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a b s t r a c t

In modern physics it has become common to find the solution of a problem by solving numerically a
set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main
calculations are often applied to a stencil structure. In the last decade it has become usual to work with
so called big data problems where calculations are very heavy and accelerators andmodern architectures
are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation
of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to
vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach
to rearranging the data structure which makes it possible to apply high level vectorisation instructions
to a stencil loop and which results in significant acceleration. The suggested method allows further
acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to
an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the
test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerical modelling remains one of themost powerful tools in
the research areas of physics and engineering. It is often impossible
to find an analytical solution describing a physical process and a
numerical approach is the only choice. In past years a large num-
ber of numerical methods have been developed and successfully
applied, which can be roughly divided into five groups: finite dif-
ference, boundary element, finite element, finite volume, spectral
and mesh free methods [1–6].

All problems involving partial differential equations (PDEs) can
be computationally heavy. It is also often important to perform
the calculation with a high degree of accuracy which increases
the time required even more. That is why many research groups
nowadays use accelerators to speed up calculations. The use of CPU
(Computer Processing Unit) and GPU (Graphics Processing Unit)
clusters is normal. However, we strongly believe that optimisation
needs to be started from a lower level. Once the code is fully
optimised for a single CPU node, one can move on to many CPUs,
CPU/GPU cluster optimisation.

Most modern processors are multicore systems and support
shared memory APIs (Application Programming Interface) and
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SIMD (Single Instruction Multiple Data) instructions. SSE (Stream-
ing SIMD Extensions) and AVX (Advanced Vector Extensions) ex-
tensions designed by Intel, AltiVec instruction set designed by
Apple and IBM and NEON designed by ARM are the ones which
support SIMD instructions. OpenMP and POSIX Threads are the
most extensively used APIs nowadays.

The main load of numerical calculations of a PDE system is
often placed on stencil type loops. Examples of GPU parallelisa-
tion of stencil computations on nVidia cards can be found in [7]
and on modern Xeon and Xeon Phi systems in [8]. In [9] can be
found an example of CUDA and OpenMP types of parallelisation.
However, applying vectorisation methods to a stencil structure
appears to be particularly difficult due to problems with applying
the usual high level SIMD principles to stencil loops. In this paper
wepropose a newmethodofmemory rearrangementwhich allows
these difficulties to be overcome. Themethod does not require any
knowledge of low level programming since high level instructions
are used. We have chosen to demonstrate the method on an Intel
Core i7multicore system using OpenMP directives since this is one
of the most popular choices in numerical modelling. However, our
method can easily be applied using the other architectures andAPIs
mentioned above.

As a test problem we have chosen a wave propagating through
an elastic medium. The wave equation is widely used in such
physics areas as acoustics, electromagnetics, fluid dynamics and
seismology. In all those areas it has become usual to work with
so called big data problems. Whereas in fluid dynamics finite
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element and spectral element methods are dominant, in acoustics
and seismology the finite difference method is extensively used.
The finite differencemethodwas first applied to solve elastic wave
propagation by [10] and used to generate synthetic seismograms
by [11]. Generating synthetic data is also used in acoustics for
sound field visualisation, see for example [12,13].

Reducing the second order wave equation to a system of first
order differential equations is one of the most popular finite dif-
ference approach. One goes from an ordinary grid to a staggered
grid. The method was first proposed in [14] to solve wave prop-
agation problems and is proved to have better stability for 4th
order accuracy schemes [15]. It has been developed further by [16],
for anisotropic media [17] and in 3D space [18]. Examples of it’s
application can be found in full wave inversion problems [19],
forward wave propagation modelling and synthetic seismic data
modelling in geophysics [20–23] and modelling of acoustic wave
propagation [24].

GPU parallelisation has been successfully applied to elastic
wave propagation on a staggered grid, see [25–27]. Further exam-
ples ofMPI (Message Passing Interface) parallelisation can be found
in [28], hybrid MPI-OpenMPmethods in [29] and parallelisation of
acoustic wave propagation through OpenMP in [30].

2. Elastic wave equation on a staggered grid

The wave propagation equation for an elastic medium in 2D
space can be written as

ρü = (λ + 2µ)∇∇u − µ∇ × ∇ × u, (1)

where u(x, t) is a displacement function and ö means its second
order time derivative, ρ represents density and λ and µ are Láme
parameters.

