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Abstract: A nonlinear gain scheduling control strategy is proposed for a concentrated solar
thermal power plant. The strategy involves the identification of local linear time-invariant state
space models around a family of operating points, the design of corresponding local linear
dual mode model-based predictive controllers and the selection of an appropriate scheduling
variable to govern the switching. The local models are estimated directly from input-output
data using a subspace identification method while taking into account the frequency response of
the plant. Input-output data are obtained from a nonlinear simulation model of the plant rather
than the plant itself. The effectiveness of the proposed control strategy in terms of tracking
and disturbance rejection is evaluated through two different scenarios created in a nonlinear

simulation environment.

Keywords: Solar thermal power plant; Subspace identification; Resonant modes; Dual mode
model-based predictive control; Nonlinear control; Gain scheduling.

1. INTRODUCTION

The significant global rise in the consumption of electric-
ity and fossil fuels (coal, oil and natural gas) since the
early 1970s and hence the high levels of greenhouse gas
emissions and their contribution to climate change IEA
(2014) are all driving factors in the desire to develop clean
and sustainable energy solutions. The US National Science
Foundation in 1972 stated that ”Solar Energy is an essen-
tially inexhaustible source potentially capable of meeting a
significant portion of the nation’s future energy needs with
a minimum of adverse environmental consequences... The
indications are that solar energy is the most promising of
the unconventional energy sources...”.

Solar energy can be converted by thermal means into
electrical energy using concentrated solar power (CSP)
technology Goswami et al. (2000). The application of CSP
technology is expected to have a major role in long-term
energy supply and thus be a key element in power security
Aringhoff et al. (2005). Parabolic trough, linear Fresnel
reflector, solar tower and parabolic dish are the most
common types of CSP technology. These four share the
same principle of operation; electricity is generated by
converting solar energy into stored heat energy which in
turn is used to drive a power cycle, for example a steam
turbine or a heat engine Philibert (2010).

The scope of this paper will be limited to the application of
parabolic trough technology. Parabolic trough stands out
among the rest of the technologies as the most mature and
reliable technology and indeed forms the bulk of current
commercial CSP plants Philibert (2010).

The parabolic trough technology-based ACUREX plant is
considered in this paper. ACUREX is one of the research
facilities of the Plataforma Solar de Almera (PSA) in
the province of Almeria in south-east Spain. The plant
has provided opportunities for many researchers across
academia and industry to explore the main dynamics of
CSP technology and thus to evaluate various model forms
and control strategies. A detailed description of the plant
can be found in Camacho et al. (2012).

Collectors of parabolic trough technology are parabolic in
shape and concentrate the incident solar radiation onto a
receiver tube that is placed at its focal line. A heat transfer
fluid (HTF) is heated as it flows through the receiver
tube and circulates through a distributed solar collector
field. The heated HTF then passes through a series of
heat exchangers to produce steam which in turn is used
to drive a steam turbine to generate electricity Aringhoff
et al. (2005). One of the biggest challenges of the process
is to maintain the field outlet temperature at a desired
level despite changes, mostly in solar radiation, field inlet
temperature, or ambient temperature. This can be handled
efficiently by manipulating the volumetric flow rate of
the HTF through advanced control strategies Camacho
et al. (2012). A comprehensive survey of the modelling and
control approaches for distributed solar collectors fields is
presented in Camacho et al. (2007a,b).

In a previous work Alsharkawi and Rossiter (2016), it was
argued that the plant ACUREX possesses resonance char-
acteristics, namely resonant modes and for a linear control
system design, high order linear models are required to
capture these dynamic characteristics and hence attain a



high control performance. There is a need to overcome
some of the drawbacks of the gain scheduling (GS) control
strategies reported in Camacho et al. (1997); Johansen
et al. (2000), where the plant resonant modes had been
considered explicitly through the identification of high
order linear models around a family of operating points.
The drawbacks can be summarized as follows:

e Poor Pseudo-Random Binary Sequence (PRBS) de-
sign in Johansen et al. (2000), where the prior knowl-
edge of the plant was not taken into account. The
design of the frequency band and amplitude of the
PRBS signal is not reported in Camacho et al. (1997).

