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The nativist hypothesis suggests universal features of human
behaviour can be explained by biologically determined
cognitive substrates. This nativist account has been challenged
recently by evolutionary models showing that the cultural
transmission of knowledge can produce behavioural
universals. Sensorimotor invariance is a canonical example
of a behavioural universal, raising the issue of whether
culture can influence not only which skills people acquire
but also the development of the sensorimotor system. We
tested this hypothesis by exploring whether culture influences
the developing sensorimotor system in children. We took
kinematic measures of motor control asymmetries in adults
and children from differing cultures where writing follows
opposite directions. British and Kuwaiti adults (n = 69) and
first grade (5–6 year old) children (n = 140) completed novel
rightward and leftward tracing tasks. The Kuwaitis were better
when moving their arm leftward while the British showed
the opposite bias. Bayesian analysis techniques showed that
while children were worse than adults, they also showed
asymmetries—with the asymmetry magnitude related to
accuracy levels. Our findings support the idea that culture
influences the sensorimotor system.

1. Introduction
Human motor control is notable for its stereotypical nature [1].
For example, ‘reach-to-grasp’ and ‘aiming’ movements show

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
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kinematic invariant characteristics within and across individuals [2]. There is widespread support for the
hypothesis that such invariant characteristics reflect the development of optimal control processes that
underpin movement organization. The presence of sensorimotor invariance appears to provide support
for the nativist hypothesis which suggests that universal features of behaviour reflect biologically
determined cognitive substrates [3,4]. However, recent research has shown that the cultural transmission
of knowledge enables cognitively driven behavioural universals while retaining plasticity at the level of
the individual [5]. Indeed, it is a matter of common observation that different individuals learn different
skills throughout their lifetime, with the skills acquired by an individual being a function of their
surrounding culture. Therefore, cultural traditions may affect the developing sensorimotor phenotype
(as optimal control in one culture may not be optimal in another).

The influence of culture on the development of the sensorimotor system has not been well
investigated. It is obviously the case that cultural traditions affect the motor system by constraining
which skills we acquire over the lifespan. But can culture influence the development of the sensorimotor
system? There is general consensus that the human motor control architecture includes both adaptive
forward models and inverse models. Forward models are used by the central nervous system to
estimate the sensory consequences of motor actions while inverse models specify the motor commands
appropriate for a desired behaviour [6–8]. The cerebellum has been implicated in forward control [9]
and its role has been confirmed by neuroimaging [10] and neuropsychological deficits [11]. This central
role of the cerebellum in forward (predictive) control is widely accepted but it is also recognized that
forward control is distributed across the cortex, in areas such as the posterior parietal cortex [12]. There
is increasing evidence that these predictive mechanisms underpin our ability accurately to perceive the
world and create generative models that modulate our thoughts—a viewpoint known as the Bayesian
brain hypothesis [13].

Forward models are important for sensorimotor control as they allow the system to predict how our
bodies interact with the world. For example, the biomechanics of the human arm mean that different
inertias and muscle dynamics are involved when moving the arm leftwards rather than rightwards. It
follows that the control dynamics are fundamentally different for leftward movement compared with
rightwards (i.e. different directions require different motor commands and produce disparate sensory
consequences). Indeed, it has been found that adults from the UK show better performance when moving
a hand-held stylus rightwards versus leftwards when tracing novel shapes [14]. Notably, this finding
was seen in both the preferred and non-preferred hand of right-handers and left-handers, suggesting
the presence of effector-independent rules regarding the control dynamics of hand-held manipulanda.
Theorists generally agree that motor control is organized in a hierarchical fashion with movement goals
initially specified at an abstract effector-independent level [1]. The fact that a rightward direction bias was
seen in both the right and left hand suggests that cultural exposure might have shaped the dynamics of
the neural controllers that determine how the arms move. In other words, the cerebro-cerebellar system
may have developed enhanced state estimation abilities for the control dynamics of the most frequently
executed movement type, with culture determining the relative frequency of arm movements to the left
versus movements to the right. Thus, if culture influences the developing system, we would expect these
systems to develop forward models that are better tuned to performing particular movements in one
direction than another.

