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Abstract 

In this study, the temperature and viscosity-dependent methods were  used to identify the main heat 

conduction mechanism in nanofluids. Three sets of experiments were conductedto investigate the effects 

of Brownian motion and aggregation. Image processing approach was used to identify detailed 

configurations of different nanofluids microstructures. The thermal conductivity of the nanofluids was 

measured with respect to the dynamic viscosity in the temperature range between 0 and 55 °C. The 

Resultsclearly indicated thatthe nanoparticle Brownian motion does not play a significant role in heat 

conduction of nanofluids, which was also supported by the observation that a more viscous sample 

rendered a higher thermal conductivity. Moreover, the microscopic pictures and the differences in the 

viscosity between theoretical and experimental valuessuggested the major role of particle aggregation and 

clustering. 
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1. Introduction 

Nanofluids, i.e. well-dispersed nanoparticles in a liquid medium, have been found substantial 

improvement inmany effective properties, which is promising for a range of applications ranging from 

medicsto engineering. However it has been long debated on the level of property enhancement. For 

instance, there are many works reported  an anomalous enhancement in the effective thermal conductivity 

(ETC) of nanofluids, and many theories have been proposed accordingly, including Brownian motion 

(BM), the existence of interfacial layer,clustering,etc. 

Among the mentioned mechanisms, the Brownian motion (BM) and clustering have been intensively 

investigated. While some researchers have suggested that BMis the major heat transfer mechanism, many 

others proposed that its effect is negligible in comparison to other mechanisms. For instance, Keblinski et 

al. [1] suggested that the dependence of thermal conductivity enhancement on the particle Brownian 

motion maybe insignificant because the calculated Brownian diffusion of the nanoparticles wasmuch 

slower than the thermal diffusion of the base fluid. Sarkar and Selvam [2] found that the nanoparticle 

movement was 28 times slower than that of the liquid phase. It was suggested that rather than the slow 

Brownian motion of nanoparticles, the highly enhanced and fast movement of the surrounding liquid (i.e. 

micro-convection) was proposed to be the main mechanism for the thermal conductivity enhancement. 

Similarly, a few researchersalso suggested that the effect of Brownian motion on the thermal conduction 

enhancement was negligible [3-7]. On the contrary,some studies suggested thatthe Brownian motion 

effect was important, such as Shukla et al. [8].Sun et al. [9, 10] proposed that the micro convection effect 

due to the rotation of nanoparticles was the main reason for the effective thermal conductivity 

enhancement.Tsai et al. [11] also reported that fora low viscous fluid, the Brownian motion of the 

nanoparticles was much active, which rendered the enhancement in thermal conductivity. 

It is accepted that lowering the base fluid viscosity would facilitate the Brownian motion of nanoparticles 

in a liquid [11-13]. Many methods have been used to alter the viscosity of the base fluid, which include 
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temperature, elapsed-time and nano-particles configuration [12, 14], as well as different base 

fluids[11,15]. For instance, authors of Ref. [11] have altered the base fluid viscosity through 

implementing four combinations of two similar mediums. In another work, two completely different base 

fluids with different viscosities have been used to observe the role of the Brownian motion on the thermal 

conductivity change [15]. However, it is believed that detecting the ETC with viscosity change by adding 

diluent to the base fluid is not a reliable method to observe the Brownian motion effect. By adding diluent 

to the base fluid, both BM and TC fluctuations can alter the molecular-scale properties. As to the effect of 

temperature, some authors indicated that the temperature increase may magnify the effect of BM in the 

TC enhancement [4, 16]. Based on the observation from Gao et al. [17] and Wang et al. [18], if the 

Brownian motion is important for the enhanced thermal conductivity, it is expected that a lower thermal 

conductivity would be observed for a frozen suspension. However,the effect of Brownian motion could be 

neglected if ETC was independent or in a reverse trend of temperature.This idea may support the 

negligible effect of the Brownian motion, but would not besufficient to confirm it,particularly in the case 

of TC enhancementdue to temperature increase. 

It is expected that as the temperature increases, the vibration effect of the base fluid molecules may 

wrongly be attributed to the BM effect. The reason may refer to the point that the interaction between the 

base fluid molecules and the nanoparticle Brownian motion is not yet well-defined. Actually, such a high 

order of magnitude velocity difference between the fluid molecules and nanoparticles [2] may result in a 

complicated molecular regime, in which the behavior of low velocity nanoparticles cannot be easily 

predicted. The simulations byPrasher et al. [19] postulated that the random movement of nanoparticles 

might gather them together and formsclusters. However, Karthikeyan et al. [20]suggested that such a 

random movement can be referred as BM, which may result in a breakdown of nanoparticle clusters. One 

cannot discriminate whether the fast movement of fluid molecules exactly helps the BM enhancement or 

accumulation of nanoparticles in the sparse clusters. Therefore, it can be concluded that the employment 
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of temperature change as an altering parameter to reveal the role of BM on thermal conductivity is not 

fully justified.  

