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Phylointeractomics reconstructs functional
evolution of protein binding
Dennis Kappei1,2,*, Marion Scheibe3,4,*, Maciej Paszkowski-Rogacz2, Alina Bluhm3, Toni Ingolf Gossmann5,

Sabrina Dietz3, Mario Dejung3, Holger Herlyn6, Frank Buchholz2,7,8,9,10, Matthias Mann4 & Falk Butter3

Molecular phylogenomics investigates evolutionary relationships based on genomic data.

However, despite genomic sequence conservation, changes in protein interactions can occur

relatively rapidly and may cause strong functional diversification. To investigate such

functional evolution, we here combine phylogenomics with interaction proteomics.

We develop this concept by investigating the molecular evolution of the shelterin complex,

which protects telomeres, across 16 vertebrate species from zebrafish to humans covering

450 million years of evolution. Our phylointeractomics screen discovers previously unknown

telomere-associated proteins and reveals how homologous proteins undergo functional

evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the

common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile

and scalable approach to investigate evolutionary changes in protein function and thus can

provide experimental evidence for phylogenomic relationships.
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T
he analysis of evolutionary relationships of gene
sequences was strongly advanced in recent years because
of the advent of high-throughput DNA sequencing

technologies1,2. However, while overall gene sequence might be
conserved, even single amino-acid exchanges can change the
functionality of the corresponding proteins and thus drives
evolution in regulatory networks3,4. Mass spectrometry-based
interaction proteomics has been the technique of choice to
identify protein interactions in a systematic manner5.

To systematically assess functional evolutionary changes in
protein binding, we developed the concept of phylointeractomics
combining phylogenomics with interaction proteomics. We
demonstrate the power of our approach by investigation of
telomere-binding proteins across 16 vertebrate species, sharing
the common telomeric repeat motif TTAGGG6. These repeats are
bound by the shelterin complex, which protects the linear
chromosome ends from recognition as DNA double-strand
breaks and is composed of six subunits (TERF1, TERF2, TIN2,
TPP1, RAP1 and POT1) in human. It is generally assumed
that throughout 450 million years of vertebrate evolution7 this
complex is conserved8,9. However, experimental validation of this
phylogenomic assumption is lacking.

Here we show that TERF1 actually evolved its intrinsic
telomere-binding ability in the common stem lineage of
marsupial and placental mammals. This observation exemplifies
that the assumption to equate phylogenomic homology
and functional conservation has restrictions, and with phylo-
interactomics, we provide a versatile and scalable approach to
uncover these functional differences.

Results
Interaction proteomics recapitulates the core telosome. In our
phylointeractomics screen to identify telomere-binding proteins,
we used a DNA-protein interaction approach combined
with quantitative mass spectrometry. Polymerized biotinylated
DNA of either telomeric sequence (TTAGGG) or a scrambled
control sequence (GTGAGT) was immobilized on paramagnetic
streptavidin beads. Both sequences were separately incubated
with nuclear protein extracts from each of the 16 species (Fig. 1a),
and bound proteins were analysed by label-free quantitative mass
spectrometry (Fig. 1b). We discovered significant interactors
(identical cutoff values of S0¼ 0.6 and Po0.05, see Methods
section) with the telomeric TTAGGG sequence by quadruplicate
pull-down experiments for all 16 vertebrates. Each pull-down
experiment quantified on average 1,300 proteins. This allowed us
to determine significant interactors by their enrichment rather
than the presence or absence on target and control sequence,
making the analysis much more robust10. To further focus on
high confidence interactors in the core telosome that potentially
have a role in a larger number of organisms, we focussed on those
candidates that were identified in at least five species (Figs 1c and
2a, Supplementary Data 1 and 2).

The shelterin complex (TERF1, TERF2, TIN2, TPP1, RAP1
and POT1) involved in telomere end protection and telomere
homeostasis clustered tightly together with high enrichment
scores in mammals, providing a positive control (Figs 1c and 2a,
Supplementary Data 1 and 2). Furthermore, we observed the
recent gene duplication of POT1 into POT1A and POT1B in the
rodent lineage11 when using extracts from mouse and rat and we
identified both TERF2 paralogues in medaka. This demonstrates
the required comprehensiveness and sensitivity to detect specific
molecular evolution events (Fig. 1c).