e Local high order linear models were estimated from
experimental data of the plant and hence an optimal
model accuracy will never be achieved due to the slow
dynamics of the plant and the fast changes in the
operating conditions (e.g. solar radiation) within a
limited time frame.

e Decomposition of the normal region of operation
of the plant is selected in Johansen et al. (2000)
such that the gain and time constant of the local
models differ by less than a factor of 2 between
any neighbouring regions. This relies on the big
assumption that the local models are exactly correct
at the centre points of their corresponding regions.

e Plant safety constraints were ignored in the control
system design in Johansen et al. (2000) and poorly
investigated in Camacho et al. (1997) when the field
outlet temperature was restricted to not exceed a
desired reference under any circumstances.

The first few steps towards an improved GS control strat-
egy were carried out in Alsharkawi and Rossiter (2016),
when a linear time-invariant (LTI) state space model
was estimated directly from input-output data around a
nominal operating point through a subspace identification
method and a corresponding local dual mode model-based
predictive control (MPC) strategy was designed for track-
ing and disturbance rejection. This paper aims to continue
the work started in Alsharkawi and Rossiter (2016) by
estimating LTI state space models around a family of
operating points and designing corresponding dual mode
MPC controllers within a GS framework. The region of
operation is decomposed in a more sophisticated manner
through a best fit criterion and plant safety constraints
are incorporated systematically and handled online over a
wide range of operation.

This paper is organised as follows: mathematical models
of the plant are described in section 2; section 3 is devoted
to the phenomena of resonant modes and system identifi-
cation; section 4 outlines the local dual mode MPC design
and discusses the nonlinear GS control strategy. Section 5
presents the simulation results for two commonplace sce-
narios and the main findings and some concluding remarks
are presented in section 6.

2. MATHEMATICAL MODELS

This section gives a brief description of two mathematical
models of the ACUREX plant: a nonlinear distributed
parameter model for simulation purposes followed by a
nonlinear lumped parameter model for control design
purposes.

2.1 Nonlinear Distributed Parameter Model

The distributed solar collector field of the ACUREX plant
consists of 480 single axis parabolic trough collectors which
are arranged in 10 parallel loops each of length 172 m.
The dynamic behaviour of the plant can be described
by the following set of energy balance partial differential
equations (PDEs):
T,
memAmW = nOGI - Do']THl(Tm — Ta)
—D;mH(T,, — Ty) (1)
Ty

0
prfAfftf +orCra— -
= D;wH(T,, — Ty)
where the subindex m refers to the metal of the receiver
tube and f to the HTF Camacho et al. (2012). Table 1
gives a description of all the variables and parameters and
lists their SI units.

Table 1. Variables and parameters.

Symbol Description SI unit
p Density kg/m3
C Specific heat capacity J/kg°C
A Cross-sectional area m?

T Temperature °C

t Time s

I Solar radiation W/m?
o Mirror optical efficiency -

G Mirror optical aperture m
D, Outer diameter of the receiver tube m
H, Global coefficient of thermal losses W/m°C
Ts Ambient temperature °C
D; Inner diameter of the receiver tube m
Hy Coefficient of metal-fluid heat transfer W/m2°C
q HTF volumetric flow rate m3/s
x Space m

A nonlinear simulation model of the plant can be con-
structed by dividing the receiver tube into n (n = 1,2, ...)
segments each of length Az, and hence the nonlinear dis-
tributed parameter model in (1) can be approximated by
the following set of ordinary differential equations (ODEs):
dr,
pmamAm$ =n,GI — D()?THZ(T"L,’U - Ta)
D Hy(Tynn — Tr.n)
dTyn Ttn = Tin-1

prCrAr—i = T prCra———x =

— DirHy(Tonn = Trn)
with the boundary condition Tyo = Ty nier (field inlet
temperature) and H;,H;,py and C being time—varying.