Our strategy to distinguish the role of Brownian motion versus clustering in heat conduction mechanism 

of nanofluids is to utilize both viscosity and temperature alteration in a complementary way. We have 

used silicone oil with different Polydimethylsiloxane (PDMS) chain lengths. Different PDMS chain 

length is the key parameter that relates heat conduction mechanism to the Brownian motion of 

nanoparticles. This would introduce an improved implementation of viscosity as an altering parameter for 

detecting heat conduction mechanism. If the Brownian motion plays the key role, it is expected that a 

nanofluid with a higher viscosity (i.e., with larger polymer chain length) would causethe blockage of  the 

nanoparticles motion, consequently decrease the ETC. Also, the behavior of nanofluids viscosity versus 

mass fraction is studied under different temperatures. This would suitably expand our approach to heat 

conduction mechanism in nanofluids through the viscosity fluctuations. In addition, the structure of 

micro-scale clusters of prepared nanofluids is comparatively studied with the help of image processing. 

2. Material and Method 

2.1. Material fabrication 

The Multi-Walled Carbon Nanotube (MWCNT) was used in this study, which was synthesized at the 

Nanotechnology Research Center of Research Institute of Petroleum Industry (RIPI) with 90–95% purity. 

The CNTs were synthesized by the catalytic decomposition of 20% methane in hydrogen over Co–

Mo/MgO catalysts at 800–1000 °C [21].TheSEM analysis of the nanoparticles presented in Fig. 1a, b, 

shows the tangled structure of nanotubes before and after ball-milling. The TEM images in Fig. 2 also 

show the inner/outer diameter and approximate length of the nanotubes.The dimensions of nanotubes are 

determined as 3.8 nm and 10 nm respectively for the inner and outer diameter of the tubes. It can be seen 

that the length of the particles varies from 5 to 10 μm. Silicone oil was considered as the base fluid, 

whose thermo-physical properties at 25 °C are provided in Table 1. 
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Fig. 1. SEM images of MWCNT a) before and b) after the ball-milling process  

 

  

Fig.2. TEM images of MWCNT, showing its length and diameter 

 

 

 

 

 

Table 1. Properties of base fluidat 25 ℃ 

100 nm b 
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Base fluid Viscosity (cSt) Thermal 

conductivity ( ���) 

Density 

 (����) 

Manufacturer 

Silicone oil 150 0.144 980 KCC Co. Korea 

Silicone oil 1000 0.144 938 KCC Co. Korea 

 

First, the ball milling process was used to separate the entangled and agglomerated particles, using a 

planetary ball mill at a speed of 200 rpm for 1 hour.  The comparison between the SEM images after and 

before ball milling, Figure 1, ensures that the particles were not disturbed during this process. The liquid 

and solid phases were weighted on a scale with a resolution of 0.0001 g. The solid and liquid phases were 

mixed by a magnetic stirrer for 4 hoursat a speed of 900 rpm in order to facilitate the sonication 

dispersion. The sonication procedure was done using both an ultrasonic bath and a probe. The non-

continuously sonication [22] with Qsonica ultrasonic probe was implemented on the nanofluid to prevent 

probable disturbance of nanoparticles due to the sharp increase of temperature. 

2.2.Nanofluid characterization 

The thermal conductivity of the prepared nanofluids was measured in the Research Institute of Petroleum 

Industry (RIPI), by using a KD2 Pro thermal property analyzer (Decagon devices, Inc., USA). This device 

is based onthe transient hot-wire method, which is widely used by different researchers. Due to the ±5% 

measurement tolerance of the device, each sample was measured five times, and the reported values are 

the overall average values. Fig.3shows the procedure of the thermal conductivity measurement. 

Aconstant-temperature bath (Julabo, Inc., Germany) was used to fix the nanofluid temperature in the 

range of 0°C to 55°C. The water was used to calibrate the KD2 Pro and to be sure about the device 

accuracy by validating the reference data with the measured one. 
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Fig. 3. Thermal conductivity measurement under the temperature range of 0°C to 55°C 

 

The dynamic viscosity of the prepared nanofluids was measured by a glass viscometer (Petrotest Co.)in a 

constant-temperature bath in the Research Institute of Petroleum Industry (RIPI).The constant-

temperature bath provides viscosity measurement at the steady-state conditions in the temperature range 

of 0°C to 55°C. Fig. 4 shows a schematic procedure of the viscosity measurement. By applying vacuum 

conditions at one end of the viscometer, the time of passing nanofluid from the gradation of the 

devicewasrecorded,and then the viscosity value was determined. In the case of viscosity measurement in 

the temperature of over 100°C, paraffin can be used instead of water. 