Phylointeractomics identifies putative novel telomere binders.
Our screen recapitulated the TERF2-interaction partner

DCLRE1B, a nuclease implicated in proper end processing12,13,
and the nuclear receptors NR2C2 and NR2C1, previously
described as subtelomere-binding proteins14–16. So far, only the
homeobox-domain-containing proteins TERF1, TERF2 and
HOT1 have been demonstrated to directly bind to double-
stranded telomeric DNA while both POT1 and the CST complex
are single-stranded telomere binders17–19. In addition to the
established double-strand binders, we identified eight zinc
finger proteins (ZBTB7A, ZBTB10, ZBTB48, ZNF276, ZNF524,
ZNF827, VEZF1 and KLF12) enriched at the TTAGGG repeat
sequence in at least five species. We speculate that some of these
candidates bind double-stranded TTAGGG repeats directly and
have functional roles at the telomere. For instance, human
ZNF827 has, in the meantime, been reported to localize to
telomeres, to induce telomere remodeling and to promote
telomere–telomere recombination20. Consistently, with our
observed enrichment of RECQL1 to TTAGGG repeats in 8
species, this helicase is involved in telomere maintenance, actively
resolving telomeric D-loops and Holliday junction substrates,
regulated via an interaction with TERF2 in human cells21. The
recently discovered direct telomere-binding protein HOT1 was
also enriched on telomeric DNA; consistent with a role of this
protein in active telomere elongation, HOT1 is identified
predominantly in those species with detectable telomerase
activity (Fig. 2a, Supplementary Fig. 2) even in normal somatic
tissue22 as used in this screen, which is in agreement to its
previously described differential binding behaviour in human
cells, in which it associates with telomeres in cellular contexts
with active telomere elongation17. Indeed, when performing the
same analysis with nuclear protein extracts from telomerase-
positive HeLa cells we readily detect HOT1 among the specific
telomere binders, but it is not identified from the telomerase-
negative IMR90 human fibroblasts used in our initial screen
(Fig. 2a, Supplementary Fig 1a, Supplementary Fig. 2). RUNX1,
RUNX2, CBFB and, in fewer cases, also RUNX3 (Fig. 2a,
Supplementary Data 1 and 2) as well as three poly r(C) binding
proteins PCBP1, PCBP2 and PCBP3 were consistently enriched at
telomeric DNA in various vertebrates, including humans. CBFB
had been previously detected by proteomics of isolated chromatin
segments (PICh)15 and PCBP1 as shelterin-associated by
immunoprecipitation/mass spectrometry (IP/MS)23. RUNX
proteins are transcription factors and RUNX1 regulates the
differentiation of hematopoietic stem cells, whereas the PCBP
proteins are generally thought to be RNA-binding proteins
regulating several cancer relevant transcripts24,25. Of note, two
other candidates, FSBP and NAIF1, contain a homeobox/myb
domain, typical for double-strand telomere binders17,26, and
SRBD1 features an OB-fold as found in POT1 (ref. 18), suggesting
that these candidates may bind directly to TTAGGG and regulate
and maintain telomeres. Thus our screen resulted in numerous
proteins already implicated in telomere regulation and provides
evidence for several novel candidates.

The affinity purification assay27 used in this study may have
putative limitations that need to be carefully considered. The
assay primarily identifies direct binding proteins to a particular
DNA sequence, together with their tight interaction partners.
This is highlighted by the fact that we have identified the entire
shelterin complex together with DCLRE1B but none of the more
transient shelterin interactors18 (Fig. 2a, Supplementary Fig. 1,
Supplementary Data 1 and 2). Thus, to address research questions
that involve temporal and spatial resolution at telomeres
other interactomics approaches such as PICh15 or a
quantitative telomeric chromatin isolation protocol (QTIP)28,
an adaptation of the more general concept of combining
chromatin immunoprecipitation with MS5,29,30, have been
developed. However, quantitative telomeric chromatin isolation
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protocol is specifically targeted to telomeres and dependent on
the behaviour of TERF1 and TERF2, while PICh is currently
limited to repetitive elements that provide multiple binding sites
for sufficient enrichment of endogenous chromatin. These
technical biases are likely the reason why other studies aiming

at identifying novel telomeric factors are showing surprisingly
little overlap between each other beyond the shelterin proteins
(Supplementary Fig. 3). Interestingly, when compared with other
screens, our approach shows the strongest overlap with PICh,
which uses telomeric DNA as the bait as well. Affinity purification
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Figure 1 | Phylointeractomics screen for telomere binders in 16 vertebrate species. (a) Phylogenetic tree of vertebrate species analysed in this study—all

