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Secondary phenotype analysis in
ascertained family designs: application to
the Leiden longevity study
Renaud Tissier,a*† Roula Tsonaka,a Simon P. Mooijaart,b
Eline Slagboomc and Jeanine J. Houwing-Duistermaata,d

The case-control design is often used to test associations between the case-control status and genetic variants. In
addition to this primary phenotype, a number of additional traits, known as secondary phenotypes, are routinely
recorded, and typically, associations between genetic factors and these secondary traits are studied too. Analysing
secondary phenotypes in case-control studies may lead to biased genetic effect estimates, especially when the
marker tested is associated with the primary phenotype and when the primary and secondary phenotypes tested
are correlated. Several methods have been proposed in the literature to overcome the problem, but they are lim-
ited to case-control studies and not directly applicable to more complex designs, such as the multiple-cases family
studies. A proper secondary phenotype analysis, in this case, is complicated by the within families correlations
on top of the biased sampling design. We propose a novel approach to accommodate the ascertainment pro-
cess while explicitly modelling the familial relationships. Our approach pairs existing methods for mixed-effects
models with the retrospective likelihood framework and uses a multivariate probit model to capture the asso-
ciation between the mixed type primary and secondary phenotypes. To examine the efficiency and bias of the
estimates, we performed simulations under several scenarios for the association between the primary phenotype,
secondary phenotype and genetic markers. We will illustrate the method by analysing the association between
triglyceride levels and glucose (secondary phenotypes) and genetic markers from the Leiden Longevity Study,
a multiple-cases family study that investigates longevity. © 2017 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

In order to understand biological mechanisms underlying disease and health, epidemiological stud-
ies measure genetic markers, classical variables, and novel omics datasets and model the relationship
between these variables and the phenotype of interest. Here, we consider outcome-dependent sampling
designs with binary outcome variables. In addition to studying these binary (primary) phenotypes, the
classical or omics variables are typically also analysed as outcome variables (secondary phenotypes). For
example, modelling of associations between these traits and genetic factors, such as single-nucleotide
polymorphisms (SNPs) or polygenic risk scores (sumscores based on SNPs) [1]. However, an important
complication that is often ignored is that a proper analysis of the secondary traits should correct for the
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Figure 1. Directed acyclic graph representing the case where bias is expected when estimating the association
between the genetic marker and the secondary phenotype. Arrows represent existing association between each
node of the graph. A secondary phenotype analysis investigates whether there is an association between the genetic

factor and the secondary phenotype.

sampling mechanism on the primary phenotype (Figure 1). Note that we assume that the secondary phe-
notype has an effect on the primary phenotype. The reverse situation will not be treated because of reverse
causality challenges [2]. In our motivating case study, the Leiden Longevity Study (LLS) [3] families
with at least two long-lived siblings are recruited. Obviously, these families do not represent a random
sample from the population and inferences cannot be generalized to the whole population, unless the sam-
pling mechanism is properly modelled. Several datasets are measured in the offspring of the long-lived
siblings, namely, lipidomics, glycomics, metabolomics and imaging. These offspring share a part of their
genetic variation with the long-lived parent and therefore are expected to represent a healthy subpopu-
lation while the partners represent the population. As data example, we will model the effect of genetic
factors on the secondary traits glucose and triglyceride levels in the offspring (cases) and their partners
(controls). To be able to extrapolate results to the general population, we need to account for the over
sampling of long-lived subjects in the families of the LLS. There are several multiple-case family stud-
ies. For human longevity, Genetics of Healthy Ageing [4] used the same study design as the LLS. Other
examples are Genetics in Familial Thrombosis (with at least two cases with thrombosis) [5, 6] and the
ongoing study from Leiden Family Lab (famlab: https://www.leidenfamilylab.nl), which recruits fami-
lies with at least two cases with social anxiety disorder. The novel methods presented in this paper will
also be essential for modelling secondary phenotypes in these studies.

In the context of case-control studies, Monsees et al. [2] showed that bias can occur when estimating
the SNP effect on secondary phenotypes if the primary and secondary phenotypes are associated. This is
often the case because both outcomes are measured on the same subjects and secondary phenotypes are
typically chosen for their potential associations with the primary phenotype. They also showed that the
amount of bias is dependent on the prevalence of the primary phenotype, the strength of the association
between the primary and secondary phenotypes, and the association between the tested marker and the
primary trait (Figure 1).