It has been found in Alsharkawi and Rossiter (2016) that
dividing the receiver tube into 7 segments is a reasonable
trade-off between the prediction accuracy and compu-
tational burden while still adequate enough to capture
the resonant modes of the plant. The nonlinear lumped
parameter submodels in (2) are implemented and solved
efficiently using the MATLAB solver ODE45 (an explicit
Runge-Kutta method) where the temperate distribution
in the receiver tube and HTF can be easily accessed at
any point in time and for any segment n.

(2)

2.2 Nonlinear Lumped Parameter Model

The dynamic behaviour of the ACUREX plant can also
be described by a simple nonlinear lumped parameter



model. Variation in the internal energy of the fluid can
be described by:
dTy

Cﬁ = noSI*QPcp(Tf *Tf,inlet) *Hl(Tmean *Ta) (3)
where S is the collectors solar field effective surface, @ is
the HTF volumetric flow rate, P, is a factor that takes
into account some geometrical and thermal properties and
Tonean is the mean of Ty and T jnie; Camacho et al. (2012).

3. RESONANT MODES AND SYSTEM
IDENTIFICATION

The resonance phenomena of the ACUREX plant are
described in Meaburn and Hughes (1993) as resonant
modes that lie well within the desired control bandwidth.
The phenomena arise due to the relatively slow flow rate
of the HTF and the length of the receiver tube involved. It
has also been found that the phenomena have a significant
impact on the control performance and hence modelling
the resonant modes sufficiently is crucial to ensure high
control performance with adequate robustness.

One of the first steps towards an effective modelling of
the resonant modes is a proper choice and design of
excitation signals. Here PRBS-type excitation signals were
chosen. A PRBS is a deterministic binary signal with
white noise like properties and ideally suited for linear
identification. However, the white noise like properties
are only valid for full-length PRBS signals with a clock
period approximately equals the process sampling time
Zhu (2001).

Since the dynamics of the ACUREX plant are mainly
characterised by the flow rate of the HTF (Camacho
et al., 2012), the nonlinear simulation model of the plant
described by the system in (2) was excited with a set of
full-length PRBS signals with an amplitude of 0.0005 m?3 /s
and a clock period equal to the process sampling time
39 s (the process time constant is around 6 min) around
the operating points 0.004, 0.006, 0.008 and 0.010 m3/s.
The identification process assumed steady state operating
conditions (I,om = 674.75 W/m?, Tt intet,nom = 183 °C
and Ty nom = 28 °C) and used a data set of 1100 samples
for each of the nominal operating points.

Compact local LTI state space models were identified
around the nominal operating points using a subspace
identification method (N4SID). Subspace identification
methods are computationally efficient and overcome some
of the major problems encountered in classical identifica-
tion methods, i.e, parametrization, convergence and model
reduction Van Overschee and De Moor (1996). The general
form of a discrete-time LTI state space model is given as:

Tpy1 = Axy + Bug + & (4)
yr = Cxg, + Dug + ng

where x;, € RV, u, € RMXL gy, € R &, e Rt
and n; € RIX1 are the state vector, input vector, output
vector, process noise and measurement noise respectively
at discrete time instant k. A, B, C and D are the coefficient
matrices of appropriate dimensions.

The local models were estimated under the assumptions
that there is no direct feedthrough from the input to the
output (D = 0) and the system is deterministic (§ =

ne = 0). Initial states were set to zero during the estima-
tion process and the weighting scheme canonical variable
algorithm (CVA) was used for the singular value decom-
position (SVD). The N4SID method and the associated
weighting scheme CVA are discussed in Van Overschee and
De Moor (1996) and Larimore (1990) respectively.

