
This is a repository copy of Using coarse-grained abstractions to verify linearizability on
TSO architectures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113099/

Version: Accepted Version

Article:

Derrick, J., Smith, G., Groves, L. et al. (1 more author) (2014) Using coarse-grained
abstractions to verify linearizability on TSO architectures. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8855. pp. 1-16. ISSN 0302-9743

https://doi.org/10.1007/978-3-319-13338-6_1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Using coarse-grained abstractions to verify

linearizability on TSO architectures

John Derrick1, Graeme Smith2, Lindsay Groves3, and Brijesh Dongol1

1Department of Computing, University of Sheffield, UK
2School of Information Technology and Electrical Engineering,

The University of Queensland, Australia
3 School of Engineering and Computer Science,

Victoria University of Wellington, New Zealand

Abstract. Most approaches to verifying linearizability assume a sequentially

consistent memory model, which is not always realised in practice. In this pa-

per we study correctness on a weak memory model: the TSO (Total Store Order)

memory model, which is implemented in x86 multicore architectures.

Our central result is a proof method that simplifies proofs of linearizability on

TSO. This is necessary since the use of local buffers in TSO adds considerably to

the verification overhead on top of the already subtle linearizability proofs. The

proof method involves constructing a coarse-grained abstraction as an interme-

diate layer between an abstract description and the concurrent algorithm. This

allows the linearizability proof to be split into two smaller components, where

the effect of the local buffers in TSO is dealt with at a higher level of abstraction

than it would have been otherwise.

1 Introduction

There has been extensive work on correctness of fine-grained concurrent algorithms

over the last few years, where linearizability is the key criteria that is applied. This re-

quires that fine-grained implementations of access operations (e.g., insertion or removal

of an element of a data structure) appear as though they take effect “instantaneously at

some point in time” [12], thereby achieving the same effect as an atomic operation.

There has been considerable work on verifying linearizability, and a variety of proof

techniques have been developed, some of them with automated support.

However, most of this work assumes a particular memory model; specifically a se-

quentially consistent (SC) memory model, whereby program instructions are executed

by the hardware in the order specified by the program. Typical multicore systems com-

municate via shared memory and, to increase efficiency, use (local) store buffers. Whilst

these relaxed memory models give greater scope for optimisation, sequential consis-

tency is lost, and because memory accesses may be reordered in various ways it is even

harder to reason about correctness. Typical multiprocessors that provide such weaker

memory models include the x86 [16], Power [17] and ARM [1] multicore processor

architectures.

In this paper we focus on one such memory model, the TSO (Total Store Order)

model [17] which is implemented in the x86 architecture. The notion of correctness we

adopt for this architecture is TSO-linearizability as defined in [9]. If verifying lineariz-

ability was not hard enough, the reordering of the memory accesses in TSO brings an

additional layer of complexity. The purpose of this paper is to simplify this complex-

ity as much as we can. To do so we use the key observation that in many cases for an

algorithm on TSO the conditions that linearizability require can be split into two. One

aspect deals with the fine-grained nature of the concurrent algorithm, and the other with

the effect the local buffers have on when effects become visible in the shared memory.

We exploit this in our proof method, which uses an intermediate description, specif-

ically a coarse-grained abstraction that lies between the abstract specification and the

concurrent algorithm. The coarse-grained abstraction captures the semantics of the con-

current algorithm when there is no fine-grained interleaving of operations by different

processes. Our simplified proof method then requires one set of proof obligations be-

tween the concurrent algorithm and the coarse-grained abstraction, and a different set of

proof obligations between the coarse-grained abstraction and the abstract description.

The structure of the paper is as follows. In Section 2 we introduce the TSO model as

well as our running example, the spinlock algorithm along with an abstract and concrete

specification of it in Z. (We assume the reader is familiar with Z — for details see [18]).

In Section 3 we provide a coarse-grained abstraction of spinlock. In Section 4 we adapt

the standard definition of linearizability to allow the concrete specification to be proved

linearizable to the coarse-grained specification. In Section 5 we define a transformation

from the coarse-grained abstraction to the abstract one which together with the results

of Section 4 allows us to prove overall correctness of the concrete specification with

the abstract one. This is shown to be sound in Section 6 with respect to a notion of

linearizability on TSO previously published in [9]. We conclude in Section 7.

2 The TSO memory model

In the TSO architecture [17] each processor core uses a write buffer, which is a FIFO

queue that stores pending writes to memory. A processor core performing a write to a

memory location enqueues the write to the buffer and continues computation without

waiting for the write to be committed to memory. Pending writes do not become visible

to other cores until the buffer is flushed, which commits (some or all) pending writes

to memory. The value of a memory location read by a process is the most recent in

the processor’s local buffer. If there is no such value (e.g., initially or when all writes

corresponding to the location have been flushed), the value of the location is fetched

from memory. The use of local buffers allows a read by one process, occurring after a

write by another, to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU, and from the programmer’s per-

spective occur non-deterministically. However, a programmer may explicitly include

a fence, or memory barrier, instruction in a program’s code to force a flush to occur.

Therefore, although TSO allows some non-sequentially consistent executions, it is used

in many modern architectures on the basis that these can be prevented, where necessary,

by programmers using fence instructions. A pair of lock and unlock commands allows

a process to acquire sole access to the memory. Both commands include a fence which

forces the store buffer of that process to be flushed completely.