To deal with the bias problem, investigators first used ad hoc methods, that is, using controls only, cases
only, combined data of cases and controls or joint analysis of cases and controls adjusting for the case-
control status. However, several authors showed that these simple approaches can lead to false positive
results [2, 7, 8]. This is due to the sampling design, namely, the secondary phenotype data are not sam-
pled according to the case-control design as the primary phenotype. Several sophisticated methodologies
have been developed to correct for the sampling mechanisms and provide unbiased genetic effect esti-
mates: (i) inverse-probability-of-sampling-weighting approaches [2, 9, 10] that correct for the sampling
mechanism by weighting appropriately individuals in case-control studies; (ii) retrospective likelihood-
based approaches that indirectly adjust for ascertainment [8, 11]; and (iii) a weighted combination of
two estimates obtained with the retrospective likelihood approach in the presence or not of an interaction
between SNPs and primary phenotypes [12].

Even though these approaches can successfully correct for the biased design used to collect the data,
they are not directly applicable to more complex designs such as the LLS that motivates this work.
In particular, inverse probability weighting approaches require knowledge of the sampling weights for
each family. These weights are not available for the LLS because it is unknown what the prevalence of
families with at least two nonagenarians is in the population. In addition, the correlations between the
family members cannot be ignored, and therefore, it is evident that statistical methodology for proper
secondary phenotypes analysis in this context is needed. To this end, under the retrospective likelihood
framework, we develop a multivariate probit regression model inspired by the work of Najita et al. [13]
to model jointly the distribution of the primary and secondary phenotype. This approach allows us to
deal with the ascertainment issue while taking into account the individual relatedness and the genetic and
environmental variations.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017
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The paper is organized as follows: in Section 2, we present the retrospective likelihood approach to
correct for the over sampling of long-lived subjects and the multivariate probit regression model for
the joint modelling of the mixed type primary and secondary phenotypes. In Section 3, we evaluate
empirically the performance of the method in terms of bias and efficiency and contrast it with the naive
approach that ignores the sampling mechanism. Finally, in Section 4, we illustrate the potential of our
proposed method in the analysis of triglyceride levels and glucose in the LLS.

2. Methods

2.1. Retrospective likelihood approach

Let N be the total number of families in the study. For the family i (i = 1…N) of size ni, let Yi, Xi
and Gi be the ni × 1 vectors for the case-control status, the secondary phenotype and the genotype,
respectively. Motivated by the LLS, we will work under the retrospective likelihood approach to correct
for the ascertainment of the families. Such an approach is attractive when modelling the ascertainment
mechanism is not straightforward, as in the LLS where sampling depends on the previous generation
(an example of a pedigree in LLS is shown in Figure 2). In fact the retrospective likelihood approach
implicitly corrects for the ascertainment mechanism, under the assumption that the ascertainment depends
only on the primary phenotype Y . In particular, for the ith family it holds

P
(
Xi,Gi ∣ Yi,Asc

)
=

P
(
Asc ∣ Yi,Gi,Xi

)
P
(
Gi,Xi ∣ Yi

)
P
(
Asc ∣ Yi

) = P
(
Xi,Gi ∣ Yi

)
, (1)

with Asc the ascertainment process. By applying Bayes’ rule, we obtain

P
(
Xi,Gi ∣ Yi

)
=

P
(
Xi,Yi ∣ Gi

)
P
(
Gi

)
P
(
Yi

) =
P
(
Xi,Yi ∣ Gi

)
P
(
Gi

)
∑

g∈G P
(
Yi ∣ g

)
P(g)

. (2)

To fully specify (2), we need to model properly the conditional joint distribution of the primary and
the secondary phenotypes given the genotype P(Xi, Yi ∣ Gi), the marginal probability of the primary
phenotype P(Yi ∣ Gi) and the genotype probability of the ith family P(Gi). Each one of these elements
are described in Sections 2.2 and 2.3.

2.2. Mixed-effects models for the analysis of family data

To model the correlation of the phenotypes Y and X within families, a common choice is to use ran-
dom effects. For the binary primary phenotype, we propose to use a multivariate probit model with
random effects. The advantage of this model is that it involves only the integrals of the multivariate nor-
mal cumulative distribution function for which efficient algorithms have been developed. In contrast, for
the more commonly used logistic regression model, the integrals have to be approximated, for exam-
ple, by using Gauss–Hermite quadrature, which might be computationally intensive for large pedigrees.

