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ABSTRACT

Linearizability is a widely recognised correctness criterion
for concurrent objects. A number of proof methods for ver-
ifying linearizability exist. In this paper, we simplify one
such method with a systematic approach for invariant gen-
eration. Although this existing refinement-based method
is itself systematic and fully tool-supported, it requires the
verifier to provide a specific invariant over the implementa-
tion. While a chosen invariant may suffice for some proof
obligations of the method, it may not for others resulting in
a new, stronger invariant to be chosen and the previously
completed proof steps to be redone. Our approach avoids
such wasted proof effort by generating an invariant which is
guaranteed to be sufficient for all proof obligations.

CCS Concepts

•Software and its engineering → Software verifica-
tion;

Keywords

Correctness proofs; Formal Methods; Specifying and Verify-
ing and Reasoning about Programs; Linearizability; Invari-
ant generation.

1. INTRODUCTION
Linearizability [9] is widely regarded as the standard cor-

rectness criterion for concurrent objects. Given an abstract
specification and a proposed implementation, linearizabil-
ity requires the existence of a sequential execution of the
abstract specification for every concurrent execution of the
implementation such that the abstract and concrete execu-
tions produce the same behaviour. The sequential execution
is obtained by identifying linearization points at which the
potentially overlapping concurrent operations are deemed to
take effect instantaneously.

A variety of methods for verifying linearizabilty have been
developed. These range from using shape analysis [1, 2]
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and separation logic [2] to rely-guarantee reasoning [13] and
refinement-based methods [7, 4, 11]. In particular, Derrick
et al. have developed a refinement-based method for ver-
ifying linearizability [3, 4, 5, 11]. This approach is fully
encoded in a theorem proving tool, KIV [10], and has been
proved sound and complete — the proofs themselves being
done within KIV. Its completeness relies on the fact that
the refinement-based approach allows backwards simulation
[11]. This is necessary when the linearization point can only
be determined by examining the full global history of the
concurrent object (for example, as in the queue implemen-
tation of Herlihy and Wing [9] and the elimination stack of
Hendler et al. [8]).

A strength of this method is that it allows the verifier
to reason about single concrete steps (i.e., lines of code)
in isolation, showing that they simulate either an abstract
skip or, at a linearization point, an abstract operation. This
simplifies the proof of linearizability immensely; while there
may be many simulation proofs to perform, each is with
respect to a single line of code which is not more complicated
than an assignment or change of program counter.

However, the method of Derrick et al. requires the verifier
to provide both an abstraction relation relating the concrete
and abstract specifications, and an invariant on the concrete
state enabling the proof to be carried out by simulation.
Finding the latter is non-trivial. In practice, it requires an
iterative process in which the invariant needs to be repeat-
edly strengthened as the proofs for different lines of code are
performed. When proving linearizability on weak memory
models, such as TSO [6], the process is further complicated
by the large number of different states that can exist at any
line of code due to the use of store buffers potentially delay-
ing the commitment of previous write instructions [12].

In this paper, we provide a systematic approach to gener-
ating the required invariant for a linearizability proof. We
begin in Section 2 by discussing the method of Derrick et
al. in more detail. In Section 3 we present the basic ap-
proach to invariant generation and in Section 4 illustrate it
on the Linux reader/writer mechanism seqlock. We discuss
extending the approach to cover a wider range of concurrent
objects in Section 5.

2. BACKGROUND
Consider the Linux reader/writer mechanism seqlock , that

allows reading of shared variables without locking the global
memory, thus supporting fast write access. A process wish-
ing to write to the shared variables x1 and x2 acquires a
software lock and increments a counter c. It then proceeds



int x1 = 0, x2 = 0;

write(int d1,d2) {

x1 = d1;

x2 = d2;

}

read() {

return(x1,x2);

}

Figure 1: seqlock specification

int x1 = 0, x2 = 0;

int c = 0;

write(int d1,d2) {

1 acquire;

2 c++;

3 x1 = d1;