2

2.1 Example – spinlock

Spinlock is a locking mechanism designed to avoid operating system overhead associ-

ated with process scheduling and context switching. The abstract specification simply

describes a lock, with operations Acquirep, Releasep and TryAcquirep parameterised by

the identifier of the process p ∈ P performing the operation (P is the set of all process

identifiers). A global variable x represents the lock and is set to 0 when the lock is held

by a thread, and 1 otherwise. As in [16], we assume that only a process that has acquired

the lock will release it, and a process will only attempt to acquire the lock if it doesn’t

already hold it.

AS

x : {0, 1}

Init

AS

x = 1

Acquirep

∆AS

x = 1

x′ = 0

Releasep

∆AS

x′ = 1

TryAcquirep

∆AS

out! : {0, 1}

if x = 1

then x′ = 0 ∧ out! = 1

else x′ = x ∧ out! = 0

A typical implementation of spinlock [11] is shown in Figure 1, given as pseudo-code

(where a1, etc. are line numbers). A thread trying to acquire the lock spins, i.e., waits

in a loop, while repeatedly checking x for availability.

word x=1;

void acquire()

{

a1 while(1) {

a2 lock;

a3 if (x==1) {

a4 x=0;

a5 unlock;

a6 return;

}

a7 unlock;

a8 while(x==0){};

}}

void release()

{

r1 x=1;

}

int tryacquire()

{

t1 lock;

t2 if (x==1) {

t3 x=0;

t4 unlock;

t5 return 1;

}

t6 unlock;

t7 return 0;

}

Fig. 1. Spinlock implementation

A terminating acquire operation will always succeed to acquire the lock. It will

lock1 the global memory so that no other process can write to x. If, however, another

1 Locking the global memory using the TSO lock command should not be confused with

acquiring the lock of this case study by setting x to 0.

3

thread has already acquired the lock (i.e., x==0) then it will unlock the global mem-

ory and spin, i.e., loop in the while-loop until it becomes free, before starting over.

Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. The tryacquire

operation differs from acquire in that it only makes one attempt to acquire the lock.

If this attempt is successful it returns 1, otherwise it returns 0.

The lock and unlock commands act as memory barriers on TSO. Hence, writes

to x by the acquire and tryacquire operations are not delayed. For efficiency,

however, release does not have a memory barrier and so its write to x can be delayed

until a flush occurs. The spinlock implementation will still work correctly, the only ef-

fect that the absence of a barrier has is that a subsequent acquiremay be delayed until

a flush occurs, or a tryacquire operation by a thread q may return 0 after the lock

has been released by another thread p. For example, the following execution is possible,

where we write (q,tryacquire(0)) to denote process q performing a tryacquire

operation and returning 0, and flush(p) to denote the CPU flushing a value from pro-

cess p’s buffer: 〈(p,acquire), (p,release), (q,tryacquire(0)),flush(p)〉.
Thus p performs an acquire, then a release, and then q a tryacquire that

returns 0 even though it occurs immediately after the release. This is because the

flush(p), which sets the value of x in memory to 0 has not yet occurred.

The Z specification that corresponds to the concrete system has one operation per

line of pseudo-code, and each operation can be invoked by a given process. The concrete

state consists of the shared memory, given as a global state GS and local state LS for

each process. GS includes the value of the shared variable x (initially 1), a variable lock

which has value {p} when a process p currently has the global memory locked (and is

∅ otherwise), and a buffer for each process modelled as a sequence of 0 and 1’s.2

GS

x : {0, 1}

lock : PP

buffer : P → seq{0, 1}

#lock ≤ 1

GSInit

GS

x = 1

lock = ∅

∀ p : P • buffer(p) = 〈 〉

For a given process, LS is specified in terms a program counter, PC, indicating which
operations (i.e., lines of code) can next be performed. Let

PC ::= 1 | a1 | . . . | a8 | t1 | . . . | t7 | r1

The value 1 denotes that the process is not executing any of the three operations. The

values ai, for i ∈ 1 . . 8, denote the process is ready to perform the ith line of code of

acquire, and similarly for ti and tryacquire. The value r1 denotes the process is

ready to perform the first line of release.

LS

pc : PC

LSInit

LS

pc = 1

2 In a more complex example, the buffer would also store the name of the variable assigned.

4

Given this specification, the lines of code are formalised as Z operations.3 For a given
process p, we have an operation A0p corresponding to the invocation of the acquire
operation, and an operation A1p corresponding to the line of code while(1).

A0p

ΞGS; ∆LS

pc = 1 ∧ pc′ = a1

A1p

ΞGS; ∆LS

pc = a1 ∧ pc′ = a2

The operation A2p corresponds to the line of code lock. To model the next line of

code, if (x==1), we use two operations: A31p for the case when x = 1, and A30p

for the case when x = 0. These operations are only enabled when the buffer is empty,

modelling the fact that the lock of A2p is a fence, i.e., a sequence of flush operations on

p’s buffer (specified below) must occur immediately after A2p if the buffer is non-empty.