Figure 2. Example of a family pedigree from the Leiden Longevity Study. Squares and circles represent men
and women, respectively; crossed symbols represent deceased individuals. In black are the long-lived individuals
on whom the ascertainment is based; in grey are the cases of the study (offsprings of long-lived siblings), and in

white are the controls.
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Let bY
i =

(
bY

i1,… , bY
ini

)T
be a set of family-specific random effects designed to handle familial genetic

correlation and Gi =
(
gi1,… , gini

)T
be the vector of genotypes for family i. For the probit model, the

observed response Y is viewed as a censored observation from an underlying continuous latent variable
Y∗ with

Yij = yij ⇔ 𝛾yij
< Y∗

ij < 𝛾yij+1,Yij ∈ {0, 1}, j = 1, 2,… , ni

where −∞ =𝛾0 < 𝛾1 < 𝛾2 = +∞ are suitable threshold parameters. For the underlying latent variable Y∗,
we assume the mixed-effects regression model

Y∗
i = 𝛼0 + 𝛼1Gi + 𝜎GY

bY
i + 𝜎𝜖Y

i ,

where 𝜖Y
i ∼ Nni

(0, Ini
) is independent of bY

i . Here, 𝛼 = (𝛼0, 𝛼1) denotes the regression coefficient vector
with 𝛼0 the intercept and 𝛼1 the parameter representing the effect of the genotype on Y . At the family
level, we assume bY

i ∼ Nni
(0,𝐑i), with 𝐑i the coefficient of relationships matrix with elements rlm =

2−dlm with dlm denoting the genetic distance between subjects l and m in the family. The parameter 𝜎GY

represents the residual additive genetic variation not explained by gij. Note that 𝜎GY
models the polygenic

inheritance in a family. For identifiability reasons, restrictions are required on both the scale and location
of Y∗, namely, we set 𝜎2 = 1 and 𝛾1 = 0. Thus, in the mixed-effects probit regression, the disease risk
𝜋ij = P(Yij = 1 ∣ bY

ij , gij) conditional on the random-effects bY
ij and genotypic information gij is modelled

as follows
P
(

Yij = 1 ∣ gij, b
Y
ij

)
= Φ

(
𝛼0 + 𝛼1gij + 𝜎GY

bY
ij

)
, (3)

with Φ(z) the cumulative distribution function of the standard normal distribution. The marginal density
under the probit model takes the form:

f (yij ∣ gij; 𝛼, 𝜎b) = ∫bY
i
∫

𝛾yij
+1

𝛾yij

f (y∗ij ∣ gij, b
Y
i ; 𝛼, 𝜎b)f (bY

i )dy∗ijdbY
i .

To model the secondary phenotype Xi, we use a linear mixed model:

Xi = 𝛽0 + 𝛽1Gi + 𝜎GX
bX

i + 𝜎𝜖𝜖
X
i , (4)

where 𝛽 = (𝛽0, 𝛽1) denotes the regression coefficient vector with 𝛽0 the intercept and 𝛽1 the parameter
representing the effect of the genotype on X, bX

i ∼ Nni
(0,𝐑i) is the random parameter used to model the

genetic correlation structure within each family for the secondary trait, and 𝜎𝜖 is the residual standard
deviation.

To model jointly X and Y using the model specifications (3 and 4), we introduce a shared random effect
uij ∼ N(0, 1) and propose the following model:

Y∗
i = 𝛼0 + 𝛼1Gi + 𝜎GY

bY
i + 𝜎uui + 𝜖Y

i ,

Xi = 𝛽0 + 𝛽1Gi + 𝜎GX
bX

i + 𝛿𝜎uui + 𝜎𝜖𝜖
X
i ,

(5)

where ui is assumed to be independent of bY
i , b

X
i , 𝜖

Y
i and 𝜖X

i . We introduce a coefficient 𝛿 in order to have
different phenotypic variances for the random effect ui. In case of small datasets or small family sizes, it
can be better to constrain 𝛿 to be equal to 1 for a simpler model. Let ΣXi

and ΣY∗
i

denote the corresponding
variance–covariance matrices of the marginal distributions of Xi and Y∗

i , and let ΣXY∗
i

be their covariance.