Model order was estimated for each of the local models
by inspecting the singular values of a certain covariance
matrix constructed from the observed data. Model order
and best fit criterion are shown in Table 2. Local models
1, 2, 3, and 4 refer to the nominal operating points around
0.004, 0.006, 0.008 and 0.010 m?/s respectively.
Table 2. Model order and best fit criterion
Model order

Local model Best fit criterion (%)

1 4th 95.07
2 qth 97.16
3 4th 98.05
4 5th 98.51

Since the estimated local LTI state space models are
mainly used for prediction within the dual mode MPC
control design, the simulated model output (infinite-step
ahead prediction) is validated through a best fit criterion.
The criterion is given in Ljung (1995) as:

> lvi — il
Bestfit = |1 - =1 x 100 (5)
_; lyi — 9

where y, y and gy are the measured output, the simulated
model output and the mean of the measured output
respectively.

The best fit criterion in (5) reflects the ability of the
estimated local models to reproduce the main dynamics
of the plant at a given operating point and time horizon.
From Table 2, one can observe that the prediction accuracy
is improved as the flow rate of the HTF is increased
from 0.004 to 0.010 m3/s. This can be explained by
the high nonlinearities of the plant at low flow rates
(long residence time of the HTF in the collectors solar
field), which has been also noticed in Stirrup et al. (2001)
when a fuzzy proportional-integral (PI) controller with
feedforward term was developed for the highly nonlinear
part of the plant whereas a GS control strategy was
developed for the more linear part.

The estimated local models capture the phenomena of
resonant modes adequately as validated by inspecting the
Bode plots shown in Fig. 1. One can clearly identify the
resonant modes of the plant and observe the dependence
of their frequencies on the flow rate of the HTF. Another
observation is the changes in the steady state gain as the
flow rate is increased from 0.004 to 0.010 m?/s.

In summary it should be emphasised that the estimated
local state space models are less complex than the local
ARX models presented in Camacho et al. (1997); Johansen
et al. (2000) in terms of model order. However, for a fair
comparison, local ARX models similar to the ones used
in Camacho et al. (1997); Johansen et al. (2000) were
estimated using the same sets of data that had been used
earlier to produce Table 2. Model order was estimated
for each of the local models through Akaike’s information
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Fig. 1. Bode plots of the estimated local LTI state space
models.

criterion (AIC). The order of the local ARX models in
Table 3 is significantly higher than the order of the local
state space models in Table 2 without having a serious
impact on the prediction accuracy.

Table 3. Model order and best fit criterion

Local model  Model order  Best fit criterion (%)

1 7th 04.88
2 11th 97.16
3 12th 98.07
4 12th 98.52

4. CONTROL DESIGN

This section outlines the local dual mode MPC design and
the nonlinear GS control strategy.

4.1 Dual Mode MPC

The term dual mode refers to a separation in the model
predictions into transient (mode 1) and asymptotic (mode
2) predictions. The separation gives a handle on the predic-
tions over an infinite horizon, where a simple linear feed-
back law can be implemented, thus allowing a reduction in
the number of degrees of freedom (d.o.f) and constraints
Rossiter (2003). For a deterministic version of the system
in (4) and assuming no direct feedthrough, the deviation
from the estimated steady state values xgs, uss and yss
can be expressed as:

i‘k-‘,—l = Aj?k + Bﬁk (6)

Ux = Cyp
A standard dual mode cost function (online performance
measure) J is given as:

ne—1
T N STy T )
J = E [ #1400 k1s + gy Migyi] + Ty, Pkin,
i=0

(7)
where n. is the number of free d.o.f., § and \ are weighting
matrices of appropriate dimensions and P is obtained
from a Lyapunov equation of appropriate dimension. The
cost function in (7) can be simplified to take the form
of a standard quadratic programming problem with con-
straints and solved online as:

o' S o + o Liy st
—k—1 —k-—1 —k—1

min
a
5

Mia <y (8)

where 113 = [Gr  Ggt1 Uktn,—1)T, S and L depend
N

upon the matrices A, B, §, XA and P, M is time-invariant
and 7 depends upon the system past input-output infor-
mation. Detailed treatment of the dual mode MPC and

proper definitions of the various parameters can be found
in Rossiter (2003).