The fact that arbitrary conventions (e.g. driving on the left) become cultural norms provides a way
of testing directly whether culture affects sensorimotor control development. A myriad of different
scripts exist across a wide range of cultures, with some traditions evolving reading and writing from
left to right (e.g. English) or vice versa (e.g. Arabic), providing a binary contrast between cultural
environments. If childhood development involves learning the control dynamics of the arm (i.e. refining
forward and inverse models) then cultural traditions of writing direction might be expected to influence
motor control, with resultant behavioural asymmetries. In order to explore these ideas, it is necessary
to measure the performance of participants on a task that addresses how movements are organized
rather than describing the contents of the acquired skill repertoire (i.e. already learned actions, such
as writing the letter ‘a’). We therefore used a novel tracing task with a shape that was unfamiliar to
all of the participants but that required the arm to move predominantly leftwards in one condition and
rightward in another. This task was, by definition, novel (no participant had ever steered their hand along
this path previously) and yet possessed a structure common to many tasks involving arm movement. If
cultural pressures influence sensorimotor models then the task structure should result in the appearance
of asymmetries.

In terms consistent with the Bayesian brain hypothesis [13], learning the structural relationship
between the inputs and outputs of the system across structurally similar motor tasks could decrease
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the dimensionality of the parameter space when learning a novel task. This allows exploration of the
parameter space to be constrained to a region specified by the learnt structure through exploration along
a structure-specific meta-parameter (µS) [15]. A forward model may infer the structure between sensory
inputs and motor outputs by learning the posterior probability P(S|X) of the structure (S) given the
data (X). When learning a new task the meta parameter µS can be inferred by calculating the posterior
probability P(µS|S, X) of µS (given S and X). If the forward model has a culturally specific structure, then
performance on a novel task that shares the same structure (S) should be culturally biased.

2. Material and methods
2.1. Participants
Forty-eight British adult participants were recruited (21 males and 27 females, age range 18–23, M = 20.4;
s.d. = 1.2 years; four left-handed). Fifty British children were recruited from a randomly selected English
primary school (27 males and 23 females, age range 5.3–6.2, M = 5.7; s.d. = 0.30 years; eight left-handed).
All British participants spoke English as their first language. Twenty-one Kuwaiti adult participants were
recruited (eight males and 13 females, age range 21–45, M = 29.0, s.d. = 6.1 years; three left-handed).
Ninety Kuwaiti children were randomly recruited from three Kuwaiti primary schools (45 males and 45
females, age range 5.6–6.8, M = 6.0, s.d. = 0.30 years; seven left-handed). All Kuwaiti participants spoke
Arabic as their first language. Handedness was determined by placing the stylus in a central position in
front of the participant and allowing them to pick it up. Minimum sample size was based on previous
research investigating structural learning in adults using the same software platform, test methodology,
data coding and analysis [14].

British adults were recruited and tested as part of a pedagogical exercise in data collection at the
University of Leeds’ Psychology Department, which resulted in higher numbers available for testing.
The British children were tested via a partnership with a local school, and the Kuwaiti children were
tested by agreement with the Kuwaiti Ministry of Education. In both cases the institutions requested that
all children within the appropriate age range were tested, which again resulted in different sample sizes.
Testing was stopped when either the minimum sample size was reached or when all participants had
been tested within the particular University class, or school year groups. The study was approved by the
University of Leeds Research Ethics Committee and conducted in accordance with the 1964 Declaration
of Helsinki. All participants gave their informed consent before completing the study.

2.2. Procedure
All experimental trials were displayed on a tablet PC (Toshiba Portege M700–13P, screen: 260 × 163 mm,
1280 × 800 pixel, 32 bit colour and 60 Hz refresh rate), which was rotated and folded, and positioned
on a desk in front of the participant in a landscape position. Participants completed a total of eight
experimental trials. Each trial required the participant to trace a shape that appeared on screen using the
stylus provided (figure 1) [16].

Participants were instructed to sit in a comfortable position, remove any obstructive items of clothing,
and trace the shape on screen from the starting point to the finishing point in one continuous action with
their preferred hand. In each trial, the location of the starting point (signified by a green dot) and finish
point (signified by a red dot) would differ. Depending on the locations of the starting point in each trial,
the directional movement required would differ between tracing from left to right and tracing from right
to left. Each trial commenced when participants placed the stylus on the starting point for 500 ms, after
which the shape and the finishing point appeared on screen. The participants were then instructed to
trace the shape as quickly and as accurately as possible. The trials were repeated with the location of the
starting point and finishing point randomized for each participant, therefore requiring the participants
to trace the shape four times for each direction.