4 x2 = d2;

5 c++;

6 release;

}

read() {

int c0, d1, d2;

do {

do {

7 c0 = c;

8 } while(c0%2 != 0);

9 d1 = x1;

10 d2 = x2;

11 } while(c != c0);

12 return(d1,d2);

}

Figure 2: seqlock implementation

to write to the variables, and finally increments c again be-
fore releasing the lock. The lock ensures synchronisation
between writers, and the counter c ensures the consistency
of values read by other processes. The two increments of c
ensure that it is odd when a process is writing to the vari-
ables, and even otherwise. Hence, when a process wishes to
read the shared variables, it waits in a loop until c is even
before reading them. Also, before returning it checks that
the value of c has not changed (i.e., another write has not
begun). If it has changed, the process starts over.

An abstract specification of seqlock is given in Figure 1. A
typical implementation (with line numbers from 1 to 12) is
given in Figure 2. In the implementation, a local variable c0
is used by the read operation to record the (even) value of c
before the operation begins updating the shared variables.

Correctness requires showing all concrete histories are lin-
earizable. Following the approach of [4], we have two proof
steps for each operation of the concrete specification.

Step 1. Firstly, we need to show that the lines of code
defining the concrete operations simulate the abstract op-
erations. To do this, we identify one line of code as the
linearization step. This line of code must simulate the ab-
stract operation, all others simulating an abstract skip. For
example, for the operation write we require that line 5, the
second c++, simulates the abstract operation and all other
lines simulate an abstract skip (see Figure 3 for an execution
of the operation).

To do this we need to define an abstraction relation relat-
ing the global (i.e., shared) concrete state space gs and ab-
stract state space as. The abstraction relation ABS(as, gs)
for seqlock is determined in a straightforward manner from
the understanding of c’s role in the algorithm. That is,
whenever c is even, the abstract and concrete values of x1
and x2 are equal. Hence ABS(as, gs) is defined as

Abstract operation x1=d1; x2=d2

acquire c++ x1=d1 x2=d2 c++ release
Concrete
operation

Figure 3: Simulation of Write

gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2

We also need to define an invariant to enable the simula-
tion of each line of code to be proven independently. In our
example, to prove that line 5 of the code simulates the ef-
fect of the abstract operation, this invariant needs to ensure
that at line 5 we have: c mod 2 6= 0 ⇒ x1 = d1 ∧ x2 = d2.
Such an invariant is stated in terms of the global concrete
state space gs and a local concrete state space ls comprising
a program counter variable pc (set to 0 when no operation
is executing) and the local variables used in operations, e.g.,
c0, d1 and d2 in seqlock . Hence, the invariant INV (gs, ls)
must imply the following.

ls.pc = 5 ⇒ (gs.c mod 2 = 0 ⇒ gs.x1 = d1 ∧ gs.x2 = d2)

Each simulation is then proved by one of 5 rules depend-
ing on whether the line of code is an invocation (first line of
an operation), return (last line of an operation) or internal
step (neither an invocation nor return), and whether it oc-
curs before or after the linearization step (see Figure 4(a)).
Each rule concerns a single line of code (whose semantics is
captured by COP) and in the case of linearization steps, an
abstract operation (whose semantics is captured by AOP).
A function status(gs, ls) is defined to identify the lineariza-
tion step. Before invocation, status(gs, ls) is IDLE . After
invocation but before the linearization step it is equal to
IN (in), where in : In is the input to the abstract operation,
and after the linearization step it is equal to OUT (out),
where out : Out is the output of the abstract operation.
The types In and Out have a special value ⊥ denoting no
input or output, respectively.

Step 2. Secondly, we need to prove non-interference be-
tween threads. This amounts to showing that a thread p

running the concrete code cannot, by changing the global
concrete state space, invalidate the invariant which another
thread q (running the same code) relies on. For example, a
thread p should not be able to change the value of x1 when
a thread q is at line 5 since this would invalidate the require-
ment on INV (gs, ls) above. To do this we require a further
invariant D(ls, lsq) relating the local states of two threads
whose local states are ls and lsq (see Figure 4(b)). This
invariant is normally easier to derive, usually stating that
certain lines of code are mutually exclusive, or that local
objects are not aliased. It is not generated by our approach.