A2p

∆GS; ∆LS

pc = a2 ∧ lock = ∅

pc′ = a3 ∧ lock′ = {p}

A31p

ΞGS; ∆LS

buffer(p) = 〈 〉

pc = a3 ∧ x = 1

pc′ = a4

A30p

ΞGS; ∆LS

buffer(p) = 〈 〉

pc = a3 ∧ x = 0

pc′ = a7

The operation A4p, corresponding to the line x=0, adds the value 0 to the buffer. The

operations corresponding to the other lines of acquire are modelled similarly. The

two operations corresponding to while(x==0), A80p and A81p, are only enabled

when either x can be read from the buffer, i.e., buffer 6= 〈 〉, or the buffer is empty and

the memory is not locked (and so x can be read from the global memory).

A4p

∆GS; ∆LS

pc = a4

buffer′(p) = buffer(p)a 〈0〉

pc′ = a5

A5p

∆GS; ∆LS

buffer(p) = 〈 〉

pc = a5 ∧ pc′ = a6 ∧ lock′ = ∅

A6p

ΞGS; ∆LS

pc = a6 ∧ pc′ = 1

A7p

∆GS; ∆LS

buffer(p) = 〈 〉

pc = a7 ∧ pc′ = a8 ∧ lock′ = ∅

A80p

ΞGS; ΞLS

pc = a8

buffer(p) = 〈 〉 ⇒ lock = ∅ ∧ x = 0

buffer(p) 6= 〈 〉 ⇒ last buffer(p) = 0

A81p

ΞGS; ∆LS

pc = a8

buffer(p) = 〈 〉 ⇒ lock = ∅ ∧ x = 1

buffer(p) 6= 〈 〉 ⇒ last buffer(p) = 1

pc′ = a1

3 To simplify the presentation we adopt the convention that the values (of variables or in the

range of a function) that are not explicitly changed by an operation remain unchanged.

5

The operations for tryacquire are similar to those of acquire. Those for release

are given below. We also have an operation, Flushcpu, corresponding to a CPU-controlled

flush which outputs the process whose buffer it flushes.

R0p

ΞGS

∆LS

pc = 1 ∧ pc′ = r1

R1p

ΞGS

∆LS

pc = r1 ∧ pc′ = 1

buffer′(p) = buffer(p)a 〈1〉

We also have an operation, Flushcpu, corresponding to a CPU-controlled flush which
outputs the process whose buffer it flushes.

Flushcpu

∆GS

p! : P

lock = ∅ ∨ lock = {p!}

buffer(p!) 6= 〈 〉 ⇒ x′ = head buffer(p!) ∧ buffer′(p!) = tail buffer(p!)

buffer(p!) = 〈 〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

The task in its most general setting is to prove that this concrete specification is lineariz-

able with respect to the abstract one given earlier. The rest of this paper is concerned

with a method by which one can show this and similar algorithms correct. First we re-

cap on the notion of linearizability and then discuss how it can be used to provide a

coarse-grained abstraction of our concrete specification.

3 Coarse-grained abstraction

Linearizability [12] is the standard notion of correctness for concurrent algorithms, and

allows one to compare a fine-grained implementation against its abstract specification.

For example, in spinlock the concurrent system might perform an execution such as:

〈(p,A0), (q,R0), (p,A1), (q,R1)〉. The idea of linearizability is that any such concrete

sequence must be consistent with some abstract execution (i.e., a sequence of Acquire’s,

Release’s etc. also performed by p and q):

(1) Linearizability provides the illusion that each operation applied by concur-

rent processes takes effect instantaneously at some point between its invocation

and its return. This point is known as the linearization point [12].

In other words, if two operations overlap, then they may take effect in any order from

an abstract perspective, but otherwise they must take effect in program order.

There has been an enormous amount of interest in deriving techniques for verifying

linearizability. These range from using shape analysis [2, 4] and separation logic [4] to

rely-guarantee reasoning [20] and refinement-based simulation methods [10, 7]. Most

of this work has been for sequentially consistent architectures, but some work has been

done for TSO [3, 11, 19, 9]. In particular, in [9] we have defined a simulation-based

6

proof method for linearizability on TSO. The key point in defining linearizability on

TSO is to take into account the role of the local buffers. Since the flush of a process’s

buffer is sometimes the point that the effect of an operation’s changes to memory be-

come globally visible, the flush can be viewed as being the final part of the operation.

For example, the flush of a variable, such as x, after an operation, such as release,

can be taken as the return of that operation. Under this interpretation, the release

operation extends from its invocation to the flush which writes its change to x to the

global memory. Thus [19] and [9] use the following principle:

(2) The return point of an operation on a TSO architecture is not necessarily

the point where the operation ceases execution, but can be any point up to the

last flush of the variables written by that operation.

However, any proof method will be complicated by having to deal with both the

inherent interleaving handled by linearizability and the additional potential overlapping

of concrete operations resulting from the above principle. For example, in spinlock, a

process may perform a release but not have its buffer flushed before invoking its

next operation.

The idea in this paper is simple. We use an intermediate specification (between the

abstract and concrete) to split the original proof obligations into two simpler compo-

nents. The first (between the concrete and intermediate specifications) deals with the

underlying linearizability, and the second (between intermediate and abstract) deals

with the effects of local buffers. The intermediate specification is a coarse-grained ab-

straction that captures the semantics of the concrete specification with no fine-grained

interleaving of operations by different processes. We describe how to define such a

coarse-grained abstraction in the next section.