 

Fig. 4. Viscosity measurement under the temperature range of 0°C to 55°C 
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3. Image processing  

In order to establish a reasonable comparison between different nanofluids' microstructure, we need to 

quantify the texture content of the taken microscopic images [23]. Therefore, an algorithmic image-

processing procedure, based on the statistical information extracted from micro-clusters, was performed. 

The prepared nanofluids were taken several microscopic images to study the configuration of 

nanoparticles micro-clusters. Fig. 5 shows the schematic flow chart of the process,which was developed 

in the Matlabplatform.  

The process included three major steps, in eight subsets with four output parameters, as described 

below.These three steps were successfully approved as a tool in morphological study of micro-structures 

by Tahmooressi et al. [24]. 

3.1. Primary process 

The first step contains preliminary modifications. It equalized all original images by omitting 

unnecessaryelementsand prepared them for the next steps. The acquired images were in the RGB type, 

which was then converted to the gray-scale type. After that, the classical contrast enhancement procedures 

were applied, which consisted the background/foreground discrimination, noise elimination and 

segmentation [25,26].  
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Fig. 5. Image-processing algorithm 

 

3.2.Texture analysis 

Describing an image texture would need to take into account not only the gray-level of single pixels but 

also their relative positions in association with the neighboring pixels [23, 27]. Generating the co-

occurrence matrix would take care of this action. This matrix was then used for the calculation of some 

moments of intensity called 'Entropy' and 'Homogeneity'. The image entropy is a unique index describing 

the level of randomness in the distribution of foreground objects (nanoparticles micro-clusters). In fact, a 

higher entropy stands for an image with better percolated micro-clusters all over the entire base fluid. The 

Matlabcalculatedthe image entropy using the following equation [28]:  

Entropy:        	 = − ∑ 
�log (
�)����     (1) 

where pi is the probability of occurrence of the event i and: 
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∑ 
� = 1,                0 ≤ 
� ≤ 1.����     (2) 

The algorithm is also used to calculate the image homogeneity which is an indicator for the texture 

uniformity [29]:  

Homogeneity:      � = ∑ 
�(��) !���"     (3) 

where L is the number of possible intensity levels, p(z) is the histogram of the intensity levels in a region 

and z is a random variable indicating intensity. A texture with higher number of homogeneity contains 

larger 'cluster-free-zone' and lower 'degree of randomness' in the objects (clusters) distribution. 

3.3.Morphological processes 

In this step, by using the 'bwmorph' function, binary images went through an 'object-thinning' process. 

The micro-clusters in the output image were in the form of minimally-connected strokes. By this step, the 

configuration of micro-clusters was better estimated visually. Thin rods revealed that the clusters were 

connected and permeated through the base fluid. Also, further analysis calculated the ratio of the surface 

area (number of pixels) of the objects (black pixels) to the background (base fluid). This index is reported 

here as “Particle to Fluid Ratio (PTFR)”. This quantity is an indicator of the amount of nanoparticles 

clusters that are grown up to the micro scale. Therefore, a lower object-to-background ratio shows less 

formation of micro-clusters.  

4. Result and Discussion 

4.1. Temperature effect 

This part discusses the Brownian motion in nanofluids through investigating the temperature-dependent 

thermal conductivity and shape evolution of clusters. For this purpose, a sample containing 0.8% CNT 

silicone oil-based was prepared, and the TC characterization was performed following the method 

described in the previous section. Fig. 6 shows the behavior of TC changes for both base fluid and 



 

nanofluid when the temperature 

smaller decreasing slope of TC in comparison with 

adding nanoparticle, is gradually increased with 

Fig. 6. Variation of thermal conductivity of base fluid and nanofluid in the range of 0

 

The microscopic images (Fig.7) 

clustering configuration change.The left image 

room temperature and the right one 

can be identifiedas temperature increase

isolated regions. As a result, cluster

“particle rich-zones” regions [19

configuration. At the higher temperature

transport and lead higher ETC; while the isolated clusters at 

11 

temperature was varied from 0℃ to 55℃. It can be observed that the nanofluid has a 

smaller decreasing slope of TC in comparison with the base fluid. It means that the ETC

is gradually increased with the temperature rising.  

