIS implemented in FLAME GPU against
the RePast implementation. The benchmark was done by
varying agent population from 8000 to 20000. Since the
number of PCs in the simulation is fixed, the initial agent
population was achieved by varying initial count of DCs
from 500 to 3500 as shown in Table 2 and keeping count
of other immune cells (B-cells, T-cells, NKs, M®, CTLs)
unchanged.

The simulation was run on an Intel Core i7 2.67 GHz
CPU with 6.00 GB RAM equipped with NVIDIA Tesla
C2050 GPU on Windows 7 OS. The result of the benchmark
was obtained by running 15 trials as the counts of agents
varied significantly in each trial due to stochastic nature of
simulation. Figure 10 illustrates plot for speed-up obtained
with FLAME GPU against agent population. It was observed
that computational performance increased by 13 times when
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Figure 9. Immune cells count with standard deviation bars for
immune win condition. a) CTL count for Zone 2. d) Dendritic cell
count for Zone 2.

simulation was run for initial agent count was set to 20000
agents. However, performance analysis was not carried out
for agent population greater than 20000 as BIS implemented
in RePast cannot handle such large model sizes (it took over
two hours to run a single realization of the model with 20000
agents). Hence, it can be noted that there is a significant
improvement in computational performance.

Benchmark (FLAME GPU vs RePast)
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Figure 10. Benchmark: plot for speed-up obtained with FLAME
GPU against agent count
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Conclusion

We have successfully implemented the Basic Immune
Simulator (BIS) using FLAME GPU framework. Since
FLAME GPU utilized computational power of GPUs
using optimized CUDA code, we observed a significant
improvement in performance as opposed to serial version of
BIS implemented in RePast. It was possible to visualize the
progression of the simulation in real time without having to
write additional OpenGL code for visualization.

Apart from performance analysis of FLAME GPU, we
also made statistical comparison for immune win condition
with BIS modeled in RePast to validate accuracy of our
results. We meticulously followed the state diagrams of
different immune cell types implemented in the original BIS
implementation to conserve the quality of simulation. We
ran multiple simulations to find the mean and variance of
the time trajectory of various variables. Since the simulation
has a large stochastic component and we did not have
access to the random seed as well as the algorithm used
for generation of the random numbers in the original
implementation in RePast, we can only check the accuracy
of our implementation in a statistical sense. In this case, if
the mean of the results of the two simulation were within
the bounds of the variances, we conclude that parallelization
does not induce any artifacts. As can be seen from the
results, this is indeed the case.

We found that there is an initial learning curve to
understanding the general structure of FLAME-GPU. An
additional requirement is the knowledge of programming in
C to program the state transition functions. The advantage
of the FLAME-GPU function is the fact that it is agnostic
as far as the underlying parallel GPU hardware as well as
the specific API is concerned. Therefore, once the ABM
is programmed, it will be possible to move on to newer
hardware and API by simply running the pre-compiler.
Currently, the pre-compiler only supports NVIDIA hardware
and CUDA APIL

Our future work will involve incorporating more details
into the immune simulator. For example, the FLAME-GPU
framework does not support solution of coupled PDEs for
simulation of bio-chemical. In our current implementation,
as in the previous RePast implementation, we have used a
simple 2-D convolution with a stencil for modeling diffusion.
A major enhancement will be to solve actual diffusion,
reaction, advection PDEs in conjunction with the agent
models. Furthermore, for more accurate representation of
the immune agent interaction, we could possibly replace
the ad-hoc rules that are currently present in the finite state
models with rules based on actual chemical kinetics. This
will increase the fidelity of the model. Of course, increase in
fidelity will lead to larger computational load which we hope
can be handled by the GPU.
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