Figure 2 illustrates this idea for a specific execution: at the bottom is a concrete

execution, and in the middle is an execution of the intermediate specification which

linearizes it (as per Section 4). Finally at the top is an execution of the abstract speci-

fication that is related to the intermediate one by the transformation TRANS defined in

Section 5. Overall this will guarantee that the concrete execution is TSO-linearizable to

the abstract one, as we show in Section 6.

3.1 Defining the coarse-grained abstraction

The coarse-grained abstraction is constructed by adding local buffers to the abstract

specification. Thus, it is still a description on the TSO architecture – since it has buffers

and flushes – but does not decompose the operations. The state space is the abstract

state space with the addition of a buffer for each process (as in the concrete state space

GS). Like in the concrete state space, all buffers are initially empty. Hence for spinlock

we have:

BS

x : {0, 1}

buffer : P → seq{0, 1}

BSInit

BS

x = 1 ∧ ∀ p : P • buffer(p) = 〈 〉

Each operation is like that of the abstract specification except that

7

A0 A1 A2 A3

TA0

A5A4p

TA

1

TA

2

A6 R0 R1

q
TA

6
TA7

Flushcpu

CS

q: Try
Acquire

cpu: Flush BS

p: Acquire p: Release
q: Try
Acquire

AS

TRANS

linearizability

TSO-linearizability
p: Releasep: Acquire

Fig. 2. Three executions in abstract, intermediate and concrete models

– reads are replaced by reads from the process’s buffer or from memory, i.e., the

operation refers to the latest values of variables in the buffer, and to their actual

values otherwise,
– writes are replaced by writes to the buffer (unless the corresponding concrete oper-

ation has a fence),
– because we have buffers in the intermediate state space we need to include fences

and flushes: the buffer is set to empty when the corresponding concrete operation

has a fence, and a flush is modelled as a separate operation.

For example, for the abstract operation Acquirep, x = 1 represents a read, and x′ = 0
represents a write. Using the above heuristic, we replace x = 1 by buffer(p) 6= 〈 〉 ⇒
last buffer(p) = 1 ∧ buffer(p) = 〈 〉 ⇒ x = 1 since the latest value of x is that in the
buffer when the buffer is not empty, and the actual value of x otherwise. We also replace
x′ = 0 by buffer′(p) = 〈 〉 ∧ x′ = 0 since the corresponding concrete operation has a
fence. Similarly, while the operation TryAcquirep writes directly to x and sets the buffer
to empty (since it has a fence), the operation Releasep writes only to the buffer.

Acquirep

∆BS

buffer(p) 6= 〈 〉 ⇒ last buffer(p) = 1

buffer(p) = 〈 〉 ⇒ x = 1

buffer′(p) = 〈 〉 ∧ x′ = 0

Releasep

∆BS

buffer′(p) = buffer(p)a 〈1〉

TryAcquirep

∆BS

out! : {0, 1}

if buffer(p) 6= 〈 〉 ∧ last buffer(p) = 1 ∨ buffer(p) = 〈 〉 ∧ x = 1

then buffer′(p) = 〈 〉 ∧ x′ = 0 ∧ out! = 1

else buffer′(p) = 〈 〉 ∧ x′ = 0 ∧ out! = 0

8

Note that x′ = 0 in the else-predicate of TryAcquireP since if the buffer is empty, x is

0 and does not change, and if the buffer is not empty, the last element in buffer is 0 and

the buffer is completely flushed by the lock command in tryacquire.
Finally, the course-grained abstraction is completed with the Flushcpu operation. As

in the concrete specification, this operation is performed by the CPU process.

Flushcpu

∆BS

p! : P

buffer(p!) 6= 〈 〉 ⇒ x′ = head buffer(p!) ∧ buffer′(p!) = tail buffer(p!)

buffer(p!) = 〈 〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

The coarse-grained abstraction is chosen purposefully to reflect the abstract specifica-

tion; this facilitates the final part of the proof. The inclusion of buffers and flush op-

erations, however, means it can be shown to linearize the concrete specification using

standard proof methods.

4 Linearizability: From concrete to intermediate specification

To prove the concrete specification is correct with respect to the intermediate one, we

can use a slight adaption of the standard notion of linearizability. Below we describe

how we adapt the formal definition and proof method for linearizability given in [7].

In the standard definition of linearizability, histories are sequences of events which

can be invocations or returns of operations from a set I and performed by a particular

process from a set P. On the TSO architecture, operations can be flushes and we assume

that a flush is only executed by a CPU process cpu ∈ P, different from all other pro-

cesses. We also assume that invocations of flushes are immediately followed by their

returns. Invocations have an associated input from domain In, and returns an output

from domain Out.

Event ::= inv〈〈P × I × In〉〉 | ret〈〈P × I × Out〉〉
History == seq Event

For a history h, #h is the length of the sequence, and h(n) its nth element (for

n : 1..#h). Predicates inv?(e) and ret?(e) determine whether an event e ∈ Event is an

invoke or return, respectively. We let e.π ∈ P and e.i ∈ I be the process executing the

event e and the operation to which the event belongs, respectively.