The equation above can be reduced to the following system of
first order differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where u̇i is the velocity vector, σij are stress tensor components and
λ and µ are Láme parameters.

Eqs. (2) are solved on a finite difference staggered grid. Fig. 1
shows the difference between a nonstaggered and staggered grid.
It is clear to see on the staggered grid σii, σij and u̇i are calculated
at separate grid points. Stresses and velocities are also calculated
at different times according to the ‘‘leap frog’’ technique: (1) for
each (tn − 1/2) time step we find velocities at the points shown
in green on Fig. 1; (2) we find stresses for each tn time step using
the velocities that have been calculated previously. The points for
stress evaluation are coloured red on Fig. 1.

We use a fourth order approximation for velocity and stress
derivatives and first order for the time derivative. For example, the
stress value σ11 can be found through

σ t
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Fig. 1. Moving from nonstaggered grid to staggered grid, 2D case.

In the same way we can write down σ22 and σ12:
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The equations for velocities are
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We model the wave source as excitation of stresses σ11 and σ22
at the initial time.WeapplyHigdon absorbing boundary conditions
(see for example [31]) of the first order
∂ϕ

∂t
+ Cp

∂ϕ

∂n
+ ε (8)

withCp =
√
(λ + 2µ)/ρ as a P-wave velocity,ϕ unknownvariables

and ε a parameter chosen to increase the stability and absorption
for the boundary.

3. Vectorisation

Automatic vectorisation has become a powerful method to
enhance code performance on modern architectures. The most
common modern architectures which provide support for SIMD
instructions have already beenmentioned. In this section we focus
on Intel SIMD extensions as the architecture chosen for a test
problem.

Without vectorisation switched on, a compiler uploads a single
value in a SIMD register. SIMD extensions allow a software de-
veloper to apply a single arithmetic instruction to a vector rather
than to a single value. A processor may contain several registers
which can be used to perform an instruction on a small vector.
If a processor has a SSE set of instruction, then there are 8 or 16
registers (128-bit) known as XMM0, . . . , XMM7 or XMM15. Thus
four 32-bit single-precision floating point numbers can be stored
and processed with the use of XMM registers. If AVX instructions
are available the SIMD register file size is increased from 128 bits
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to 256 bits and the registers are renamed as YMM0, . . . , YMM7 (or
YMM15). In a similar way AVX-512 allows us to have 32 registers
ZMM0,. . . , ZMM31 (512-bit).

To enable a general optimisation option one needs to compile
a code with the /O2 (or higher) flag (these flags are for Windows).
However, higher levels of optimisation should be used with care
as for a complicated code, options /O3 and /Ox may not increase
performance or may sometimes slow down calculations [32]. For
processor-specific options (like SSE4.1, AVX, AVX-512) the corre-
sponding flags (/QxSSE4.1, /QxAVX, /QxMIC-AVX512) should be
used.

Intel has released a number of different microarchitectures, so
it is possible now to take advantage of different memory struc-
tures [33]. For example the Nehalem structure is the basis for the
first Core i5 and i7 processors. The instruction type is XMM, which
means 128 bit SIMD registers and allows four 32-bit floats to be
uploaded. Modern Core i7 processors often use Haswell or Skylake
architecture, which include the AVX extension for 256 bit and 512
bit operations. To take advantage of the microarchitecture one
needs to compile with /QxAVX switched on (different microar-
chitectures use different flags, which need to be verified on the
IntelWebsite). If applying Assembly Code all the registers available
could be used in the most efficient way. However this paper is
focused on implementing high level instructions. It makes the
methoduniversally applicable to any type of amodern architecture
(which supports SIMD operations) without going into low level
code.

It must be kept in mind that vectorisation is not applicable to
all loops. There is a set of rules and recommendations one should
follow (see Intel documentation and vectorisation guide [34]). We
list here the requirements for our specific application of wave
propagation.

One of the main requirements for vectorisation is that access
to memory should be contiguous. For a 128-bit register an Intel
compiler may load four 32-bit float numbers if they are located in
adjacent memory. Assuming N to be a multiple of 4 and vectors a,
b and c are aligned, then a loop of the type

// loop with a unit stride
for(int i = 0; i < N; i++){

a[i] = b[i] + c[i];
}

is automatically vectorisable after applying the directives men-
tioned above and with flag /O2 (or higher) switched on.