The joint distribution of Y∗ and X is then
(
Y∗

i ,Xi

)
∽ N2ni

([
𝛼0 + 𝛼1Gi
𝛽0 + 𝛽1Gi

]
,

[ ΣY∗
i

ΣXY∗
i

ΣXY∗
i

ΣXi

])
. In the special

case for ni = 2, the variance–covariance matrix becomes

Σi =

⎛⎜⎜⎜⎜⎝

𝜎2
GY

+ 𝜎2
u + 1 𝜎2

GY
2−d(1,2) 𝜎GX

𝜎GY
+ 𝛿𝜎2

u 𝜎GX
𝜎GY

2−d(1,2)

𝜎2
GY

2−d(1,2) 𝜎GY
+ 𝜎2

u + 1 𝜎GX
𝜎GY

2−d(1,2) 𝜎GX
𝜎GY

+ 𝛿𝜎2
u

𝜎GX
𝜎GY

+ 𝛿𝜎2
u 𝜎GX

𝜎GY
2−d(1,2) 𝜎2

GX
+ 𝛿2𝜎2

u + 𝜎2
𝜖

𝜎2
GX

2−d(1,2)

𝜎GX
𝜎GY

2−d(1,2) 𝜎GX
𝜎GY

+ 𝛿𝜎2
u 𝜎2

GX
2−d(1,2) 𝜎2

GX
+ 𝛿2𝜎2

u + 𝜎2
𝜖

⎞⎟⎟⎟⎟⎠
. (6)
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Using the properties of the multivariate normal distribution, the joint distribution for the observed primary
and secondary phenotypes takes the form

P
(
Yi,Xi ∣ Gi

)
= ∫ P

(
Y∗

i ,Xi ∣ Gi

)
dy∗i

= ∫ P
(
Y∗

i ∣ Xi,Gi

)
P
(
Xi ∣ Gi

)
dy∗i

= P
(
Xi ∣ Gi

)
∫ P

(
Y∗

i ∣ Xi,Gi

)
dy∗i .

Thus by using the probit regression model for the primary trait, we have developed an efficient approach
to model the correlation between the primary and secondary trait.

From model (5) and the variance–covariance matrix (6), several marginal correlations between and
within family members can be deduced:

cor
(
Xij,Xij′

)
=

𝜎2
GX

2−d(j,j′)(
𝜎2

GX
+ 𝛿2𝜎2

u + 𝜎2
𝜖

) = 𝜌X

cor
(

Y∗
ij ,Y

∗
ij′

)
=

2−d(j,j′)𝜎2
GY(

𝜎2
GY

+ 𝜎2
u + 1

) = 𝜌Y

cor
(

Xij,Y
∗
ij

)
=

𝜎GX
𝜎GY

+ 𝛿𝜎2
u√(

𝜎2
GX

+ 𝛿2𝜎2
u + 𝜎2

𝜖

)(
𝜎2

GY
+ 𝜎2

u + 1
) = 𝜌XY

cor
(

Xij,Y
∗
ij′

)
=

2−d(j,j′)𝜎GX
𝜎GY√(

𝜎2
GX

+ 𝛿2𝜎2
u + 𝜎2

𝜖

)(
𝜎2

GY
+ 𝜎2

u + 1
) = 𝜌′XY ,

where 𝜌XY represents the association between the primary and secondary phenotype. We can also derive
the closed form for the heritability estimates of the secondary phenotype that quantifies the percentage
of genetic variation in the total variance:

H2 =
𝜎2

GX(
𝜎2

GX
+ 𝛿𝜎2

u + 𝜎2
𝜖

) . (7)

Note that when genetic factors are included in the model formula (7) gives the residual heritability.

2.3. Genotype probability

Finally, another key component in the formulation of the retrospective likelihood (2) is the computation
of the genotype probability for each family i. Let Gmj and Gpj denote the genotypes of the mother and
father of an individual j if this individual is a nonfounder member of family i. Under the assumption
of random mating and Mendelian inheritance, the genotype probabilities can be written as presented by
Duncan Thoms [14]:

P
(
Gi

)
=

J∏
j=1

{
P
(
gij ∣ Gmj,Gpj

)
if j is a nonfounder

P
(
gij

)
if j is a founder

.

The probabilities P(gij ∣ Gpj,Gmj) are the transmission probabilities that can be modelled using Mendelian
inheritance. Finally, P

(
Gpi

)
, P

(
Gmi

)
and P

(
gij

)
can be modelled by assuming Hardy–Weinberg pro-

portions (1 − q)2, 2q (1 − q), q2 that depend on q, the minor allele frequency. Here, we propose to use
external information for q or to estimate q from the control sample before maximizing the likelihood.
Note that when genotypes of the parents are missing, the probability can be obtained by summing over
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the possible parental genotypes. In case of a more complex pedigree, a recursive algorithm known as
peeling can be used [15]. For the LLS where families are sibships, the probability is as follows:

L (𝜃;Y ,X) =
∏

i

{
P
(
Xi ∣ Gi

) ∫ P
(
Y∗

i ∣ Xi,Gi

)
dy∗i

}∑
Gp

∑
Gm

∏
j P

(
Gij ∣ Gm,Gp

)
P
(
Gp

)
P
(
Gm

)
∑

g

∑
Gp

∑
Gm

∫ P
(
Y∗

i ∣ g
)

P
(
g ∣ Gm,Gp

)
P
(
Gp

)
P
(
Gm

) ,

(8)
where 𝜃 = (𝛼0, 𝛼1, 𝜎GY

, 𝛽0, 𝛽1, 𝜎GX
, 𝜎𝜖, 𝛿, 𝜎u) is the model parameters vector.

2.4. Estimation and statistical testing

To estimate the parameters of the joint model, we maximize the logarithm of the likelihood described
in (8). This involves a combination of numerical optimization and integration. For the evaluation of the
integral in the multivariate normal distribution, we use the deterministic algorithm Miwa described in
[16]. For the optimization, we use the Broyden–Fletcher–Goldfarb–Shanno algorithm implemented in
the function optim(.) in R. The Broyden–Fletcher–Goldfarb–Shanno algorithm is a quasi-Newton
method, which means that the Hessian matrix does not need to be evaluated directly but is approximated
by using specified gradient evaluations. To test for the presence of an effect of the SNPs on the secondary
phenotype, we use the likelihood ratio test. Note that when the interest of a researcher is solely testing
for genetic association, a score statistic is an alternative to the likelihood ratio statistic.

2.5. Continuous polygenic score

Our approach can also be applied in the case of modelling the association between continuous covari-
ates and secondary phenotypes. For example, polygenic scores have been used to summarize genetic
effects among an ensemble of SNPs that have been identified in large genome-wide association studies
(GWASes) [17–19]. Polygenic scores are typically linear combinations of SNPs: G =

∑
k 𝛿kSNPk, where

𝛿k = 1 or 𝛿k is obtained from previous GWASes. For genetic scores, we need to integrate over the dis-
tribution of the polygenic score instead of summing over the genotypes in the denominator of (2). For
the distribution of the polygenic score, we use a multivariate normal distribution Gi ∽ Nni

(
𝜇g, 𝜎gRi

)
,

with 𝜇g the mean value of the genetic score, 𝜎g the standard deviation of the genetic score and Ri the
relationship matrix of family i. The likelihood contribution for family i is given by

P
(
Yi,Xi ∣ Gi

)
P
(
Gi

)
P(Yi)

=
P
(
Yi,Xi ∣ Gi

)
P
(
Gi

)
∫y∗i

P(y∗i )dy∗i
=

P
(
Yi,Xi ∣ Gi

)
P
(
Gi

)
∫y∗ ∫gi

P(y∗i ∣ gi)P(g)dy∗i dgi

.

Computation of the integral ∫y∗ ∫g P(y∗ ∣ g)P(g)dy∗dg can be quite intensive and challenging. In
order to gain efficiency, we write the marginal model of Y∗ (5) as Y∗

i = 𝛼0 + bY∗
i + ui + 𝜖Y

i ,
with bY∗

i = 𝜎GY
bY

i + 𝛼1Gi. Now Y∗
i follows the following multivariate normal distribution: Y∗

i ∽
Nni

(
𝛼0 + 𝛼1𝜇g,ΣY∗

i
+ 𝛼2

1𝜎
2
gRi

)
. Note that when a polygenic risk score is included in the model for the

secondary phenotype, the parameter 𝜎GY
represents the residual polygenic inheritance.

2.6. Inclusion of covariates in the model

Often, researchers want to adjust for covariates such as age, sex, treatment and so on in the model. Let Z be
such a covariate. To estimate the effect Z on the secondary phenotype, we propose to maximize the joint
likelihood of X and G conditionally on the primary phenotype Y and Z. Thereby, we avoid modeling of
the distribution of Z within the families. Indeed, under the assumption of independence between genotype
and Z, we obtain

P
(
Xi,Gi ∣ Yi,Zi

)
=

P
(
Xi,Yi,Zi,Gi

)
P
(
Yi,Zi

) =
P
(
Xi,Yi ∣ Gi,Zi

)
P
(
Gi

)
P
(
Zi

)
P
(
Yi|Zi

)
P
(
Zi

) =
P
(
Xi,Yi ∣ Gi, Zi

)
P
(
Gi

)
P
(
Yi|Zi

) .