Let mp(p,m, n, h) denote matching pairs of invocations and returns by process p in

history h as in [7]. Its definition requires that h(m) and h(n) are executed by the same

process p and are an invocation and return event, respectively, of the same operation.

Additionally, it requires that for all k between m and n, h(k) is not an invocation or

return event of p. That is, mp(p,m, n, h) holds iff

0 < m < n ≤ #h ∧
inv?(h(m)) ∧ ret?(h(n)) ∧ h(m).π = h(n).π = p ∧ h(m).i = h(n).i ∧
∀ k • m < k < n ⇒ h(k).π 6= p

9

We say a history h is legal iff for each n : 1..#h such that ret?(h(n)), there exists

an earlier m : 1..n − 1 such that mp(p,m, n, h).
A formal definition of linearizability is given below. A history is incomplete if it has

either (i) an operation which has been invoked and has linearized but not yet returned, or

(ii) results in a non-empty buffer. An incomplete history h is extended with a sequence

h0 of flushes and returns of non-flush operations, then matched to a sequential history hs

by removing the remaining pending invocations using a function complete. Let HistFR

be the set of histories that are sequences of flushes and returns of non-flush operations.

Definition 1 (Linearizability). A history h : History is linearizable with respect to

some sequential history hs iff lin(h, hs) holds, where

lin(h, hs) =̂ ∃ h0 : HistFR • legal(h a h0) ∧ linrel(complete(h a h0), hs)

where

linrel(h, hs) =̂ ∃ f : 1..#h → 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧ mp(p,m, n, h) ⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mp(p,m, n, h) ∧ mp(q,m′, n′, h) ⇒ f (n) < f (m′)) 2

That is, operations in hs do not overlap (each invocation is followed immediately by its

matching return) and the order of non-overlapping operations in h is preserved in hs.

For example, the history h corresponding to the concrete execution in Figure 2 is

〈inv(p,acquire,), inv(q,tryacquire,), ret(p,acquire,), inv(p,release,),
ret(p,release,), ret(q,tryacquire, 0), inv(cpu,flush,), ret(cpu,flush, p)〉

This history is complete and legal, and is linearized by the history hs

〈inv(p,Acquire,), ret(p,Acquire,), inv(p,Release,), ret(p,Release,),
inv(q, TryAcquire,), ret(q, TryAcquire, 0), inv(cpu,Flush,), ret(cpu,Flush, p)〉

which corresponds to the intermediate-level execution in Figure 2.

Correctness requires showing all concrete histories are linearizable. Existing proof

methods for showing this include the simulation-based approach in [7]. This is based

on showing that the concrete specification is a non-atomic refinement of the abstract

one. Examples of its use are given in [5–8, 14, 15]. This approach is fully encoded in a

theorem proving tool, KIV [13], and has been proved sound and complete — the proofs

themselves being done within KIV. The key point for us is that, for this portion of the

correctness proof, we do not have to adapt the proof method.

5 Transforming the intermediate specification to an abstract one

The previous section has shown how to prove that a concrete specification is lineariz-

able with respect to an intermediate, coarse-grained abstraction. The inclusion of local

buffers in this intermediate specification avoided us needing to deal with the effects

of the TSO architecture. In this section, we introduce a deterministic history trans-

formation which when coupled with the linearization method of the previous section

10

guarantees the overall correctness of concrete specification with respect to the abstract

one. Correctness involves showing every history of the intermediate specification is

transformed to a history of the abstract one. Soundness of this approach is proved in

Section 6.

The histories of the intermediate specification are sequential, i.e., returns of oper-

ations occur immediately after their invocations, but the specification includes buffers

and flush operations. The transformation turns the histories of the intermediate specifi-

cation into histories of an abstract one, i.e., without buffers, with the same behaviour. It

does this according to principle (2) in Section 3, i.e., it moves the return of an operation

to the flush that make its global behaviour visible. To keep histories sequential, we also

move the invocation of the operation to immediately before the return.

To define the transformation, denoted TRANS, we need to calculate which flush

an operation’s return (and invocation) should be moved to. This is done by a function

mpf (standing for matching pair flush) which in turn uses mp defined in Section 4. A

flush returns an operation, i.e., makes its effects visible globally, when it writes the last

variable which was updated by that operation to memory. Let bs(p,m, h) denote the size

of process p’s buffer at point m in the history h. Given an operation whose invocation

is at point m and return at point n, if the buffer is empty when the operation is invoked,

then the number of flushes to be performed before the operation returns is equal to the

size of the buffer at the end of the operation, i.e., bs(p, n, h); if this number is 0 then

the return does not move. Similarly, if an operation contains a fence then the number

of flushes before the operation returns is also equal to bs(p, n, h). In all other cases,

we need to determine whether the operation has written to any global variables. If it has

written to one or more global variables then again the number of flushes to be performed

before the operation returns is bs(p, n, h).

To determine whether an operation has written to global variables, we compare the

size of the buffer at the start and end of the operation taking into account any flushes that

have occurred in between. Let nf (p,m, n, h) denote the number of flushes of process p’s

buffer from point m up to and including point n in h. The number of writes between the

two points is given by

nw(p,m, n, h) =̂ bs(p, n, h)− bs(p,m, h) + nf (p,m, n, h) .