higher ranked vertebrate taxa apart from monotremata are represented. (b) Quantitative label-free DNA interaction screen with DNA oligonucleotides

containing either the telomeric repeat sequence (TTAGGG) or a control sequence (GTGAGT). Specific interaction partners are differentiated from

background binders by a ratio significantly different from 1:1. All pull-downs were performed in biological replicates (n¼4). (c) Volcano plots for all tested

vertebrate species. Specifically enriched proteins (red circles) are distinguished from background binders (blue circles) by a two-dimensional cutoff

with S0¼0.6 and Po0.05 (Welch’s t-test). Detected members of the shelterin complex (TERF1, TERF2, TIN2, TPP1, RAP1 and POT1) are highlighted

(filled orange dots).
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Figure 2 | Telomere-binding proteins are identified by cross-species validation. (a) Heat map of identified proteins with specific enrichment at TTAGGG

repeats in at least 5 out of the 16 vertebrate species. Species (rows) are arranged according to their phylogenetic relations while proteins (columns) are

clustered based on their binding pattern across all pull-downs. Colour gradient represents relative enrichment from TTAGGG binding (red) to equal

enrichment on the telomeric and control sequence (blue). Only events that were identified as hits according to the criteria in Fig. 1c are shown. Gene names

are based on the human versions, and in the occurrence of paralogues, both enrichment values are displayed side by side in the species concerned

(for example, POT1 in mouse). The presence of telomerase activity is indicated on the right. (þ ) indicates cell lines with activity at the detection limit.

IMR90 (human)47 and NIH3T3 cells (mouse)48 are known telomerase-negative and -positive cells, respectively. Quantifications can be found in

Supplementary Fig. 2. (b) Heat map of protein sequence identity for all candidate telomere binders from a across 15 vertebrate species. Axolotl was

excluded from this analysis as there is currently no published whole-genome annotation available. The protein sequence identity is displayed as a colour

gradient relative to the human sequences with the percentage value displayed in each square. Grey squares represent absent genes based on ENSEMBL

genome assemblies. Grey values represent non-annotated homologues based on ENSEMBL genome assemblies for which we could identify homologues by

reciprocal BLAST search.
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procedures such as the widely used immunoprecipitations and
peptide pull-downs are prone to reveal all putative interaction
candidates. Therefore, a careful validation of localization, binding
and functional relevance in an endogenous context is required for
any novel factor. Nevertheless, the presence of several already
established telomeric factors in our screen suggests that our
candidates may be important for telomere biology pending
further in-depth characterization for each protein.

Constitutive TERF1 telomere binding is a therian invention.
Importantly, our phylointeractomics approach also provides
information about the evolutionary history of binding patterns of
individual proteins, which here led to unexpected findings.
Although the shelterin complex is thought to be universal to
vertebrates8,9 and indeed TERF2 and RAP1 are strongly enriched
on TTAGGG repeats in all species analysed, TERF1 was absent or
not specifically enriched in non-therian vertebrates despite the
presence of a TERF1 orthologue in all 16 species (Figs 1c and
2a,b). Our data therefore raised the possibility that only therian
(placental and marsupial) TERF1 can bind to telomeric TTAGGG
repeats. To investigate this hypothesis, we recombinantly
expressed the TERF1 DNA-binding domain (DBD) of 13
vertebrate species spanning from ray-finned fish to human and
performed DNA-binding assays. Although all 8 recombinantly
expressed TERF1 homeobox domains of therian mammals clearly
showed binding to TTAGGG repeats, no binding was detectable
for any TERF1 DBD outside this group (Fig. 3b). Our data
therefore places a gain of direct TTAGGG repeat binding of
TERF1 in the therian lineage after separation from monotremata
around 225 million years ago.

Specific TERF1 residues were positively selected in therians.
We next performed domain-specific multiple sequence alignment
and conducted substitution rate analysis to infer selective
pressures between therians and other species sampled. Using a
branch-site model, selective pressures across sites were inferred
from posterior distributions using a Naive Empirical Bayes (NEB)
approach (Fig. 3a,c). We pinpointed seven amino-acid positions
(A371, W374, Q378, K379, S382, Q393, S397 based on the
opossum sequence) in the TERF1 DBD that are positively selected
in therians but that evolve neutrally across non-therian branches.
W374 and S382 are identical between platypus and therians and
therefore cannot explain the observed binding pattern. Of the
remaining five residues, only the Q393 residue confers direct
contact with DNA based on the co-crystal structure of the human
TERF1 homeobox domain with telomeric DNA26. Two additional
residues, T400 and E420, differ between platypus and theria but
are not under evolutionary constraints based on our branch-site
model (Fig. 3a).