However, if the stride in the loop is not unit

// loop with stride = 2
for(int i = 0; i < N; i += 2){

a[i] = b[i] + c[i];
}

the vectorisation may become less efficient. The vectorisation fails
if we have a loop of the type

for(int i = 0; i < N; i++){
a[i] = b[i] * b[i + 3];

}

Let us look at this loop in more detail. If we unroll the loop we get

for(int i = 0; i < N - 4; i += 4){
a[i] = b[i] * b[i+3];
a[i+1] = b[i+1] * b[i+4];
a[i+2] = b[i+2] * b[i+5];
a[i+3] = b[i+3] * b[i+6];

}

A SIMD register cannot upload all four values of vector b and
apply a SSE or AVX instruction to them because themachine needs
value b[i+5] to calculate value a[i+2] and b[i+6] to calculate
a[i+3]. In the loop applied for a stencil structure wemeet exactly
the same problem which prevents successful vectorisation (see
Section 4).

Fig. 2. Performing calculations with single values. Memory is unaligned. 4 un-
aligned loads.

4. Memory organisation

For the 2D wave propagation problem we need to store all
variables as matrices. As computer memory can be represented as
a 1D array of elements, the standard approach is to stitch rows of
thesematrices (as it is done for C/C++ code). From formulas (3)–(7)
it follows that to find a derivative along the x coordinate we need
to use four neighbouring values in memory. Suppose, we want
to calculate σ11 values. According to formula (3) we need to find
velocity derivatives ∂ u̇1

∂x and ∂ u̇2
∂y . Let us calculate ∂ u̇1

∂x derivative at
a point i. According to (3) we have to use values of u̇1 velocity at
points {i − 2, i − 1, i, i + 1}.

Now we want to utilise SIMD 128-bit instructions (XMM regis-
ters). The simplest approach shown in Fig. 2 is to load each of these
four data elements, in our example u̇1 values at {i−2, i−1, i, i+1},
to four XMM registers using function _mm_load_ss. In this case
one element of the input vector is loaded to the lowest element of
a register while the other three elements of the register are set to
zero. The advantage of this function is that the memory address
of the input element should not be aligned on any particular
boundary. The disadvantage is that we need to perform four load
operations and use only one 32-bit element of a 128-bit register.

Ideally we want to load four elements in a register using one
instruction. So to find four derivatives at a time we can try to load
four 128-bit vectors as it is shown in Fig. 3. In our example, to
find a derivative ∂ u̇1

∂x |x=i we load all four values of u̇1 at the points
{i−2, i−1, i, i+1} in a SIMD register. SSE allows us to use function
_mm_load_ps for this purpose. However there is a requirement
that the address of the first element of the input vector should be
aligned on 128-bit boundary. Therefore loading of the first vector
to the first register can be implemented if the address is aligned.
However the other three load operations cannot be implemented
with the_mm_load_ps instruction as the corresponding addresses
of the first elements of these vectors are not within 128-bit bound-
ary. In other words, a compiler cannot apply _mm_load_ps to the
next vector {i − 1, i, i + 1, i + 2} and for every velocity value at a
point ∈ {i− 1, i, i+ 1, i+ 2} vector instruction _mm_load_sswill
be used. As a result we will have one aligned load instruction and
12 unaligned instructions (versus 16 unaligned instructions if we
use the previous method shown in Fig. 2).

Fortunately we can overcome this bottleneck by storing ele-
ments from different areas of a matrix in adjacent memory (the
idea has been first suggested in [35]). In Fig. 4weuse data from four
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Fig. 3. Performing SIMD instructions. One aligned and3unaligned vectors. 1 aligned
and 12 unaligned loads.

Fig. 4. Performing SIMD instructions. Memory is aligned. 4 aligned loads.

different rows of a matrix. As a result we have 4 load instructions
_mm_load_ps and all elements of registers are utilised. In other
words, instead of keeping single values {u̇i−2

1 , u̇i−1
1 , u̇i

1, u̇
i+1
1 } used

for calculating a singlederivative ∂ u̇1
∂x |x=i next to each otherwe store

four values of u̇i−2
1 , four values of u̇i−1

1 , four values of u̇i
1 and four

values of u̇i+1
1 next to each other and therefore can calculate four

derivatives ∂ u̇1
∂x at the points {i−1, i, i+1, i+2} at a time (see Fig. 4).