(9)

3. Simulation study

A simulation study was set up to evaluate the performance of our proposed method for the estima-
tion of the association between a genetic factor and the secondary phenotype and the estimation of the
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heritability of the secondary phenotype. We compare the proposed method with the naive approach that is
typically followed in practice, namely, analysis of the secondary trait without correcting for the sampling
mechanism. In particular, in this case, we fit the standard linear mixed-effects model for the secondary
phenotype and explicitly model the familial relationships as described in (4). The two methods are com-
pared in terms of bias, root mean square error (RMSE) and 95% coverage probabilities. We consider SNPs
(discrete variables) and polygenic scores (continuous variables). Several settings are considered for the
disease prevalence, the strength of the association between the genetic factor and the primary phenotype,
the strength of the ascertainment mechanism and the number of sibships. We simulated sibships of size
5. With respect to the familial relationships, we consider only sibships such that our simulation resem-
bles the LLS design. For the prevalence of the primary phenotype, we consider two settings, namely, a
disease prevalence of 1% that corresponds to 𝛼0 ≈ −2.32 and of 5% that corresponds to 𝛼0 ≈ −1.64. In
addition, the variance parameters have been chosen such that they correspond to a heritability of 50%.
Specifically, we use 𝜎GX

=2, 𝜎GY
=
√

3, 𝜎uX
= 𝜎uY

=
√

2 and 𝜎𝜖 =
√

2. This corresponds to a correlation
of 0.78 between the primary and the secondary phenotypes. To speed up computations, we assume that
𝜎uX

= 𝜎uY
when fitting the models to the simulated datasets. For each scenario, 500 datasets are simulated

using model (5).

3.1. Simulation results for a single-nucleotide polymorphism

The genotypes of the SNPs are simulated assuming a minor allele frequency of 0.3 in the population.
For the secondary phenotype model, the following fixed effects values are used: 𝛽0 = 3.5 and 𝛽1 = 0.2,
whereas for the primary phenotype model, the effect sizes are 𝛼1 = 0.1 or 0.5. Finally, for each of the
four scenarios (rare or common disease, and weak and strong SNP effect on the primary phenotype),
we consider two ascertainment mechanisms, namely, the sampled sibships of size five have at least one
affected or at least two affected members.

Figure 3 presents the estimates and 95% confidence intervals for the scenario of 400 sibships. Figure 3
shows that ignoring the sampling mechanism (naive method) leads to biased estimates of the SNP effect,
and the size of this bias increases with the strength of the ascertainment mechanism and the associa-
tion between the SNP and the primary phenotype. Overall, we observe that the proposed method gives
unbiased estimates of the SNP effect on the secondary phenotype. The coverage probabilities reach the
nominal level (see section A of the Supporting Information). Regarding the prevalence of the primary
phenotype, we observe that for the naive method bias increases with lower prevalence, while the pro-
posed method remains robust to the lower amount of information because of the rare primary phenotype.
In general, the proposed method leads to smaller root mean square error than the naive approach and
better coverage probabilities.

In Table I, we present the heritability estimates of the secondary phenotype for a common disease,
under the various ascertainment mechanisms and the two values of 𝛼1. It is obvious that the heritabil-
ity estimates are influenced by the ascertainment mechanisms when using the naive approach. Indeed,
the naive method tends to underestimate the heritability for each mechanism and this underestima-
tion increases as the ascertainment mechanisms become more stringent. The heritability estimates are
25–27% for sibships with at least one affected sibling and drop to 13–14% for sibships with at least two
affected siblings. On the contrary, the proposed method is robust to the stringency of the ascertainment
mechanism.

Next, we study the robustness of our approach to one violation of the model assumptions, namely, we
simulated under a logit link for the primary phenotype and used the probit link for modelling. Results
for the SNP effect and the heritability are presented in Table II. These results show that even though
our approach gives biased estimates for the primary phenotype model, the parameters estimates for the
secondary phenotype model are not affected. All the results are presented in Section A of the Supporting
Information.