Kinematic data were collected and processed by specialized software [14,16]. Participants’ path
accuracy was determined by comparing the movement trajectory against the reference path. A
‘corresponding-point’ technique was used to calculate the error through the trajectory. Point-sets were
generated for the input and reference paths by discarding temporal information and resampling the X
and Y coordinates at a spatial resolution of 1 mm using linear interpolation. A robust point-registration
method [17] was then used to determine the rigid transformation (consisting of translation, rotation and
isotropic scaling components) that best transformed the input path to the reference path and identified
corresponding points between the reference and input trajectory datasets. A compound dimensional
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Figure 1. Tracing task used across age and cultural groups. Panel (a) demonstrates trials tracing from left to right, and the Panel (b)
shows tracing from right to left.

accuracy index was determined by removing any identified translation and evaluating the mean distance
between these corresponding points in the original and transformed input point-sets, giving a tracing
error score measured in millimetre for each participant.

The results were analysed using Bayesian Estimation techniques. First, a hierarchical linear model
was specified as below. The model drew each error score yi from a normal distribution with a mean that
depended on age group, nationality and tracing direction. The standard deviation depended only on age
group.

β0 ∼ normal(1.57, 10.0),

σ ′
m ∼ half_cauchy(0, 3.97),

β(m) ∼ normal(0, σ ′
m),

μi = β0 +
M∑

1

β(m) · X(m)(i),

σ ∼ half_cauchy(0, 7.92)

and yi ∼ normal(μi, σ · X(1)(i)), i = 1 . . . N,

where β(m), m = 1, . . . ,M, are batches of coefficients. Each β(m) is a vector of deflection parameters for
each of the main effects (age group, nationality, tracing direction, subject) and interactions (age group
X nationality, age group X tracing direction, nationality X tracing direction, age group X nationality
X tracing direction). Within each batch, the coefficients are drawn from a normal distribution with
mean 0 and a batch-specific standard deviation (σ ′

m ). X(m)(i) is an indicator vector for the m-th batch of
coefficients for the i-th data point. σ is a vector of coefficients, where elements σ 1 and σ 2 are the variance
parameters for each age group. All priors were chosen to be vague on the scale of the data. Bayes rule
was used to estimate the credible values of all the model parameters (θ ) given the data. The posterior
distribution is given by

P(θ | y) ∝ P(y | θ )P(θ ).

A representative sample was drawn from the posterior using the ‘No-U-Turn sampler’ [18]
implemented in ‘RStan 2.9.0’. Four chains were started at random values of θ , taking 1250 warm-up
iterations followed by 1250 samples each. Convergence was visually assessed by examining the chains.
All R̂ values were below 1.1. Data associated with this work are openly available at the Research Data
Leeds Repository [19].

3. Results
The posterior estimates of the condition means are shown in figure 2, which were calculated from
the relevant model parameters. Contrasts between these values are reported, which are themselves
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Figure 2. KDE plots of the marginal posterior distributions over the mean tracing error as a function of nationality, age and tracing
direction.

probability distributions. For each contrast, we report its mean, standard deviation (s.d.) and 95% highest
posterior density interval (95% HDI). For a unimodal distribution of mass M, the HDI is the narrowest
possible interval of that mass [20]. The 95% HDI is the interval in which there is 95% probability that
the ‘true’ parameter value falls. This is the property which many researchers erroneously attribute to
the frequentist confidence interval [21]. We also report the proportion of the contrast’s density that
is greater than zero, which we denote as η. If η > 0.975 or η < 0.025 this indicates that the 95% HDI
does not contain zero, which is indicated by an asterisk. The contrasts provide distributions over the
credible differences between group means. We take a simple Bayesian heuristic approach to testing
the ‘null’ hypothesis, where we consider the null unlikely if the contrast’s 95% HDI does not contain
zero [20]. However, the 95% HDI may still include values which are very close to zero and thus
may be considered equivalent to zero for practical purposes. Readers should therefore consider the
entire distribution over the contrast, as summarized by its mean and standard deviation, in addition to
the 95% HDI.

Tracing error was much lower in the adults than the children (contrast mean = −1.002, s.d. = 0.042,
95% HDI = [−1.085, 0.922], η = 0.0*). There was a difference between British and Kuwaiti children with
Kuwaitis having lower tracing error (contrast mean = 0.429, s.d. = 0.082, 95% HDI = [0.271, 0.591], η = 1*).
A small difference between British and Kuwaiti adults was plausible but the 95% HDI contained zero
(contrast mean = −0.012, s.d. = 0.019, 95% HDI = [−0.049, 0.025], η = 0.245).