4.2 Nonlinear GS Control

GS is one of the most accepted nonlinear control de-
sign approaches which has found applications in many
fields ranging from aerospace to process control Leith and
Leithead (2000). GS control is usually seen as a way of
thinking rather than a fixed design process and well-known
for applying powerful linear design tools to challenging
nonlinear problems Rugh and Shamma (2000). Moreover,
implementation of MPC within a GS framework overcomes
the major computational drawbacks of using nonlinear
MPC which arise due to the non-convexity of the associ-
ated nonlinear optimization problem Chisci et al. (2003).

The design workflow of the proposed nonlinear GS control
strategy involves the designing and tuning of a nominal
linear dual mode MPC controller around medium oper-
ating conditions (0.006 m?3/s) and using simulations to
determine the operating conditions at which the nominal
controller losses robustness. Local LTI state space models
around the new operating conditions were estimated and
corresponding local linear dual mode MPC controllers
were designed.

Having a scheduling variable to switch among the local
linear dual mode MPC controllers as the plant dynamics
change with time or operating conditions is an intrinsic
part of the GS control strategy. Since the plant dynamics
are mainly characterised by the flow rate of the HTF, Q
(HTF volumetric flow rate) is used as the scheduling vari-
able and obtained from the nonlinear lumped parameter
model in (3).

Assuming steady state condition (@ = 0) and best case
scenario (Ty = Ty ey and H; = 'i, where T .y is the
desired reference temperature, the model in (3) can be
given as:

0 =151 — QPep(Ttref — Tt intet) (9)
which can be rewritten as:
neST
Q= (10)

Pcp(Tf,ref - Tf,inlet)
The relationship in (10) means that the scheduling variable
@ is proportional to the solar radiation I and inversely
proportional to the desired temperature change (T ey —
T intet)- Schematic diagram of the proposed GS control
strategy is depicted in Fig. 2.

N I Tt
Gain | PR
" Scheduling [
Q
Tirer ‘ MPC ‘ q Plant | T

(ACUREX)

41 Controllers

Fig. 2. GS control strategy.

Once the scheduling variable is obtained and the distinct
nominal operating points are identified, the final step of



the design process is to have a fine decomposition of
the region of operation. In other words, the scheduling
thresholds between the neighbouring local operating re-
gions should be carefully selected so that optimal control
performance is achieved. An appropriate local operating
regions were identified after performing an extensive sim-
ulations, where the ability of each and every one of the
local models of representing a potential thresholds was
investigated through the best fit criterion in (5). Potential
thresholds were identified following the same identification
process discussed earlier in section 3. Scheduling thresh-
olds 0.00475 — a, 0.00675 + o and 0.00875 + a m3 /s were
found, where « is an uncertainty factor of less than 0.00025
m?3/s. The decomposition that has been selected can be
described by the following set of if-then rules:

if @ < 0.00475, then

s=1

if 0.00475 < Q > 0.00675, then
s=2

if 0.00675 < Q < 0.00875, then
s=3

if @ > 0.00875, then

s=4

where the variable s is a switch that specifies when to
switch from on local model to another and accordingly
from one local controller to another.