Additionally, we have a proof step related to initialisation
(see Figure 4(c)).

Each of the proof obligations relies on the implementation
invariant INV (gs, ls). Determining the invariant is not al-
ways straightforward. Developing it iteratively by strength-
ening it as required for each simulation leads to a lot of
extra work. Each time the invariant is strengthened, all
previously completed simulations need to be re-performed



(a) Simulation.

(i) Invocation (the invocation may be the linearization step or simulate an abstract skip).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
R(as, gs, ls) ∧ status(gs, ls) = IDLE ∧ COP(in, gs, ls, gs ′, ls ′) ⇒

status(gs ′, ls ′) = IN (in) ∧ R(as, gs ′, ls ′)
∨
(∃ as ′ : AS ; out : Out •

AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = OUT (out) ∧ R(as ′, gs ′, ls ′))

(ii) Before Linearization (the internal line of code may be the linearization step or simulate an abstract skip).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
R(as, gs, ls) ∧ status(gs, ls) = IN (in) ∧ COP(gs, ls, gs ′, ls ′) ⇒

status(gs ′, ls ′) = IN (in) ∧ R(as, gs ′, ls ′)
∨
(∃ as ′ : AS ; out : Out •

AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = OUT (out) ∧ R(as ′, gs ′, ls ′))

(iii) After Linearization (the internal line of code simulates an abstract skip).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; out : Out •
R(as, gs, ls) ∧ status(gs, ls) = OUT (out) ∧ COP(gs, ls, gs ′, ls ′) ⇒

status(gs ′, ls ′) = OUT (out) ∧ R(as, gs ′, ls ′)

(iv) Return before Linearization (the return is the linearization step).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
R(as, gs, ls) ∧ status(gs, ls) = IN (in) ∧ COP(gs, ls, gs ′, ls ′, out) ⇒

status(gs ′, ls ′) = IDLE ∧
(∃ as ′ : AS ; out : Out • AOP(in, as, as ′, out) ∧ R(as ′, gs ′, ls ′))

(v) Return after Linearization (the return simuates an abstract skip operation).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; out : Out •
R(as, gs, ls) ∧ status(gs, ls) = OUT (out) ∧ COP(gs, ls, gs ′, ls ′, out ′) ⇒

out ′ = out ∧ status(gs ′, ls ′) = IDLE ∧ R(as, gs ′, ls ′))))

(b) Non-interference (where λ includes gs, gs ′, ls and ls ′ and possibly in or out depending on COP).

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′, lsq : LS •
ABS(as, gs) ∧ INV (gs, ls) ∧ INV (gs, lsq) ∧ D(ls, lsq) ∧ COP(λ)

⇒ INV (gs ′, lsq) ∧ D(ls ′, lsq) ∧ status(gs ′, lsq) = status(gs, lsq)

(c) Initialisation.

∀ gs : GSInit • ∃ as : AInit •
ABS(as, gs) ∧ (∀ ls : LSInit • INV (gs, ls)) ∧ (∀ ls, lsq : LSInit • D(ls, lsq))

Figure 4: Proof obligations from [4]. AS , GS and LS are the types of the abstract states, global concrete
states and local concrete states respectively. AInit, GSInit and LSInit are the restrictions of these types to
initial states. Primed states, e.g., gs ′, represent post-states of operations whereas unprimed states, e.g., gs,
represent pre-states. R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls). ABS(as, gs), INV (gs, ls) and D(ls, lsq) are relations
between states as described in the text.



with the new invariant. By systematically generating the
invariant to ensure the simulation proofs hold, this proof
effort can be greatly reduced.