The function mpf is then defined below where m, n and l are indices in h such

that (m, n) is a matching pair and l corresponds to the point to which the return of the

matching pair must be moved.

mpf (p,m, n, l, h) =̂ mp(p,m, n, h) ∧ n ≤ l ∧
if nw(p,m, n, h) = 0 ∨ bs(p, n, h) = 0 then l = n

else h(l) = ret(cpu,Flush, p) ∧ nf (p, n, l, h) = bs(p, n, h)

The first part of the if states that l = n if no items are put on the buffer by the

operation invoked at point m, or all items put on the buffer have already been flushed

when the operation returns. The second states that l corresponds to a flush of p’s buffer

and the number of flushes between n and l is precisely the number required to flush the

contents of the buffer at n.

11

The history transformation TRANS is then defined as follows. It relies on the fact

that the intermediate histories are sequential, i.e., comprise a sequence of matching

pairs. Each matching pair of a history is either moved to the position of the flush which

acts as its return (given by mpf), or left in the same position relative to the other match-

ing pairs. The transformation also removes all flushes from the history. Informally we

can think of TRANS(hs) creating a new history determined by applying two steps to the

history hs. The first step introduces a new history hs1 which includes dummy events δ

and invocations and returns of flushes. The second step removes these resulting in an

abstract history:

Step 1. For all indices m, n and l such that mpf (p,m, n, l, h) holds for some p:

if n = l then hs1(m) := hs(m) and hs1(n) := hs(n)
else hs1(l) := hs(n) and hs1(l − 1) := hs(m) and hs1(n) := δ and hs1(m) := δ

Step 2. All δ and flush invocations and returns are removed.

Although this is the best intuition of TRANS, the formal definition is based on iden-

tifying the matching pairs, and ordering them by the positions that invocations and

returns are moved to. The key point is that the positions that returns get moved to are

different for each event, so we can order them, and this order defines our new history.

Definition 2 (TRANS). Let hs be a history of the intermediate specification, S =
{(m, n, l) | ∃ p : P • mpf (p,m, n, l, hs) ∧ hs(m).i 6= Flush}, and k = #S. We can order

elements of S by the 3rd element in the tuple: l1 < l2 < . . . < lk. Then TRANS(hs) is

an abstract history with length 2k defined (for i : 1 . . 2k) as:

TRANS(hs)(i) =

{
hs(n) if i is even and (m, n, li/2) ∈ S

hs(m) if i is odd and (m, n, l(i+1)/2) ∈ S

Furthermore, this mapping induces a function G which identifies the index that any

particular invocation or return has been moved to. G is defined (for j : 1 . .#hs) by:

G(j) =

{
2i if (m, j, li) ∈ S and so hs(j) is a return

2i − 1 if (j, n, li) ∈ S and so hs(j) is an invocation 2

Definition 3 (TSO-equivalence). An intermediate specification BS is TSO-equivalent

to an abstract specification AS whenever for every history hs of BS, TRANS(hs) is a

history of AS. 2

For example, given the intermediate-level history hs in Section 4, the indices which

are related by mpf are as follows: for Acquire we get mpf (p, 1, 2, 2, hs), for Release

we get mpf (p, 3, 4, 8, hs), for TryAcquire we get mpf (q, 5, 6, 6, hs) and for Flush we

get mpf (cpu, 7, 8, 8, hs). S will include the first three tuples which are then ordered:

(1, 2, l1), (5, 6, l2), (3, 4, l3) (where l1 = 2, l2 = 6 and l3 = 8). Thus, TRANS(hs)(1) =
hs(1) since 1 is odd and (1, 2, l1) ∈ S. Similarly, TRANS(hs)(6) = hs(4) as 6 is

even and (3, 4, l3) ∈ S. Overall, TRANS(hs) is the following which corresponds to the

abstract execution in Figure 2: 〈inv(p,Acquire,), ret(p,Acquire,), inv(q, TryAcquire,),
ret(q, TryAcquire, 0), inv(p,Release,), ret(p,Release,)〉.

12

6 Gluing it together: From concrete to abstract specification

Overall, we want to show the correctness of the concrete specification with respect to

the abstract one. The notion of correctness we adopt is TSO-linearizability as defined in

[9]. We summarise this definition below before proving that the effect of linearizability

followed by TSO-equivalence implies TSO-linearizability.

6.1 TSO-linearizability

To prove linearizability on TSO, we introduce a history transformation Trans which

(according to principle (2) in Section 3) moves the return of each operation to the flush

which makes its global behaviour visible, if any. Trans is similar to TRANS of Section 5

except it does not also move the invocation of the operation. The informal intuition for

Trans alters the first step of the transformation to the following:

Step 1. For all indices m, n and l such that mpf (p,m, n, l, h) holds for some p:

if n = l then h1(m) := h(m) and h1(n) := h(n)
else h1(m) := h(m) and h1(l) := h(n) and h1(n) := δ

In a manner similar to TRANS, this is formalised in the following definition:

Definition 4 (Trans). Let h be a history of the concrete specification, S1 = {(m, n, l, x) |
∃ p : P • mpf (p,m, n, l, h) ∧ h(m).i 6= Flush ∧ x ∈ {m, l}}, and k1 = #S1. We can

order the elements of S1 by their 4th elements: x1 < x2 < . . . < xk1 . Then Trans(h) is

an abstract history with length k1 defined (for i : 1 . . k1) as:

Trans(h)(i) =

{
h(xi), if (xi, n, l, xi) ∈ S, for some n and l

h(n), if (m, n, xi, xi) ∈ S, for some m

Furthermore, this mapping induces a function g which identifies the index that any

particular invocation or return has been moved from. g is defined (for i : 1 . . k1) by:

g(i) =

{
xi, if (xi, n, l, xi) ∈ S, for some n and l

n, if (m, n, xi, xi) ∈ S, for some m 2

For example, given the concrete history h in Section 4, the indices which are re-

lated by mpf are as follows: for acquire we get mpf (p, 1, 3, 3, h), for tryacquire

we get mpf (q, 2, 6, 6, h), for release we get mpf (p, 4, 5, 8, h) and for flush we

get mpf (cpu, 7, 8, 8, h). The elements of set S1 are ordered as follows: (x1, 3, 3, x1),
(x2, 6, 6, x2), (1, 3, x3, x3), (x4, 5, 8, x4), (2, 6, x5, x5), (4, 5, x6, x6) (where x1 = 1, x2 =
2, x3 = 3, x4 = 4, x5 = 6 and x6 = 8). Thus, Trans(h)(1) = h(1) since x1 = 1, and

Trans(h)(6) = h(8) since x6 = 8. Overall Trans(h) is

〈inv(p,Acquire,), inv(q, TryAcquire,), ret(p,Acquire,), inv(p,Release,),
ret(q, TryAcquire, 0), ret(p,Release,)〉 .

A key part of adapting the definition of linearizability from Section 4 to TSO is

what we mean by a matching pair of invocations and returns. The formal definition of

the function mp requires that for all k between m and n, h(k) is not an invocation or

return event of p. This is not true for our transformed histories on TSO since operations

13

by the same process may overlap. Therefore, we will use a new version of matching

pairs mpTSO defined as follows.

mpTSO(p,m, n, h) iff mpf (p, x, z, y, h)
where m = x −

∑
p:P

nf (p, 1, x, h) and n = y −
∑
p:P

nf (p, 1, y, h) and x < z ≤ y

We then adopt the definition of TSO-linearizability from [9]. After extending an incom-

plete concrete history with flushes and returns of non-flush operations, we apply Trans

to it before matching it to an abstract history.

Definition 5 (TSO-linearizability). A history h : History is TSO-linearizable with re-

spect to some sequential history hs iff linTSO(h, hs) holds, where

linTSO(h, hs) =̂ ∃ h0 : HistFR • legal(h a h0) ∧ linrelTSO(Trans(complete(h a h0)), hs)

where

linrelTSO(h, hs) =̂ ∃ f : 1..#h → 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧ mpTSO(p,m, n, h) ⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mpTSO(p,m, n, h) ∧ mpTSO(q,m′, n′, h) ⇒ f (n) < f (m′))

We say that a concrete specification is TSO-linearizable with respect to an abstract

specification if and only if for all concrete histories h, there exists an abstract history

hs such that linTSO(h, hs). 2

The new matching pairs in the example history Trans(h) above are mpTSO(p, 1, 3, h1),
mpTSO(q, 2, 5, h1) and mpTSO(p, 4, 6, h1). It is easy to see that this is linearized by the

abstract history corresponding to the execution in Figure 2.

6.2 Soundness

Assume a concrete specification CS is linearizable with respect to an intermediate spec-

ification BS, and BS is TSO-equivalent to an abstract specification AS. Given a concrete

history h, to prove our approach sound we have to find an abstract history hs such that

linTSO(h, hs). It is clear that any incomplete concrete history can be extended to a com-

plete and legal history, therefore we assume h is complete and legal.

Since CS is linearizable with respect to BS, there exists an hs1 such that lin(h, hs1)
and an associated bijection f1. Let hs =̂ TRANS(hs1). To show CS is TSO-linearizable

with respect to AS, we define a bijection f between the indices of Trans(h) and hs as

follows. Let f (n) = G(f1(g(n))) where n ∈ 1 . . #Trans(h), and G and g are given in

Definitions 2 and 4 respectively. f is a bijection since:

(i) Since #h = #hs1 (property of lin), we get #Trans(h) = #TRANS(hs1) (since

both remove flush invocation and returns) and hence #hs = #Trans(h).

14

(ii) f is surjective since each event in TRANS(hs1) is either an invocation or return of a

non-flush operation. Therefore, there exists an invocation or return of a non-flush

operation in hs1 that is mapped to this event by G. Then surjectivity of f1 implies

there exists an invocation or return of a non-flush operation in h which maps to the

event in hs1. Since this event is of a non-flush operation, there exists an invocation

or return in Trans(h) which is mapped to it by g.

(iii) f is injective since g, f1 and G are all injective.

We now show that f satisfies the three conjuncts of linrelTSO and hence that TSO-

linearizability holds.

(i) Trans(h)(n) = hs(f (n)) follows by construction of f .