To get a clearer picture of the suggestedmemory rearrangement
it is convenient to ‘‘colour’’ elements according to their location in
a SIMD register. As started above, we work with 32-bit floats and
128 bit registers. This means we can fit in four 32-bit floats and
therefore we can ‘‘colour’’ all the data we have in four different
colours (see Fig. 5). As shown on the same figure, all adjacent
elements inmemorywould be ‘‘coloured’’ in one of 4 colours (since
each of them would be potentially uploaded in one of 4 possible
locations of a SIMD register). Such memory organisation should
provide us with a desirable improvement in performance.

However, when working with real problems we often have to
apply boundary conditions. As we want to use only vector opera-
tions it is easier to create some virtual elements for each of these
four ‘‘coloured’’ matrices (see Fig. 5, and Fig. 11). At every time step
‘‘real’’ data needs to be copied to the corresponding ‘‘virtual’’ data.
If a problem is blocked (corresponding examples are mentioned
below) it is more convenient to work with ‘‘virtual’’ blocks rather
than with ‘‘virtual’’ points.

Fig. 5. Rearrangement of memory. Each matrix of variables is split onto four
matrices and extra virtual elements are added. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Allmodern architectures have a complicatedmemory structure.
Together with DRAM it includes several levels of fast memory
(caches). Caches may or may not be shared between the cores. For
example the Intel Core i7-8930K has 12 MB of L3 cache shared
between all the cores, 6 × 256 KB of L2 cache and 6 × 32 KB
of L1 cache. L3 cache is the slowest, but the largest, L1 cache
is the smallest, but with the highest bandwidth. Well optimised
programs use fast memory as much as they can.

The classical way to create a cache aware algorithm is to block
data into chunks which can fit into fast memory. It has to be
mentioned that calculating derivatives on a stencil structure re-
quires the introduction of ‘‘halo’’ points (see Fig. 6). Adding extra
rows/columns of elements from each side of a block allows us
to process all data for each block independently from others. Of
course, before each finite difference operation can be performed,
the values for these extra elements should be found by copying
from neighbouring blocks (see Fig. 7). We have experimented with
different sizes of block and also tested our approach on simple
benchmark problems.

As a test problemwe chose calculation of the 10th order deriva-
tive along the x direction. For the 10th order finite difference
approximation we use values at 10 grid points. We run (1) a
plain version, (2) a blocked version without the suggested mem-
ory rearrangement, and (3) a blocked version with the suggested
memory rearrangement. We define an algorithm as plain if it uses
a classical dynamic memory allocation. We define an algorithm
as loop-blocking if it allocates memory as an array of dynamically
allocated arrays (blocks).Wedefine an algorithmas plain +stride if
it is not blocked, but has rearrangedmemory.We call the algorithm
loop-blocking + block-strided if it is blocked and has rearranged
memory (for the code details please see Supplementary Material
in Appendix A)

Fig. 8 shows a cache aware rooflinemodel (examples of roofline
models can be found in [36,37]) built for all these four cases on
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Fig. 6. Grid of blocks, each block contains extra elements which are copied from
neighbouring blocks. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Data copying between neighbouring horizontal blocks.

Fig. 8. Roofline model for plain (yellow dot), loop-blocking (green dot) and
loop-blocking + block-strided (red dot) algorithms. Blue dot represents MKL func-
tion sgemmwhich calculates matrix C as C = αA · B + βC .

an Intel Core i7-8930K machine running on a single thread. On
the same graph we present the result from profiling MKL function
sgemm. We decided to use this function as an additional perfor-
mance benchmark. All MKL functions are well optimised and of
course well vectorised and give good understanding the potential
capabilities of a processor.

It is clear to see that blocking alone does not give a consider-
able advantage over non blocking algorithms. However memory
rearrangement gives us considerable improvement in the per-
formance. Table 1 shows the results of a VTune Amplifier pro-
filer for two different architectures. It can be seen that memory
rearrangement makes the problem memory bound while algo-
rithms without memory rearrangement are core bound. Overall
the suggested memory rearrangement accelerates the benchmark
model by about 5 times on both architectures. It is possible the
performance of either algorithm could be improved through fur-
ther processor-specific tuning. However, the aim of this paper is
propose a simple solution which sufficiently accelerates the code
within high level instructions and using only a compiler options
switches and is therefore universal for any modern processor.