Variation of thermal conductivity of base fluid and nanofluid in the range of 0

) were taken from the sample at three different temperatures to show the 

clustering configuration change.The left image was at a temperature around -70 

room temperature and the right one at 100 °C. According to Fig. 7, a well-diffused percolated structure 

as temperature increased. At low temperature, the clusters tend to accumulate and make 

. As a result, cluster networks become disconnected, forming “particle free

19]. The increasing trend of ETC can be explained by the clusters 

higher temperature, the well-diffused thermal pathways would facilitate the heat 

while the isolated clusters at a lower temperature would ac

. It can be observed that the nanofluid has a 

base fluid. It means that the ETC, as a result of 

 

Variation of thermal conductivity of base fluid and nanofluid in the range of 0℃ to 55℃ 

different temperatures to show the 

70 °C, the middle one at 

diffused percolated structure 

the clusters tend to accumulate and make 

“particle free-zones” and 

. The increasing trend of ETC can be explained by the clusters 

diffused thermal pathways would facilitate the heat 

lower temperature would act in an inverse 
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manner, which causes lower ETC. The mentioned well-diffused structure and the isolated regions can 

clearly be seen in the in Fig.8. 

 

  

Fig. 7. Microscopic images containing CNT: a) frozen sample, b) at room temperature, c) at 100 ℃ 

 

   

Fig. 8. Eroded images of: a) frozen sample, b) at room temperature, c) at 100 ℃ 

 

The positive role of clustering can also be confirmed by the entropy-based image processing results for 

the above microscopic images,which are presented in Table 2.The higher entropy stands for the higher 

thermal conductivity in the sample (c). It can also be seen visually that thermal pass-ways in the sample (c) 

are percolated all over the base fluid. While, in other samples,particles are concentrated in large clusters 

and accumulated in sparse regions.The homogeneity also indicates the relative state of particle-free zones 
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in samples (a) to (c). Samples (a), owns higher homogeneity number due to the larger particle-free zone. 

This is because of the accumulation of particles in the thick micron-size aggregations. The existence of 

such aggregations would limit the probability of heat transferthrough the solid structure all over the base 

fluid. 

Table 2. Image processing analysis of set 1 

 Homogeneity Entropy PTFR 

Sample (a) 0.5721 8.219 0.362 

Sample (b) 0.4944 9.798 0.522 

Sample (c) 0.3989 11.088 0.5358 

 

Current microscopic images and the image processing results suggest that the trend of ETC change can be 

justified by clustering. However, altering the temperature (as an external stimulus) may not be sufficient 

to evaluate the effect of BM.  There is no enough evidence to neglect the BM effect, and also it is not 

reasonable to assign this trend of ETC to the BM because the improved kinetic energy and vibration of 

the base fluids molecules may reinforce either the BM effect or the clustering. The temperature changes 

may affect other nanofluid properties such as viscosity. Therefore, it would be essential to scrutiny the 

correlation between temperature, viscosity and thermal conductivity in order to clarify theprominent 

thermal conductivity mechanism. 
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4.2. Viscosity effect 

In this experiment,two base fluids with all the same properties, but different viscosity, were used. It is of 

note that they have equal thermal conductivity, too. Silicone oil with two different values of viscosity was 

used as the base fluid where MWCNTs were dispersed in the base liquid. Both samples were prepared 

using the same method and characterized at the same conditions.  

 

Fig. 9 shows the micro-scale clusterconfiguration of two nanofluids used in our experiment. It can be seen, 

in both images thatthe clusters are of high level of percolation. This may justify the high percentage of TC 

enhancement in both nanofluids, which is reported in Table 3. 

In addition to the image, we considered two other indexes to explain the cluster configurations. Table.3 

shows thattheir PTFR numbers are not the same although they have the same volume fractions. 

Surprisingly, despite the higher PTFR of sample (a), it does not show higher TC. It clearly indicates the 

importanceof clusters percolation quality and the way the clusters are dispersed. This quality is 

quantitatively reported in Table. 3. It can be observed that the values of ETC for the considered samples 

  

Fig. 9. Sample with silicone oilas base fluid with a viscosity equal to a) 150 cst and b) 1000 cst  
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verify the image processing interpretation since its valuesare 16.67% and 20.83% for the sample (a) and 

(b), respectively. 