Although we focus on parameter estimation, model fitting and heritability estimation for genetic asso-
ciation with a secondary phenotype, we also investigate the performance of the likelihood ratio test under
the null hypothesis of no genetic association with a secondary phenotype at two levels of genetic associa-
tion with the primary phenotype. In each of the four considered scenarios, we simulate 10 000 replicates.
In Table III, the empirical type I error rates are given for the rare disease scenario (i.e. prevalence 1%).
We observe that while our approach preserves the type I error rate at a nominal level, the naive approach
has, systematically, an inflated type I error rate. The type I error rate for the naive method increases with
stronger ascertainment and larger SNP effect on the primary phenotype.
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Figure 3. Estimates and 95% confidence intervals for the single-nucleotide polymorphism (SNP) effect on the
secondary phenotype for the retrospective likelihood approach and the naive method. Results are obtained from
500 simulated datasets of 400 sibships for two ascertainment schedules. The top and bottom panel correspond
to a rare or common primary phenotype with a prevalence around 1% and 5%, respectively. In black and red are
represented results for small (𝛼1 = 0.1) and large (𝛼1 = 0.5) effect sizes of the SNP on the primary phenotype,

respectively. The horizontal line corresponds to the true SNP effect on the secondary phenotype.

Table I. Heritability results of the simulation studies for a SNP and a polygenic score: estimates with stan-
dard deviations and root mean square error (in brackets) for the heritability of the secondary phenotype for
a common disease (prevalence ≈ 5%), when sibships with at least one or at least two cases are sampled and
for two values of 𝛼1, that is, SNP or polygenic score effect on primary phenotype.

SNP model Polygenic score model
Ascertainment 𝛼1 Retrospective Naive Retrospective Naive

1. At least two cases

0.10 0.48 (0.07) (0.22) 0.13 (0.07) (0.37) 0.50 (0.03) (0.13) 0.14 (0.03) (0.36)
0.50 0.48 (0.07) (0.22) 0.14 (0.07) (0.36) 0.52 (0.03) 0.12) 0.15 (0.03) (0.34)

2. At least one case

0.10 0.50 (0.08) (0.17) 0.25 (0.08) (0.25) 0.48 (0.04) (0.12) 0.25 (0.03) (0.24)
0.50 0.50 (0.08) (0.17) 0.27 (0.08) (0.24) 0.50 (0.04) (0.10) 0.26 (0.04) (0.23)

The heritability value is 50% under the generating model. Datasets consist of 400 sibships of size 5. Results are based
on 500 replicates. SNP, single-nucleotide polymorphism.
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Table II. Robustness of the retrospective likelihood methods to violation of the pro-
bit model assumption for the primary phenotype: estimates of the effect size of the
single-nucleotide polymorphism on the secondary phenotype (𝛽1) and heritability
of the secondary phenotype are given for a common disease (prevalence ≈ 5%), for
the two ascertainment mechanisms and two values of 𝛼1.

Ascertainment 𝛼1 𝛽1 Heritability

0. True value 0.200 0.500

1. At least two cases

0.100 0.199 (0.104) (0.104) (0.948) 0.509 (0.017) (0.110)
0.500 0.197 (0.106) (0.110) (0.945) 0.516 (0.014) (0.108)

2. At least one case

0.100 0.200 (0.104) (0.107) (0.961) 0.510 (0.012) (0.096)
0.500 0.199 (0.107) (0.111) (0.960) 0.513 (0.010) (0.087)

In brackets are standard deviations, root mean square error and coverage probability (for
the effect size only). Datasets consist of 400 sibships of size 5. Results are based on 500
replicates.

Table III. Empirical type I errors rates for testing for association between a
genetic marker and a secondary phenotype using the likelihood ratio test for four
scenarios.

Nominal level (𝛼) Retrospective likelihood Naive method

At least two cases
𝛼1 = 0.1

0.05 0.0509 0.0580
0.01 0.0118 0.0152
0.001 0.0017 0.0025

𝛼1 = 0.5
0.05 0.0505 0.0878
0.01 0.0113 0.0222
0.001 0.0013 0.0043

At least one case
𝛼1 = 0.1

0.05 0.0524 0.0514
0.01 0.0102 0.0098
0.001 0.0018 0.0014

𝛼1 = 0.5
0.05 0.0522 0.0558
0.01 0.0098 0.0097
0.001 0.0009 0.0016

Sibships with at least one or with at least two cases are considered. Two values for
the association between the single-nucleotide polymorphism and the primary phenotype,
namely, 𝛼1 = 0.1 and 𝛼1 = 0.5, are used. Datasets consist of 400 sibships of size 5. Results
are based on 10 000 replicates.

3.2. Simulation results for a polygenic score

To study the performance of the proposed method for polygenic score, we simulated centred and standard-
ized scores. The parameters of the secondary phenotype model were chosen as for the SNP simulations:
𝛽0 = 3.5 and 𝛽1 = 0.2, whereas for the primary phenotype model, effect sizes of 𝛼1 = 0.1 or 0.5 were used.
Figure 4 presents the estimates and confidence intervals for datasets with 400 sibships. Our approach
provides unbiased estimates of the effect of the polygenic score on the secondary phenotype. In contrast,
the naive approach provides biased estimates and the bias increases when the ascertainment process is
more stringent or when 𝛼1 is larger.