To test whether the identified amino-acid residues are
important for telomeric binding, we mutated all residues that
differ between platypus and therians individually and performed
DNA-binding assays with the recombinant expressed opossum
TERF1 DBD variants. In this screen, A371M, T400Q and E420D
did not show any obvious change in their binding behaviour
while Q378M, K379Q and Q393T reduced TERF1 binding.
Exchange of S397 against the bulkier phenylalanine residue
completely abrogated binding to telomeric DNA (Fig. 3d). Based
on this information, we attempted to recapitulate a gain-of-
function-binding switch for the platypus TERF1 DBD. To further
quantify the change in binding activity, we used purified
recombinant TERF1 domains and tested multiple platypus
variants along with the platypus and opossum wild-type DBDs.
Although the exchange of the bulky phenylalanine in F313S was
not sufficient to induce binding, the combination with other

substitutions (T309Q and M294Q/Q295K) transferred TTAGGG
binding to the TERF1 DBD from platypus (Fig. 3e,f,
Supplementary Fig. 4), demonstrating that these are indeed the
key residues for the evolutionary switch of TERF1 telomere
binding.

Discussion
Although TERF1 has not been extensively studied in non-therian
vertebrates, available data from clawed frog and chicken suggests
that TERF1 binding to telomeres and its telomeric function might
indeed not be conserved. Using in vitro transcribed/translated
Xenopus laevis TERF1, binding to chromatin or a plasmid
containing TTAGGG repeats could only be observed when added
to mitotic but not to interphase extracts with the mitotic
phenotype appearing rather faint compared with that of TERF2
(ref. 31). Although direct binding to TTAGGG was not assessed,
the fact that a specific extract has to be present to achieve any
enrichment suggests that the interaction is likely indirect. For
chicken TERF1 (cTERF1), Okamoto et al.32 have reported as data
not shown that cTERF1 can localize to telomeres in chicken cells.
However, FLAG-cTERF1 does not localize to telomeres in mouse
cells but telomeric localization can be enforced by fusing the
chicken TRFH domain of TERF1 to the mouse TERF1 DBD32.
Similarly, Cooley et al.33 reported the localization of myc-cTERF1
to telomeres in DT40 Terf1� /� cells33. As the result by Okamoto
et al.32 could suggest indirect recruitment of cTERF1 to telomeres
in an endogenous context, we performed a TTAGGG pull-down
using nuclear protein extracts from 6C2 chicken cells
(Supplementary Fig. 1b). In contrast to the results obtained
with zebra finch and duck, cTERF1 is specifically enriched on
telomeric DNA in our proteomics analysis (Supplementary
Fig. 1b). Given that the cTERF1-DBD does not directly bind to
telomeric DNA in vitro (Fig. 3b), non-therian TERF1 seems to be
passively recruited to telomeres in some species and/or specific
cellular contexts (for example, chicken, mitotic cells in xenopus).
Importantly, our findings suggest that among the investigated
species only therian TERF1 DBDs have an intrinsic TTAGGG-
binding ability. A difference in cellular function is also supported
by the observation that DT40 Terf1� /� cells do not display any
defective cell viability contrary to mouse Terf1 knockout cells34

or major telomere dysfunctions33. These data functionally
underscore our finding and indeed Cooley et al.33 suggest as
one possible explanation that the shelterin complex composition
in chicken may differ from mammals.