(ii) Given m, n : 1 . .#Trans(h) and p : P, suppose that m < n ∧ mpTSO(p,m, n, h). In

the case where h(g(n)) is the return of a non-flush operation, mp(p, g(m), g(n), h)
holds so we know f1(g(n)) = f1(g(m)) + 1 (property of lin). G does not change

this relationship between f1(g(n)) and f1(g(m)). Hence, f (n) = f (m) + 1.

On the other hand if h(g(n)) is the return of a flush operation, G moves f1(g(m))
and f1(g(m + 1)) to f1(g(n − 1)) and f1(g(n)) respectively. Again, we get f (n) =
f (m) + 1.

(iii) Given m, n,m′, n′ : 1. .#Trans(h) and p, q : P such that n < m′∧mpTSO(p,m, n, h)
∧mpTSO(q,m′, n′, h), it follows that mp(p, g(m), g(n), h)∧mp(q, g(m′), g(n′), h).
This means f1(g(n)) < f1(g(m

′)) (property of lin). G does not change this rela-

tionship between f1(g(n)) and f1(g(m
′)). Hence, f (n) < f (m′).

7 Conclusions

In this paper we have developed a method by which to simplify proofs of linearizability

for algorithms running on the TSO memory model. Instead of having to deal with the

effects of both fine-grained atomicity and local buffers in one set of proof obligations,

we have used an intermediate specification to partition the proof obligations in two.

One set of proof obligations is simply the standard existing notion of linearizability

(where flushes are treated as normal operations), and any existing proof method can be

employed to verify this step (we in fact use our mechanised simulation-based method).

The second set of proof obligations involves verifying that an appropriate transforma-

tion (given by TRANS defined in Section 5) holds.

Although there is existing work on defining linearizability on TSO, to the best of

our knowledge this is the first work that provides simplified reasoning for showing

how linearizability can be verified for algorithms running on TSO, although mention

should be made of the approach in [19] that uses SPIN to check specific runs for TSO-

linearizability. Clearly this work could be extended in a number of directions. Specifi-

cally, we would like to mechanise the proof obligations inherent in TRANS using KIV in

the same way that the existing proof methods for standard linearizability, such as those

in [5–8, 14, 15], have already been encoded in the theorem prover. Additionally, we aim

to look at the issue of completeness and related to this will be how one can calculate the

required intermediate description from the concrete algorithm and abstract and concrete

state spaces.

15

References

1. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F.Z. Nardelli. The

Semantics of Power and ARM Multiprocessor Machine Code. In L. Petersen and M.M.T.

Chakravarty, editors, DAMP ’09, pages 13–24. ACM, 2008.
2. D. Amit, N. Rinetzky, T.W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for

verifying linearizability. In W. Damm and H. Hermanns, editors, CAV 2007, volume 4590 of

LNCS, pages 477–490. Springer, 2007.
3. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness

on the TSO memory model. In H. Seidl, editor, ESOP 2012, volume 7211 of LNCS, pages

87–107. Springer, 2012.
4. C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular safety checking for fine-grained

concurrency. In H.R. Nielson and G. Filé, editors, SAS 2007, volume 4634 of LNCS, pages

233–238. Springer, 2007.
5. J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic refine-

ment. In J. Davies and J. Gibbons, editors, IFM 2007, volume 4591 of LNCS, pages 195–214.

Springer, 2007.
6. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanizing a correctness proof for a lock-free

concurrent stack. In G. Barthe and F.S. de Boer, editors, FMOODS 2008, volume 5051 of

LNCS, pages 78–95. Springer, 2008.
7. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for

linearizability. ACM Trans. Program. Lang. Syst., 33(1):4, 2011.
8. J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisabilty with potential lineari-

sation points. In M. Butler and W. Schulte, editors, FM 2011, volume 6664 of LNCS, pages

323–337. Springer, 2011.
9. J. Derrick, G. Smith, and B. Dongol. Verifying linearizability on TSO architectures. In iFM

2014, volume 8739 of LNCS, pages 341–356, 2014.
10. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-

free queue algorithm. In D. de Frutos-Escrig and M. Nunez, editors, FORTE 2004, volume

3235 of LNCS, pages 97–114. Springer, 2004.
11. A. Gotsman, M. Musuvathi, and H. Yang. Show no weakness: Sequentially consistent spec-

ifications of TSO libraries. In M. Aguilera, editor, DISC 2012, volume 7611 of LNCS, pages

31–45. Springer, 2012.
12. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.
13. W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and interactive

proofs with KIV. In Automated Deduction, pages 13–39. Kluwer, 1998.
14. G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In

CAV’12, volume 7358 of LNCS, pages 243–259, 2012.
15. G. Schellhorn, H. Wehrheim, and J. Derrick. A sound and complete proof technique for

linearizability of concurrent data structures. ACM Trans. on Computational Logic, 2014.
16. P. Sewell, S. Sarkar, S. Owens, F.Z. Nardelli, and M.O. Myreen. x86-TSO: a rigorous and

usable programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.
17. D.J. Sorin, M.D. Hill, and D.A. Wood. A Primer on Memory Consistency and Cache Coher-

ence. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2011.
18. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
19. O. Travkin, A. Mütze, and H. Wehrheim. SPIN as a linearizability checker under weak

memory models. In V. Bertacco and A. Legay, editors, HVC2013, volume 8244 of LNCS,

pages 311–326. Springer, 2013.
20. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-

bridge, 2007.

16