Let us have a closer look at the level of vectorisation for loop-
blocking and loop-blocking + block-strided algorithms. The core
function in both of them is the one calculating the 10th order
derivative. Profiling the code with a VTune Amplifier provides us
with an estimate of CPU time for all the functions. Table 2 shows
that the 10th order derivative calculation takes about 90% of the
CPU time. It shows, for a loop-blocking algorithm, changing switch
from /O1 to /O3 does not give any improvement. This proves
that the loop performing the heaviest calculations remains poorly
optimised/vectorised. However, for the case of loop-blocking +

block-strided algorithm going from /O1 to /O3 gives ≈2.85 times
acceleration. Since according to Intel /O2 and higher switches
enable automatic vectorisationwemay conclude this performance
improvement occurs because of a higher level of vectorisation.
Indeed, after activating automatic vectorisation the internal loop
(see Fig. 9) will become completely unrolled.

Supplementary Material in Appendix A provides us with As-
sembly code for 10th order derivative calculation loop for all four
examples listed in Table 2. It is interesting to see that our recom-
mended loop-blocking + block-strides algorithm provides us with
better results even for /O1 optimisation flag (see Table 2).

5. Multithreading with OpenMp

Modern processors have multiple cores and can run several
threads at a time. To achieve better performance each thread
should access its own area of memory in order to avoid possible
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Table 1
VTune Amplifier Microarchitecture analysis for two different architectures. Red dots represent
loop-blocking + block-strided algorithms. Blue dots represent loop-blocking algorithms. Pink
highlights indicate bottlenecks identified by VTune Amplifier. (For interpretation of the refer-
ences to colour in this table, the reader is referred to the web version of this article.)

Table 2
VTune Amplifier analysis for strided (red dot) and plain (blue dot) al-
gorithms. The problems run on Intel Core i5-6400 (Skylake architec-
ture) with switches /O3 and /O1. Columns represent CPU time spent
on the function performing the heaviest calculations. (For interpre-
tation of the references to colour in this table, the reader is referred
to the web version of this article.)

Algorithm Switch CPU time, % CPU time, s

/O3 90.7 6.5
/O3 88.6 26.0
/O1 89.0 18.6
/O1 89.1 26.2

Fig. 9. Internal loop in a 10th order derivative calculation completely unrolls with
automatic vectorisation switched on.

conflicts with other threads. Here we come again to the classical
idea of data blocking. This time, however, the aim is to parallelise
the code on a multicore system.

The OpenMP application programming interface (API) is one
of the most popular implementations of multithreading used to
parallelise codes in HPC (High Performance Computing). It is based
on spreading the work amongst the available threads. OpenMP
is a free package, including directives and libraries, developed by
OpenMPARB (Architecture Review Board)with contributions from
software developers such as IBM, Intel and others. Their web-site
(http://openmp.org/wp/) provides a list of rules and examples to
help to program, optimise and run an application successfully on
different operating systems.

We split memory on a grid of blocks, see Fig. 6. Each block
contains a matrix of elements and each element corresponds to
four ‘‘colours’’ from original matrix. When running on a multicore
processorwe are going to treat every block independently from the
others so we have to add to every block ‘‘halo’’ points from the left,
right, top and bottom. The number of points depends on the order
of derivative we have to calculate.

This approach is called geometrical decomposition and is a
classical way of parallelising within MPI on a cluster (see for
example [23,28]). It can also be used on a multicore system within
OpenMP (examples can be found in [9,38,39]).

Depending on topology there could be different ways of ex-
changing data between blocks. For example, for a Cartesian 2D grid
the approach pictured on Fig. 10 could be used. In this section we
discuss how to combine multithreading with suggested memory
rearrangement and achieve even better performance.

When applying a classical OpenMP approach to rearranged
memory structure the method need some modification. As men-
tioned in the previous section, for real life problems we often need
to apply boundary conditions. The rearranged memory structure
would apply boundary conditions to internal blocks. This can be
avoided by introducing ‘‘virtual’’ blocks (see Fig. 11). The idea
comes from the classical data exchange between blocks widely
used in OpenMP and MPI. However, it should be remembered that
elements belonging to ‘‘virtual’’ blocks are no longer locatednext to
each other like they are in a classical algorithm. ‘‘Virtual’’ elements
are ‘‘spread over’’ all the data set as is shown in Fig. 5.