3. INVARIANT GENERATION
The invariant we generate is a conjunction of predicates

of the form (ls.pc = n ⇒ In(gs, ls)) where n is a line num-
ber. The key to generating it is in recognising that its role
is to ensure the required simulation holds at each program
step. That is, at the line number n we require a certain
condition to be true, and the lines preceding n must ensure
this condition becomes true.

We will assume that there is exactly one return step and
associated linearization step per operation. We will come
back to this assumption at the end of this section. To gen-
erate the required invariant we start with the final step of an
operation execution and work backwards through the steps
of the execution as follows.

For a linearization step (such as the second c++ in Fig-
ure 3), the proof obligation from Figure 4(a) is always of the
following form (where σ and σ′ are status values and λ is a
list of parameters)

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
R(as, gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

(∃ as ′ : AS ; out : Out •
AOP(in, as, as ′, out) ∧
status(gs ′, ls ′) = σ′ ∧ R(as ′, gs ′, ls ′) (1)

irrespective of whether the step is an invocation, return or
internal step.

Let such a step end at line m. In the approach of Derrick
et al. each step is deterministic (since branches in code are
modelled as two separate steps), so there will be only one
such line m. For the final step of an operation, m will be 0
denoting the idle state. A starting invariant I0(gs, ls) (true
when ls.pc = 0) needs to be supplied by the verifier based
on their understanding of the algorithm.
Theorem 1 Let COP be the linearization step of an ab-
stract operation AOP which results in ls.pc = m where
ls.pc = m ⇒ (INV (gs, ls) ⇔ Im(gs, ls)). Condition (1)
will hold if the invariant has the following conjunct.

∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In •
ABS(as, gs) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

(∃ as ′ : AS ; out : Out •
AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = σ′

Im(gs ′, ls ′) ∧ ABS(as ′, gs ′)) (2)

Proof Figure 5 shows that the consequent of (1) can be
derived from its antecedent when the invariant includes the
conjunct (2) and given that ls.pc = m ⇒ (INV (gs, ls) ⇔
Im(gs, ls)). �

For a step which is not a linearization step of an operation
execution, the proof obligation from Figure 4(a) is always of
the following form (where σ and σ′ are status values and λ

is a list of parameters)

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In; out : Out •
R(as, gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

status(gs ′, ls ′) = σ′ ∧ R(as, gs ′, ls ′) (3)

irrespective of whether the step is an invocation, return or
internal step.

Theorem 2 Let COP be a step which results in ls.pc = m

such that ls.pc = m ⇒ (INV (gs, ls) ⇔ Im(gs, ls)). Condi-
tion (3) will hold if the invariant has the following conjunct.

∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In; out : Out •
ABS(as, gs) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

status(gs ′, ls ′) = σ′ ∧ Im(gs ′, ls ′) ∧
ABS(as, gs ′) (4)

Proof Figure 6 shows that the consequent of (3) can be
derived from its antecedent when the invariant includes the
conjunct (4) and given that ls.pc = m ⇒ (INV (gs, ls) ⇔
Im(gs, ls)). �

It is important to note that (2) and (4) are the weakest

conjuncts that will ensure (1) and (3) respectively. If we
were to weaken either (2) or (4) by adding a conjunct to their
antecedent which does not imply the existing antecedent,
then the corresponding theorem would no longer hold.

This enables us to also use the approach when an op-
eration does not have a unique return step and associated
linearization step. The approach can be applied for each re-
turn step and the resulting conjuncts conjoined. Since the
invariants are the weakest required to ensure the required
simulations hold, if this conjunction leads to a contradiction
then there is no invariant which can assure linearization for
all returns, and hence the concrete algorithm is not lineariz-
able.

4. CASE STUDY
The starting invariant for the seqlock case study is derived

by considering the relationship between the global variables
x1, x2 and c, and lock , a Boolean variable which is true
precisely when the lock of the write operation is held. The
values of the local variables are not significant when ls.pc =
0, so these need not be considered.