Our results raise interesting questions about the evolution of
the shelterin complex in vertebrates. Although TERF1 directly
binds to telomeric dsDNA in therians, it is also connected to the
shelterin complex via direct interaction with TIN2, mediated
by the TRFH domain of TERF1 and the FxLxP motif in
the C-terminus of TIN2 (ref. 35). Furthermore, TIN2 connects
the remaining shelterin members through direct interactions with
both TERF2-RAP1 and TPP1-POT1. Similar to TERF1, TIN2 and
TPP1 are absent or not enriched in our pull-downs from several
non-mammalian vertebrates (Figs 1c and 2a). Absence of TIN2 in
interaction screens with bird proteomes turned out to be due to a
lack of an annotated TIN2 gene in this lineage in current genome
assemblies (Fig. 2b). Without the central TIN2 hub, the six
protein complex does not exist in birds. In the remaining
non-mammalian vertebrates, the complex stability seems also
impaired by the lack of TERF1 or at least by the lack of direct
TERF1-TTAGGG binding (Fig. 1c). In addition, branch-site
modeling of the TERF1 TRFH domain, which is important
for dimerization36, reveals the opposite conservation pattern
compared with the homeobox domain as several residues are
under purifying selection in non-therian vertebrates and evolve
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neutrally otherwise (Supplementary Fig. 5). For both the
homeobox and the TRFH domain in TERF2, which together
with its interactor RAP1 is consistently bound to TTAGGG in all
the 16 vertebrates in our screen, we could not detect such
evolutionary differences (Supplementary Table 1 and 2). Together
our data suggest that, after gene duplication of the ancestral TERF
gene, TERF2 retained telomere-binding activity, whereas TERF1

evolved otherwise. Although it is possible that convergent
evolution of TERF1 telomere binding is yet to be discovered in
specific lineages of non-therian vertebrates, our data clearly
illustrate that TERF1 regained the ability to directly bind
TTAGGG repeats in therians where the six protein shelterin
complex is found in its previously described composition and
function18. Beyond the specific example of telomeres, these data
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also highlight that the reasonable assumption to equate genetic
and functional homology requires careful experimental testing
and that proteins and protein complexes evolve dynamically in
function and composition.

In conclusion, our approach combines the proliferation of
sequenced genomes with the increasing power of interactomics
screens to investigate functional and evolutionary important
protein binding. Current synthesis and expression technologies
allow for an easy production of baits, such as DNA sequences,
RNA structures, (modified) peptides, protein domains or
full-length proteins, while streamlined interaction screens can
be performed in a large number of systems, given access to their
proteomes. Thus phylointeractomics is capable to investigate the
molecular evolution of domain-specific binding across any
species and could serve as a blueprint for a future analysis of
how full-length proteins evolve. It can provide experimental
evidence for phylogenomics relationships and helps to extrapolate
the results obtained in model organisms to a broader group of
species.

Methods
Cell culture. IMR90 (human), HeLa (human), NIH3T3 (mouse), PC12 (rat), Vx-2
(rabbit), LLC-PK1 (pig), MDCK (dog), CCL-141 (duck) and tasmanian devil cells
were cultivated in 4.5 g l� 1 glucose, 4 mM glutamine, 1 mM sodium pyruvate
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS; Sigma), 100 U ml� 1 penicillin and 100 mg ml� 1 streptomycin
(Gibco), which is referred to as full DMEM hereafter. 104C1 cells (guinea pig) were
cultured in RPMI-1640 medium supplemented with 10% FBS, 2 mM glutamine,
100 U ml� 1 penicillin and 100mg ml� 1 streptomycin. Medium for the cultivation
of OK (opossum) cells consisted of full DMEM complemented with 1%
non-essential amino acids (PAA). Medium for culturing ZFTMA (zebra finch) cells
was composed of full DMEM supplemented with 2% chicken serum. Chicken 6C2
cells were cultivated in DMEM with 10% FBS, 100 U ml� 1 penicillin and
100mg ml� 1 streptomycin (Gibco), 1 mM sodium pyruvate, 1% non-essential
amino acids and 0.4% chicken serum. Culture conditions of all above listed cell
lines were 37 �C and 5% CO2. Leibovitz’s (L-15) medium (67%) supplemented with
10% FBS, 100 U ml� 1 penicillin and 100 mg ml� 1 streptomycin defined medium
composition for the cultivation of speedy (frog) cells at 28 �C and 0% CO2. BRF41
(zebrafish) cells were grown in L-15 medium, including 15% FBS, 100 U ml� 1

penicillin and 100 mg ml� 1 streptomycin at 33 �C and 0% CO2. Medium for
growing OLF-136 (medaka) cells was composed of DMEM supplemented with 15%
FBS, 100 U ml� 1 penicillin and 100 mg ml� 1 streptomycin. Medaka cells were
cultivated at 28 �C and 5% CO2.