We have tested the approach of combining memory rearrange-
ment with OpenMP multithreading on calculating a 10th order
benchmark problem. We compared the results for the same prob-
lem but with an ordinary memory structure. From Fig. 12 it is
clear that the suggested memory rearrangement gives the best
advantage over classical memory structure when running on one
thread. However, even when running on the maximum number
of cores (the problem has been tested on an Intel Core i7-8930K
processor) the suggested memory reorganisation still provides us
with ≈3.66 times faster results then a classical approach.

Fig. 13 shows rooflinemodel for 10th order problem running on
maximum number of threads (12 threads) available on Intel Core
i7-8930K processor.

The comparison of two graphs, Figs. 8 and 13, once more shows
the best improvement in performance the algorithm gives when
running on a single thread. However, it still demonstrates ≈1.42
times higher performance.We believe it could be improved farther
with microarchitecture tuning and low level instructions.

Wehave profiled both benchmarkswith a VTune Intel Amplifier
2017. The results of profiling shows again that the problem with
a classical memory structure is core bound while the suggested
approach gives high memory bound values. It may be concluded
that the better performance for the loop-blocking + block-strided
algorithm has been achieved through a much higher level of vec-
torisation. It is possible that both benchmarks can be further tuned
for a specific processor with low level instructions. However, this
is not the main focus of this research.

As previously mentioned, most modern processors have a com-
plicated memory structure which together with DRAM includes
several levels of caches (fast memory). The latest generations of
Intel processors share L3 cache between the cores. However, the
faster L2 and L1 caches are separated and belong to a single
core. This could result in slowdown in performance because of
threads migrating from one core to another and attempts to access
data from a distant core local memory (NUMA issues). One of

http://openmp.org/wp/
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Fig. 10. Copying data between blocks in a grid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Exchange between virtual blocks and real blocks. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 12. Acceleration of the calculation of a 10th order problem using multithread-
ing: red line is for classical memory structure; blue line is for rearranged memory.

the ways to resolve this situation is to ‘‘pin’’ a thread to a spe-
cific core. We have found that for our problem setting variable
KMP_AFFINITY=scatter,verbose gives a slight improvement
over default settings.

Fig. 13. Roofline for calculation of a 10th order problem usingmultithreading: blue
dot is for classical memory structure; red dot line is for rearranged memory; green
dot is MKL results for sgemm function.

6. Application to an elastic wave propagation problem

6.1. Running on a single thread

From Eqs. (3)–(7) it is easy to see that the heaviest part of
the calculation for elastic wave propagation consists of calculating
derivatives. We have experimented with 4th order derivatives.
Applying similar logic for the 4th order case we can write the loop
calculating a ∂ u̇1

∂x derivative as shown on Fig. 14.
The loop for a corresponding derivative in the y direction can be

found in Supplementary Material (see Appendix A).
It should be mentioned it is always possible to choose Nx di-

visible by 4. Then the derivative along the y coordinate loop could
always be vectorised with high level instructions. However, this is
not the case for x coordinate derivative and the loop in Fig. 14 can
be vectorised only with our suggested memory rearrangement.

We have tested the elastic wave propagation problem on In-
tel Core i7-8930K (Haswell architecture) and Intel Core i5-6400
(Skylake architecture) machines. The results for a single thread are
presented in Table 3.

Table 3 shows the suggestedmemory rearrangement gives con-
siderable acceleration. It also highlights the problematic areas for
both algorithms (coloured in pink). Note that a classical memory
structure Intel Core i7-8930K (Haswell architecture) gives a better
balance than Intel Core i5-6400 (Skylake architecture).
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Table 3
VTune Amplifier microarchitecture analysis for two different architectures for the wave propa-
gation problem. Red dots represent algorithms with our suggested memory arrangement, blue
dots represent algorithms with standard memory arrangement. Pink highlights show bottle-
necks detected by the analysis. (For interpretation of the references to colour in this table, the
reader is referred to the web version of this article.)