British adults showed lower error when tracing in their culturally preferred direction compared
with their non-preferred direction (contrast mean = −0.051, s.d. = 0.021, 95% HDI = [−0.093, −0.008],
η = 0.012*) as did Kuwaiti adults (contrast mean = −0.107, s.d. = 0.031, 95% HDI = [−0.167, −0.046],
η = 0.001*). For British children, the difference in tracing error for preferred versus non-preferred
direction was less clear (contrast mean = −0.051, s.d. = 0.111, 95% HDI = [−0.274, 0.159], η = 0.329). The
95% HDI spanned zero and was quite wide indicating uncertainty in the estimate. Kuwaiti children
also showed lower tracing error in their culturally preferred tracing direction (contrast mean = −0.168,
s.d. = 0.09, 95% HDI = [−0.344, 0.006], η = 0.027). The 95% HDI contained zero, but there was a
97.27% chance (1 − η) that the contrast was less than zero and the most credible values suggested
a difference of reasonable magnitude. We also compared the difference between children and adult
performance advantage for their culturally preferred direction (contrast mean = −0.031, s.d. = 0.69, 95%
HDI = [−0.177, 0.095], η = 0.353). The 95% HDI spanned zero but was also quite wide, making it difficult
to establish a null finding.

4. Discussion
Clear performance asymmetries were found between adult participants who write and read in opposite
directions, demonstrating that cultural traditions influence motor control dynamics. These findings
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support the idea that population-level behavioural universals can be produced by weak cognitive
biases amplified through the effects of culture [5]. The current findings demonstrate that the bias
to create predictive sensorimotor models over childhood can influence the development of common
forward control processes within a population. Our study also showed asymmetries in the young
Kuwaiti children (5–6 years), although there was too much uncertainty in the posterior estimates to
establish a difference in the British children. The higher overall accuracy of Kuwaiti children compared
with their British counterparts is probably best explained by the fact that Kuwaiti children start
formal kindergarten at the age of 3.5 years whereas children in the UK do not enter school until
they have passed their fourth birthday [22]. Thus, it is interesting to note that while asymmetries
were very likely in the Kuwaiti children, the asymmetry was less clear for the British children. These
results suggest that asymmetries arise from mastering the motor control dynamics imposed by cultural
constraints.

Our familiarity with cultural norms can mask the implications of this finding. It seems intuitive that
individuals from different cultures will have different skill sets—it would clearly be unremarkable if our
results had simply showed asymmetries in the ability of the individuals to produce their own scripts.
However, the task we employed was entirely novel so participants could not control the movement
through previously tuned inverse models—the task required prospective control of the arm dynamics.
The important point is that the task was novel but possessed a structure common to other actions
learned within a cultural context. All participants were able to carry out the task regardless of movement
direction but there was clear evidence that the sensorimotor control processes were different between
the populations. The fundamental nature of these differences is emphasized by the observation of
these asymmetries in young children. These findings highlight that the observed differences may reflect
differences in the ontogeny of sensorimotor control.

The fact that individuals from different reading and writing traditions also show differences in
number representation supports the importance of considering culture when attempting to understand
human behaviour. For example, the Spatial-Numerical Association of Response Codes (SNARC) effect
describes the phenomenon whereby individuals represent numbers according to their normal cultural
organization [23]. Thus, smaller numbers are represented on the left side of space in adults from a
Western tradition but those from an Arabic culture show the opposite pattern [24]. Notably, individuals
from a Western culture typically start counting with the left hand and associate the number one with their
thumb when counting on their fingers. By contrast, individuals raised in a Middle Eastern culture prefer
to start counting with the right hand and typically associate the number one with their little finger [25].
The implication is that the mechanisms that underpin the processes of cognition (broadly construed)
are not innate and invariant human universals. Rather, our thought processes are influenced by cultural
norms. In short, our findings support the conjecture that humans are the product of their environment
with the cultural milieu affecting our behaviour.

With this in mind our findings may have implications for educational systems. Owing to increased
multicultural environments across many countries, children can be exposed to one type of script at home
(e.g. right to left), and another when they start formal schooling (e.g. left to right). It is possible that
learning two different control dynamics will be advantageous (giving greater sensorimotor flexibility)
but it may also cause negative interference. The probability of an advantageous outcome may reflect
the richness of the different learning environments, which might mean that other factors, such as
socioeconomic position, play a mediating role. These notions are speculative but our experimental
findings suggest they are issues that warrant further investigation. In conclusion, our findings support
the idea that culture influences the motor system in the same way that culture influences the core
cognitive processes involved in the representation of abstract concepts. It follows that a complete
understanding of human behaviour requires a consideration of motor control processes, cognitive
representations, cultural transmission, and how these various factors interact.
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