Table 3. Image processing analysis of viscosity effect set 

 

 

 

The results of this experiment indicate that the BM cannot be responsible for the observed enhancement 

of TC.In fact, if the Brownian motion is the key mechanism, it is expected to see a higher ETC for the 

nanofluid with a lower viscosity. However, the TC measurement contradicted such a statement. In 

addition, the microscopic images and image processing results of the samples confirm that the trend of the 

TC changes with viscosity can be well explained by the clustering. 

4.3. Nanoparticle’s concentration effect 

To strengthen ourargument, it should take care of some other important parameters affecting the 

nanofluids viscosity. According to the Einstein equation [30], the solid weight fraction plays avital role on 

the nanofluids viscosity.  

#µ$%µ&%' = 1 + 2.5+(4) 

Where the subscripts “nf” and “bf” refer to nanofluid and base fluid, respectively, and the coefficient + 

stands for the nanoparticles concentration. 
The temperature has been indicated to have a decreasing effect on the viscosity of nanofluids [31, 32]. As 

a result, the effects of both solid mass fraction and temperature were experimentally investigated. 

The dynamic viscosity of the synthesized nanofluids was measured under the influence of solid weight 

fraction of 0.2% and 0.6%,in four temperature sets of 10 °C, 25 °C, 40 °C and 55 °C. In addition, the 

 ETC (%) Homogeneity Entropy PTFR 

Sample (a) 16.67 0.4579 10.5328 0.872 

Sample (b) 20.83 0.3777 13.2686 0.392 



 

experimental results were compa

to increase with the increase of 

experimental data of nanofluids viscosity 

states, it can be seen that the proposed model

increases. In fact, the viscosity increase would be more significant at higher solid 

Fig. 10.  Nanofluids viscosity behavior

four temperature

 

As the solid weight fraction increases,

formation of nanoparticle aggregation

studies on nanofluid showed that 
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compared to Einsteinmodel.Both viscosity and thermal conductivity 

increase of the solid particles concentration [33-35]. Fig. 1

experimental data of nanofluids viscosity behavior with respect to the solid weight fraction.

proposed model deviate from the experimental data 

viscosity increase would be more significant at higher solid 

 

 

Nanofluids viscosity behavior, measured at two weight fractions of 0.2% and 0.6% 

four temperatures of 10 °C, 25 °C, 40 °C and 55 °C 

s the solid weight fraction increases, the average inter-particles distance decreases

nanoparticle aggregations. Asimilar result was also obtained byHalelfadl et al. 

that the presence of particles aggregation would increase the viscosity of 

Both viscosity and thermal conductivity were found 

10((a) to (d)) shows our 

solid weight fraction. In all four 

experimental data as the weight fraction 

viscosity increase would be more significant at higher solid weight fractions [19]. 

 

 

of 0.2% and 0.6% for CNT, and at 

distance decreases, which promote the 

obtained byHalelfadl et al. [36]. Recent 

increase the viscosity of 
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nanofluids [37]. In fact, the concentration of nanoparticles in large and scattered sites may behave as 

internal solid structures, increasing the internal resistance to the fluid flow [4].Such a postulation has been 

both experimentally and theoretically proved by other researchers [38, 39]. It can be safely drawn that the 

clustering phenomenon is one of the most important issues of nanofluids influencing their viscosity, 

extending from micro to nanoscale [13, 20, 40-42]. 

This debate comes to the conclusion thatthe BM may not be distinguished as the dominant heat transfer 

mechanism in nanofluids.The higher TC observed in the more viscous sample showsa negligible 

influence of Brownian motionon heat conduction. On the other hand, it seems that the formation of 

particles aggregation suitably justifies the enhancement in thermal conductivity.  

5. Conclusion 

We investigated the rheological and thermophysical properties of carbon silicon oil-based nanofluids to 

illuminate the dominant heat conduction mechanism in nanofluids.Considering the controversies 

evidenced in the reported experiments over the role of the Brownian motion, three sets of supplementary 

experiments were performed. First, taking temperature as an altering parameter to investigate the 

Brownian behavior of nanoparticles may not necessarily indicate the dominancy of this mechanism. It is 

believed that increasing temperature would definitely increase the level of complexity of solid particles-

base fluid interactions. In such a regime, one cannot anticipate the exact behavior of solid particles in 

response to the high-frequency collisions of base fluid molecules, which may result in the formation of 

clusters or breakdown of particle aggregates. Secondly, the configuration of micro-scale aggregations 

revealed by image processing also supports such a statement. Thirdly, separated experiments were 

conducted to assess the effect of viscosity, which indicatedan insignificant role of nanoparticles Brownian 

motion innanofluids heat conduction mechanism.Convincingly our work supports the dominance of 

particle aggregation effect in nanofluids heat conduction. 
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