Since x1 and x2 can take on any values, the invariant
involves only c and lock . It is clear from the code that c is
even whenever the lock is not held (it is even initially and is
incremented twice between each acquire and release). When
the lock is held, c may be even or odd. Hence, I0(gs, ls) =̂
¬ gs.lock ⇒ gs.c mod 2 = 0.
Since the linearization step of the seqlock operation write

occurs when ls.pc = 5, we choose status(gs, ls) such that
ls.pc = 0 ⇒ status(gs, ls) = IDLE and ls.pc ∈ 1..5 ⇒
status(gs, ls) = IN (in) and ls.pc = 6 ⇒ status(gs, ls) =
OUT (⊥) where in is the tuple comprising the values of d1
and d2.

For the final step (release) of write to simulate an abstract
skip operation, the required conjunct of the invariant is the
following instantiation of (4).

∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In; out : Out •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
OUT (⊥) = OUT (out) ∧ ls.pc = 6 ∧ ls ′.pc = 0 ∧
¬ gs ′.lock ∧ gs ′.c = gs.c ∧ gs ′.x1 = gs.x1 ∧
gs ′.x2 = gs.x2 ⇒

IDLE = IDLE ∧ (¬ gs ′.lock ⇒ gs ′.c mod 2 = 0) ∧
(gs ′.c mod 2 = 0 ⇒

gs ′.x1 = as.x1 ∧ gs ′.x2 = as.x2)

Applying the one-point rule (∀ x : T • x = v ∧ P(x ) ⇒
Q(x ) ≡ P(v) ⇒ Q(v)) to the quantified variables gs ′, ls ′,
in and out , we get



1. R(as, gs, ls) [antecedent of (1)]
2. status(gs, ls) = σ [antecedent of (1)]
3. COP(λ) [antecedent of (1)]
4. ABS(as, gs) [1 and R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls)]
5. INV (gs, ls) [1 and R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls)]
6. ∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In •

ABS(as, gs) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒
(∃ as ′ : AS ; out : Out • AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = σ′ ∧ Im(gs ′, ls ′) ∧ ABS(as ′, gs ′)) [5,(2)]

7. ∃ as ′ : AS ; out : Out •
AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = σ′ ∧ Im(gs ′, ls ′) ∧ ABS(as ′, gs ′) [2,3,4,6]

8. ls ′.pc = m [3, COP(λ) ends at line m]
9. ∃ as ′ : AS ; out : Out •

AOP(in, as, as ′, out) ∧ status(gs ′, ls ′) = σ′ ∧ R(as ′, gs ′, ls ′) [7, 8 and ls.pc = m ⇒ (INV (gs, ls) ⇔ Im(gs, ls))]

Figure 5: Proof of Theorem 1

1. R(as, gs, ls) [antecedent of (3)]
2. status(gs, ls) = σ [antecedent of (3)]
3. COP(λ) [antecedent of (3)]
4. ABS(as, gs) [1 and R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls)]
5. INV (gs, ls) [1 and R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls)]
6. ∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In; out : Out •

ABS(as, gs) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒ status(gs ′, ls ′) = σ′ ∧ Im(gs ′, ls ′) ∧ ABS(as, gs ′) [5,(4)]
7. status(gs ′, ls ′) = σ′ ∧ Im(gs ′, ls ′) ∧ ABS(as, gs ′) [2,3,4,6]
8. ls ′.pc = m [3, COP(λ) ends at line m]
9. status(gs ′, ls ′) = σ′ ∧ R(as ′, gs ′, ls ′) [7,8 and ls.pc = m ⇒ (INV (gs, ls) ⇔ Im(gs, ls))]

Figure 6: Proof of Theorem 2

∀ as : AS •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
ls.pc = 6 ⇒

gs.c mod 2 = 0 ∧
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2)

which (using A ∧ B ⇒ C ∧ A ≡ A ∧ B ⇒ C )) simplifies
to

∀ as : AS •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
ls.pc = 6 ⇒

gs.c mod 2 = 0

which (since there is an as : AS which satisfies the first line
of the antecedent) simplifies to

ls.pc = 6 ⇒ gs.c mod 2 = 0 .