Nuclear protein extraction. Cells were harvested and nuclear extracts were
prepared as previously described37. For extraction of nuclear extracts, cells were
harvested and incubated in hypotonic buffer (10 mM Hepes, pH 7.9, 1.5 mM
MgCl2, 10 mM KCl) on ice for 10 min. Cells were transferred to a dounce
homogenizer in hypotonic buffer supplemented with 0.1% Igepal CA630 (Sigma)
and 0.5 mM DTT and lysed by 40 strokes. Nuclei were washed once in 1� PBS
and extracted in hypertonic buffer (420 mM NaCl, 20 mM Hepes, pH 7.9, 20%
glycerol, 2 mM MgCl2, 0.2 mM EDTA, 0.1% Igepal CA630 (Sigma), 0.5 mM DTT)
for 2 h at 4 �C on a rotating wheel.

Telomere pull-down. Forward and reverse sequence oligonucleotides (25 mg)
(see Supplementary Table 3) were diluted in annealing buffer (20 mM Tris-HCl,
pH 7.5, 10 mM MgCl2, 100 mM KCl), denatured at 95 �C and annealed by cooling.
Annealed double-stranded oligonucleotides were incubated with 100 units
T4 kinase (Life Technologies) for 2 h at 37 �C followed by incubation with
20 units T4 ligase overnight. Concatenated DNA strands were purified using
phenol–chloroform extraction. Following biotinylation with desthiobiotin-dATP
(Jena Bioscience) and 60 units DNA polymerase (Thermo), the biotinylated probes
were purified using microspin G-50 columns (GE Healthcare). Telomeric or
control DNA was immobilized on 500 mg paramagnetic streptavidin beads
(Dynabeads MyOne C1, Life Technologies) on a rotation wheel for 30 min at room
temperature. Subsequently, baits were incubated with 400 or 800 mg (frog) of
nuclear extract in PBB buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM
MgCl2, 0.5% Igepal CA-630 (Sigma)) while rotating for 1.5 h at 4 �C. Sheared
salmon sperm DNA (10 mg; Ambion) was added as a competitor for DNA binding.
After three washes with PBB buffer, bound proteins were eluted in 1� LDS sample
buffer supplemented with 0.1 M DTT, boiled for 10 min at 70 �C and separated on
a 10% NuPAGE Novex Bis-Tris precast gel (Life Technologies).

MS data acquisition. For in-gel digestion, samples were reduced in 10 mM
DTT for 1 h at 56 �C followed by alkylation with 55 mM iodoacetamide (Sigma)
for 45 min in the dark. Tryptic digest was performed in 50 mM ammonium
bicarbonate buffer with 1 mg trypsin (Promega) at 37 �C overnight. Peptides were
desalted on StageTips and analysed by nanoflow liquid chromatography on an
EASY-nLC 1000 system (Thermo) coupled online to a Q Exactive Plus mass
spectrometer (Thermo). Peptides were separated on a C18-reversed phase capillary
(25 cm long, 75mm inner diameter, packed in-house with ReproSil-Pur C18-AQ
1.9 mm resin (Dr Maisch) directly mounted on the electrospray ion source. We used
a 90 min gradient from 2% to 60% acetonitrile in 0.5% formic acid at a flow of
200 nl min� 1. The Q Exactive Plus was operated with a Top10 MS/MS spectra
acquisition method per MS full scan.

MS data analysis. The raw files were processed with MaxQuant38 (version 1.4.0.8)
against the ENSEMBL annotated protein and the genescan databases of the
respective species (duck: BGI1.0.74; dog: CanFam3.1.71; guinea pig: cavPor3.75;
zebrafish: Zv9.71; human: GRCh37.71; wallaby: Meug_1.0.74; opossum:
BROADO5.71; mouse: GRCm38.71; rabbit: oryCun2.71; medaka: MEDAKA1.7;
rat: Rnor_5.0.71; Tasmanian devil: DEVIL7.0.74; pig: Sscrofa10.2.71; zebra finch:
taeGut3.2.4.71; xenopus: JGI_4.2.71; rabbit: oryCun 2.71) with the exception of
axolotl where the Am2.0 database was used. Carbamidomethylation was set as fixed
modification while methionine oxidation and protein N-acetylation were
considered as variable modifications. The search was performed with an initial
mass tolerance of 7 p.p.m. mass accuracy for the precursor ion and 20 p.p.m. for the
MS/MS spectra in the HCD fragmentation mode. Search results were processed
with MaxQuant and filtered with a false discovery rate of 0.01. The match between
run option and the LFQ quantitation were activated.