5. SIMULATION RESULTS

The effectiveness of the proposed nonlinear GS control
strategy is evaluated through two different simulation sce-
narios. The first scenario assumes a clear day with a mean
solar radiation value of 674.75 W/m?2. This scenario in-
tends to evaluate the control performance of the proposed
control strategy in terms of tracking and the associated
control action. For a meaningful evaluation and interpre-
tation of the control strategy, the control performance is
compared to that with a single local dual mode MPC
controller. The second scenario on the other hand intends
to evaluate the robustness of the proposed control strategy
against a sudden change in the solar radiation (e.g. passing
cloud). For both scenarios the plant is represented by the
nonlinear simulation model described by the system in (2)
with a slight increase to thermal losses in order to make
the scenarios more realistic. Field inlet temperature (75,)
and ambient temperature (T,) are kept fixed at 189 °C
and 28 °C respectively. Even though this may not be the
case in the normal operation of the plant, this is still a
reasonable assumption during the steady state phase. The
HTF is assumed to be the synthetic oil Therminol® 55
and constrained to the range 0.002—0.012 m3 /s where the
minimum limit is normally for a safety reason. Exceeding a
temperature of 305 °C puts the synthetic oil at the risk of
being decomposed. The difference between the field outlet
and inlet temperature is also constrained not to exceed 80
°C in order to avoid the risk of oil leakage Camacho et al.
(2012). The latter has been taken care of implicitly when
the nominal operating points and the desired reference
temperature were selected. The HTF flow rate constraints
are considered explicitly in the control design process as
will be demonstrated in the following two scenarios.
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Fig. 3. First scenario: Control performance of a clear day.

5.1 First Scenario— Clear Day

Fig. 3 compares the control performance of the proposed
GS control strategy with one of the local dual mode
MPC controllers that was designed around the nominal
operating point 0.006 m?3/s. For a clear day with a slowly
time-varying solar radiation, the reference tracking and
the associated control action around high, medium and
low HTF flow rate are presented.

The GS controller shows excellent performance, coping
with the slowly time-varying solar radiation over the
whole range of operation with fast transients, with no
overshoot and handling the flow rate constraints efficiently.
Conversely, the local dual mode MPC controller performs
well only in the region near the operating point where
the corresponding linear model was identified (medium
HTF flow rate). The oscillatory control performance of
the local controller during high flow rates and the poor
control performance during low flow rates with overshoot
and severe control action can be seen clearly.

5.2 Second Scenario— Cloudy Day

The second scenario investigates the effect of a passing
cloud on the GS control performance. Clouds act as a
disturbance to the plant and therefore must be properly
rejected. For a clear day with a slowly time-varying solar
radiation around the mean of 674.75 W/m?, the cloud
is simulated by an extreme situation through a sudden
drop in radiation with a relatively high level of noise. The
scenario as illustrated in Fig. 4 starts with a typical plant
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Fig. 4. Second scenario: Control performance of a cloudy
day.

operation where a smooth switching between the local con-
trollers in order to cope with the changing dynamics can
be observed clearly. During the steady state operation of
the plant around the nominal operating point 0.006 m? /s
a passing and persistent cloud passes by. The cloud drives
the HTF to be decreased to around the operating condition
0.004 m?3/s where it gets handled by the corresponding
controller sufficiently.

6. CONCLUSION

A GS dual mode MPC was developed in this paper to
control the field outlet temperature of the ACUREX plant.
The paper has continued the work started in Alsharkawi
and Rossiter (2016) and extended some of the control
strategies currently available in the literature. Specifically,
compact LTI state space models around a family of oper-
ating points were estimated using a subspace identification
method and corresponding dual mode MPC controllers
within GS framework were designed. The estimated mod-
els have shown significant model order reduction when
compared to the models available in the open literature
while adequately capturing the phenomena of resonant
modes. A fine decomposition of the plant region of op-
eration has also been achieved through a best fit criterion
as well as a systematic and online handling of the plant
safety constraints over a wide range of operation. Feasi-
bility and effectiveness of the proposed control strategy
is demonstrated through two different and commonplace
scenarios. The control strategy is shown to perform very
well for both tracking and disturbance rejection and indeed
superior to a single local controller.

As a final remark regarding the resonant modes of the
plant, it should be pointed out that low order ARX models
are not expected to capture these phenomena. This is
evident from the poor control performance in Rato et al.
(1997); Pickhardt (1998) when 3"¢—order ARX models
were estimated online in an adaptive control strategy.
However, it can also be argued that the inappropriate
selection of the scheduling variable is also contributing to

the poor control performance as the actual flow rate of the
HTF has not been taken into account.

One interesting question for future study is whether perfor-
mance could be improved with an effective incorporation
of feedforward term; this is an area which has received
relatively little attention in the MPC literature.
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