That is, I6(gs, ls) is gs.cmod2 = 0 and we need to ensure
that the step that leads to ls.pc = 6 results in I6(gs, ls).
Using this result, we can derive the invariant required by
the preceding step (c++). Since this is the linearization
step, the required conjunct of the invariant is the following
instantiation of (2).

∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
IN (d1, d2) = IN (in) ∧ ls.pc = 5 ∧ ls ′.pc = 6 ∧
gs ′.c = gs.c + 1 ∧ gs ′.x1 = gs.x1 ∧ gs ′.x2 = gs.d2
gs ′.lock = gs.lock ⇒

(∃ as ′ : AS ; out : Out •
as ′.x1 = d1 ∧ as ′.x2 = d2 ∧
OUT (⊥) = OUT (out) ∧ gs ′.c mod 2 = 0 ∧
(gs ′.c mod 2 = 0 ⇒

gs ′.x1 = as ′.x1 ∧ gs ′.x2 = as ′.x2))

Applying the one-point rule (∃ x : T • x = v ∧ P(x ) ≡
P(v)) to the quantified variables as ′ and out we get

∀ as : AS ; gs ′ : GS ; ls ′ : LS ; in : In •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
IN (d1, d2) = IN (in) ∧ ls.pc = 5 ∧ ls ′.pc = 6 ∧
gs ′.c = gs.c + 1 ∧ gs ′.x1 = gs.x1 ∧ gs ′.x2 = gs.d2
gs ′.lock = gs.lock ⇒

gs ′.c mod 2 = 0 ∧
(gs ′.c mod 2 = 0 ⇒ gs ′.x1 = d1 ∧ gs ′.x2 = d2)

Applying the one-point rule (∀ x : T • x = v ∧ P(x ) ⇒
Q(x ) ≡ P(v) ⇒ Q(v)) to the quantified variables gs ′, ls ′

and in, we get

∀ as : AS •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
ls.pc = 5 ⇒

gs.c mod 2 6= 0 ∧
(gs.c mod 2 6= 0 ⇒ gs.x1 = d1 ∧ gs.x2 = d2)



which (using A ∧ (A ⇒ B) ≡ A ∧ B) simplifies to

∀ as : AS •
(gs.c mod 2 = 0 ⇒ gs.x1 = as.x1 ∧ gs.x2 = as.x2) ∧
ls.pc = 5 ⇒

gs.c mod 2 6= 0 ∧ gs.x1 = d1 ∧ gs.x2 = d2

which (since there is an as : AS which satisfies the first line
of the antecedent) simplifies to

ls.pc = 5 ⇒ gs.c mod 2 6= 0 ∧ gs.x1 = d1 ∧ gs.x2 = d2 .

Note that d1 and d2 are not free variables. They can be
expressed in terms of status(ls, gs) which equals IN (d1, d2).

Continuing in this manner for the remainder of the write

operation, the required invariant to prove linearizability is

(ls.pc = 6 ⇒ gs.c mod 2 = 0) ∧
(ls.pc = 5 ⇒ gs.c mod 2 6= 0 ∧ gs.x1 = d1 ∧ gs.x2 = d2) ∧
(ls.pc = 4 ⇒ gs.c mod 2 6= 0 ∧ gs.x1 = d1) ∧
(ls.pc = 3 ⇒ gs.c mod 2 6= 0) ∧
(ls.pc = 2 ⇒ gs.c mod 2 = 0) ∧
(ls.pc = 1 ⇒ (¬ gs.lock ⇒ gs.c mod 2 = 0)) .

The final conjunct requires the starting invariant I0(gs, ls)
to be true when ls.pc = 1. Since this is true when ls.pc =
0 it is guaranteed to be true at ls.pc = 1, and hence all
the required conjuncts will be true during the operation’s
execution. In general, the starting invariant need only imply
the condition that needs to be true at the first line of an
operation. Using this invariant one can prove the conditions
necessary for the simulation of the write operation.