Table 4
VTune Amplifier profiling on multiple threads. Wave propagation problem. Time spent copying data in between blocks.
Blue dot represents OpenMP implementation with loop-blocking structure, red dot represents OpenMP algorithm for
loop-blocking + block-strided structure. Bottom label represents times spent on copping bottom ↔ top ‘‘halo’’ points;
Left represents times spent on copping left ↔ right ‘‘halo’’ points; virtual label shows times spent on copying real →

virtual points. (For interpretation of the references to colour in this table, the reader is referred to the web version of
this article.)

Number of Elapsed time, CPI Bottom, Left, Virt, CPU time,
threads sec sec sec sec sec

1 68.68 0.67 4.30 4.12 2.73 108.48
2 36.33 0.68 4.83 4.37 3.00 92.67
4 21.82 1.05 7.32 5.11 3.83 104.88
6 18.83 1.07 11.0 6.44 5.05 131.44

1 246.82 0.50 1.60 8.77 543.41
2 124.18 0.44 1.77 10.19 363.18
4 64.30 0.40 2.54 16.33 313.42
6 47.08 0.42 3.61 23.67 327.75

Fig. 14. Loop calculating 4th order derivative along x direction.

6.2. Running on a multicore system

We have run the elastic wave propagation problem on an Intel
Core i7-8930K (Haswell architecture) and present the results in
Table 4. The Table shows CPU times spent in copying in between

the neighbouring blocks. It can be seen that the process of copying
takes a small proportion of the whole CPU time (≈17.48% in total
for the loop blocking + block-stride algorithm and ≈3.68% in total
for the loop-blocking algorithm when running on 6 threads). It can
be seen for our suggested loop blocking + block-stride algorithm
CPI rate increases with the number of threads. Nevertheless, the
suggested algorithm still gives good acceleration (≈2.5 times for
the case of running on 6 threads) over a standard blocking algo-
rithm. We believe even higher acceleration is achievable through
further processor-specific tuning.

Fig. 15 and Table 5 show the values of performance for main
calculation functions for the wave propagation problem with and
without memory rearrangement (and their position on a roofline
model graph). It is interesting to see, that performance of calculat-
ing a derivative differs for directions x and y. This can be explained
by the fact that the values we use to calculate the y derivative
are located further from each other in memory than ones used to
calculate the derivatives along the x direction.

In the wave propagation problem we have implemented an
algorithm where a derivative is calculated in the following way:

• for every four points a finite difference sum is found using
diff_x, diff_x_plus, diff_y or diff_y_plus;

• for every four points a sum of type C ·
∑

i=0,3 vec1[i] is
calculated and added to the previously stored values (using
function addC).

It can also be seen that the residual procedure gained less from
memory rearrangement algorithm.

7. Conclusions

In this paper we have presented a new approach for paral-
lelisation of a finite difference code on a single processor. We
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Fig. 15. Roofline for calculation elastic wave propagation problem using multithreading: blue dots are for classical memory structure (main functions); red dots are for
rearranged memory (main functions); green dot is MKL results for sgemm function.

Table 5
Values of performance and CPU times for the most heavy functions of wave propagation problem run-
ning on multithreads. Performance is measured with Intel Advisor 2017, CPU time is estimated by
VTune Amplifier. Blue dot represents OpenMP implementation with loop-blocking structure, red dot
represents OpenMP algorithm for loop-blocking + block-strided structure. (For interpretation of the
references to colour in this table, the reader is referred to the web version of this article.)

Functions Performance, AI CPU time,
GFLOPS GByte/sec sec

diff_x 51.96 0.200 8.910
diff_x_plus 35.53 0.200 13.051
diff_y 44.63 0.200 10.050
diff_y_plus 39.22 10.324 11.000
addC 28.41 0.120 151.563

diff_x 26.04 0.40 126.311
diff_x_plus 25.53 0.40 126.955
diff_y 26.32 0.40 123.534
diff_y_plus 25.80 0.40 123.003
addC 23.51 0.29 363.830

have discussed the difficulties of vectorisation when applied to
a stencil structure and its hybrid application to shared memory
APIs. While we have demonstrated the efficiency of the code in
application to an elastic wave propagation problem we would like
to highlight that the approach can be effectively applied to any
general calculation on a stencil structure (or to a loopwith non unit
stride). Moreover, with the tendency towards more complicated
hardware and increased capacity of registers one can expect this
rearrangement of the data structure to become even more impor-
tant in utilising of the increased advantage of vectorisation.
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