Bioinformatic analysis. After peak detection and label-free quantitation was
performed in MaxQuant, the files were further analysed using self-developed R and
Python scripts. In detail, protein groups marked as reverse, contaminants or only
identified by site were removed. A further filtering step removed protein groups
that were not identified in at least three out of the four replicates at either bait.
The missing values were imputed for each sample individually. The values were
calculated with a beta distribution using the fitdistr function (MASS R package)
fitted to 5% of the smallest values. Afterwards, a BLAST search was performed to
map the human homologues to the different species. For creating the volcano plots,
a two-tailed Welch’s t-test to calculate the P value for each protein was used.

Figure 3 | TERF1 acquired ability to bind telomeric DNA in the therian stem lineage. (a) Sequence alignment of the TERF1 DBD of several species.

Residues involved in DNA binding are marked by a black rectangle. Asterisks (*) indicate positions with fully conserved residues; colons (:) indicate

exchanges with biochemical similar and periods (.) with related amino acid. Below each residue, a quantitative representation of the Naive Empirical

Bayesian class probability derived from the branch-site modeling in c for selective constraints in therians (red; also in the background of these residues in

the sequence alignment) and constraints in vertebrates (blue). Coloured residues refer to results of binding tests of amino-acid exchange variants from d

with unchanged binding (blue), reduced binding (orange) or no binding (red). (b) Pull-down of the TERF1 DBD of various different vertebrate species with

either telomeric repeats or a control oligonucleotide. (c) Phylogenetic relationship of the species used for substitution rate analysis. The colours denote the

branch classifications, with red representing selective constraints across therians and blue representing selective constraints across vertebrates.

Substitution rates were calculated using PAML45 to obtain the non-synonymous to synonymous substitution rate ratio (dN/dS¼o). o values o1, ¼ 1 and

41 indicate purifying selection, neutral evolution and diversifying (positive) selection, respectively. A branch-site model (model D) was applied and

compared with a homogeneous site model (discrete Model M3) and with a Model D that assumes neutral evolution for a predefined set of branches,

representing our null hypothesis (o¼ 1). (d) Sequence-specific pull-down of single amino-acid exchange variants of the opossum TERF1 DBD. All seven

residues exclusively found in platypus but not in therians were tested. (e) Sequence-specific pull-down of platypus TERF1 DBD variants using purified TERF1

DBDs. Combinations of the four identified residues from d were mutated to the opossum sequence to test whether their substitution can attribute TERF1

the capacity of directly binding to telomeric dsDNA. (f) Quantification of western blotting intensities from e (n¼ 3) shows similar binding affinity for

platypus variants 3 and 4 compared with wild-type opossum TERF1-DBD. Mean with s.d. error bars.
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Hit selection was based on P values obtained from an analogous t-statistic with
variance increased by a constant factor S0 equal 0.6. The P value cutoff indicated by
dashed lines was set to 0.05. For creating the heat map, only proteins reported as
enriched in at least five different species were considered. All plots where created
using the ggplot2 and ggrepel R package. Data formatting and filtering was
performed with the plyr and reshape2 R packages as well as base R commands.

Telomeric repeat amplification protocol. For all vertebrate species, 3.6 million
cells were lysed in 100 ml lysis buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl and
1% Igepal CA-630 (Sigma) supplemented with protease inhibitor). The quantitative
telomeric repeat amplification protocol assay was carried out using GoTaq qPCR
Master Mix (Promega) with both TS (50-AATCCGTCGAGCAGAGTT-30) and
ACX primer (50-GCGCGGCTTACCCTTACCCCTTACCCTAACC-30) at 200 nM.
Reactions were run on a ViiA 7 real-time PCR system (Thermo Fisher Scientific)
with the following protocol: 25 �C for 20 min, 95 �C for 10 min and 40 cycles with
95 �C for 30 s, 60 �C for 30 s, and 72 �C for 1 min.