For the read operation of seqlock , the linearization point
is line 11 when c = c0. Following the approach above, we
obtain the following conjuncts for the invariant:

(ls.pc = 12 ⇒ (¬ gs.lock ⇒ gs.c mod 2 = 0)) ∧
(ls.pc = 11 ∧ c = c0 ⇒

gs.x1 = ls.d1 ∧ gs.x2 = ls.d2 ∧
(¬ gs.lock ⇒ gs.c mod 2 = 0)) ∧

(ls.pc = 11 ∧ c 6= c0 ⇒ (¬ gs.lock ⇒ gs.c mod 2 = 0)) ∧
(ls.pc = 10 ⇒

(c = c0 ⇒ gs.x1 = ls.d1) ∧
(¬ gs.lock ⇒ gs.c mod 2 = 0)) ∧

ls.pc ∈ {7, 8, 9} ⇒ (¬ gs.lock ⇒ gs.c mod 2 = 0)) .

In this case, there are two conjuncts for ls.pc = 11 reflecting
its different roles as a linearization step when c = c0, and
an internal step otherwise.

5. CONCLUSION
In this paper we have presented an approach for systemat-

ically generating the invariants required for an existing proof
method for linearizability of concurrent objects. The proof
method itself is systematic and fully tool-supported, but re-
quires the invariants to be provided by the verifier. Our
approach supports the verifier in this task avoiding unnec-
essary iteration of proofs steps which may otherwise result.

Our future work will look at extending the approach to
objects where the linearization point of an operation can not
be determined statically, but relies on the execution of other
processes [9, 8], and to objects running on weak memory
models such as TSO [12]. This work will be based on the
modified proof rules for handling such concurrent objects in
[5, 6].
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H. Nielson and G. Filé, editors, SAS 2007, volume
4634 of LNCS, pages 233–238. Springer, 2007.

[3] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving
linearizability via non-atomic refinement. In J. Davies
and J. Gibbons, editors, IFM 2007, volume 4591 of
LNCS, pages 195–214. Springer, 2007.

[4] J. Derrick, G. Schellhorn, and H. Wehrheim.
Mechanically verified proof obligations for
linearizability. ACM Trans. Program. Lang. Syst.,
33(1):4, 2011.

[5] J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying
linearisabilty with potential linearisation points. In
M. Butler and W. Schulte, editors, FM 2011, volume
6664 of LNCS, pages 323–337. Springer, 2011.

[6] J. Derrick, G. Smith, and B. Dongol. Verifying
linearizability on TSO architectures. In E. Albert and
E. Sekerinski, editors, iFM 2014, volume 8739 of
LNCS. Springer, 2014.

[7] S. Doherty, L. Groves, V. Luchangco, and M. Moir.
Formal verification of a practical lock-free queue
algorithm. In D. de Frutos-Escrig and M. Nunez,
editors, FORTE 2004, volume 3235 of LNCS, pages
97–114. Springer, 2004.

[8] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable
lock-free stack algorithm. In SPAA ’04, pages
206–215. ACM Press, 2004.

[9] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[10] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser.
Structured specifications and interactive proofs with
KIV. In Automated Deduction, pages 13–39. Kluwer,
1998.

[11] G. Schellhorn, H. Wehrheim, and J. Derrick. A sound
and complete proof technique for linearizability of
concurrent data structures. ACM Trans. on

Computational Logic, 15(4):31:1–31:37, 2014.

[12] P. Sewell, S. Sarkar, S. Owens, F. Nardelli, and
M. Myreen. x86-TSO: a rigorous and usable
programmer’s model for x86 multiprocessors.
Commun. ACM, 53(7):89–97, 2010.

[13] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro.
Proving correctness of highly-concurrent linearisable
objects. In J. Torrellas and S. Chatterjee, editors,
PPoPP ’06, pages 129–136. ACM, 2006.