Recombinant expression of TERF1 variants and binding test. TERF1 DBDs
were ordered as gene synthesis constructs (Genescript). The sequence was sub-
cloned into the SLIC-compatible pETM44 vector via SLIC cloning39 and expressed
in Escherichia coli Rosetta at 25 �C. Amino-acid exchanges were introduced using
site-directed mutagenesis40 and validated by sequencing (GATC Biotech).
Autoinduction was performed according to the published protocol39 and bacteria
were lysed in PBB buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl2,
0.5% Igepal CA-630 (Sigma)) using a precooled Fastprep 24 system (Peqlab) with
silica beads. Soluble supernatant of E. coli extracts with overexpressed recombinant
proteins were used for telomere pull-downs. For purified protein domains, 100 ml
cultures were autoinduced, harvested and treated with 5 mg lysozyme (Sigma) prior
to sonication on ice with a Branson Sonifier 450 for 10 times 15 s with 1 min breaks
in between. Protein purification was carried out as previously described41. In short,
samples were centrifuged for 30 min at 3,500 g and supernatant was filtrated with a
45mm (Fisher Scientific) syringe filter. The supernatant was loaded on an
equilibrated 1 ml HisTrap HP column (GE Healthcare). The column was washed
with buffer containing 50 mM imidazole (Sigma) and the bound proteins were
eluted in 250ml fractions by buffer containing 500 mM imidazole (Sigma). The
fractions were dialyzed overnight in storage buffer (0.5 M NaCl, 20 mM Tris-HCl
pH 7.5, 5 mM MgCl2, 10% glycerol and 1 mM DTT). The protein concentration
was measured by Bradford assay (Bio-rad) and the purity of the elution fraction
was assessed by polyacrylamide gel electrophoresis and Coomassie blue staining.
Purified protein (10 mg) was incubated with 500 mg of paramagnetic streptavidin
beads (Dynabeads, Thermo) coated with 600 nmol of biotinylated TTAGGG
oligonucleotides for 2 h at 4 �C with slight agitation in PBB buffer (supplemented
with 1 mM DTT and protease inhibitor). After three washes with PBB buffer, beads
were transferred to a new Eppendorf tube and boiled in 1� LDS buffer (Thermo)
containing 100 mM DTT for 10 min at 70 �C. Samples were loaded on a NuPage
4–12% Bis-Tris polyacrylamide gel (Thermo), which was run with 1� MES buffer
(Thermo) for 45 min at 180 V.

Western blotting. Gels were blotted to nitrocellulose membranes (Protran83;
Schleicher & Schuell) for 1 h constantly at 300 mA, blocked for 1 h at room
temperature and incubated for 1 h with the anti-His5 horseradish peroxidase-
conjugated antibody following the manufacturer’s instructions (Penta-His HRP
Conjugate Kit, Qiagen). Membranes were washed twice in TBS-Tween-Triton
buffer and once in TBS buffer for 10 min each. Detection was followed by
incubating with enhanced chemiluminescence Prime Western Blotting Detection
Reagent (GE-Healthcare). As a molecular weight standard, Seeblue 2 (Invitrogen)
was used. For the purified domains, western blotting intensities were analysed using
the integrated density function of ImageJ (https://imagej.nih.gov/ij/index.html).

Multiple alignments and PAML statistical analysis. DNA and protein sequences
of human TERF1 and TERF2 orthologues from up to 24 vertebrate species were
obtained from the ENSEMBL database42 (release 75), including all species from the
MS screen except axolotl for which there is currently no published genome
available. To obtain multiple DNA sequence alignments, the corresponding protein
sequences were aligned using MUSCLE43 (version 3.8.31) and files were prepared
with PAL2NAL44 (version 14) to set up codon alignments and to remove gaps.
Because whole-protein alignments for highly divergent species are difficult to
obtain, we restricted the analyses to domain-specific alignments based on the
human domain annotation. Here sequences were manually inspected and domains
were separately analysed for the homeobox as well as TRFH domains of TERF1 and
TERF2. Species for which the respective domain was not fully sequenced were
excluded from further analysis. The exact species used for the analysis of the four
different domains are depicted in the corresponding figure elements (Fig. 3c,
Supplementary Fig. 4, Supplementary Table 1 and 2). Substitution rates were
calculated using PAML45 (version 4.7) to obtain the non-synonymous to
synonymous substitution rate ratio (dN/dS¼o). o values o1, ¼ 1 and 41
indicate purifying selection, neutral evolution and diversifying (positive) selection,
respectively. A branch-site model (model D) was applied and compared with a
homogeneous site model (discrete model M3) and to a model D that assumes

neutral evolution for a predefined set of branches (for example, for the therian
clade). In particular, we used a three-site class model, because we found a highly
significant difference when compared with a discrete two-site class model,
indicating heterogeneous levels of purifying selection within the protein domains.
Significant differences between models were assessed by likelihood-ratio tests,
which assume that the 2DlnL is approximately w2 distributed with degrees of
freedom being the number of free parameters.

Code availability. Scripts are available from the authors upon request.

Data availability. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE46 partner repository with the
data set identifier PXD005517.
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