The results of the residual heritability estimates after adjustment for polygenic scores agree with the
results obtained when a SNP is included in the model (Table I). The naive approach did not perform well:
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Figure 4. Estimates and 95% confidence intervals for the polygenic score effect on the secondary phenotype for
the retrospective likelihood approach and the naive method. Results are obtained from 500 simulated datasets of
400 sibships for two ascertainment schedules. The top and bottom panel correspond to a rare or common primary
phenotype with a prevalence around 1% and 5%, respectively. In black and red are represented results for small
(𝛼1 = 0.1) and large (𝛼1 = 0.5) effect sizes of the polygenic score on the primary phenotype, respectively. The

horizontal line corresponds to the true polygenic score effect on the secondary phenotype.

estimates between 25–26% and 14–15% for an ascertainment process of at least one affected sibling and
at least two affected siblings, respectively, instead of 50%.

4. Application: analysis of the Leiden Longevity Study

In this Section, we will exemplify our proposed method in the analysis of the LLS briefly introduced in
Section 1. The LLS is a family-based study set up to identify mechanisms that contribute to healthy ageing
and longevity. The inclusion criteria of the study are sibships with at least two nonagenarian siblings, that
is, the selection takes place at Generation II (Figure 2). Several secondary phenotypes and GWAS data
have been measured for the offspring of these siblings (Generation III in Figure 2) and their partners.
Because the offspring have at least one nonagenarian parent, they are also likely to become long-lived.
Therefore, the set of offspring and their partners corresponds to a case-control design with related subjects
where the offspring in Generation III are considered as cases and their partners as controls. Overall, 421
families with 1671 offspring (cases) and 744 partners (controls) have been included in the study. Because
the families are relatively small, we use the model that assumes an equal variance for the shared effect
for the two traits.
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Here, we model the association between genetic factors and the secondary phenotypes triglyceride and
glucose levels. For both traits, there is evidence of an association with human longevity and both traits
are normally distributed. For the sake of comparison in addition to our proposed method, we will present
results using the naive approach, that is, standard linear mixed model. Analyses using the linear mixed
model that conditions also on the case-control status will not be presented because the parameters do not
have a comparable interpretation between the two approaches. The p-values presented subsequently are
obtained using the likelihood ratio test.

4.1. Triglyceride levels analysis

Triglyceride levels have been found to be associated with the primary trait longevity ( p-value = 0.0005
for women and p-value = 0.04 for men), and the size of association is sex dependent. Therefore, a sex-
stratified analysis has been considered further. For the purposes of our illustration, we restricted our
analysis to seven genes on chromosome 11 that are known to be associated with triglyceride levels. These
genes are APOA1, APOA4, APOA5, APOC3, ZNF259, BUD13 and DSCAML1. The selection of the genes
was performed using the NHGRI-EBI GWAS catalog [20]. For these genes, we have genotypes of 41
SNPs that have no missing values in our datasets. Triglyceride levels were standardized, and we included
age as a covariate in the analysis.

We ran the analysis with the constrained approach, that is, 𝛿 = 1. We observe that none of the SNPs
analysed is significantly associated with triglyceride levels either in men or in women; hence, for most
SNPs, the estimates of the effect sizes agree between the two approaches. The SNPs showing the largest
differences are, in men, SNP 22: 𝛽RA

1 = 0.047 for our Retrospective Approach (RA) and 𝛽NA
1 = 0.052

for the Naive Approach (NA) and SNP 26: 𝛽RA
1 = 0.088 and 𝛽NA

1 = 0.092. For women, more SNPs
give different estimates between the two approaches, that is, SNP 1 (𝛽RA

1 = 0.024, 𝛽NA
1 = 0.020), SNP

2 (𝛽RA
1 = 7.2e-06 𝛽NA

1 = 0.006), SNP 13 (𝛽RA
1 = −0.013, 𝛽NA

1 = −0.009) and SNP 19 (𝛽RA
1 = 0.011,

𝛽NA
1 = 0.007) showed the biggest differences. Results for the SNPs are presented in Section B of the

Supporting Information.
We verified whether the assumption of equal variances for the primary and secondary phenotype for

the shared effects is justified. We fitted also the model with non-constrained 𝛿. We noticed that for some
of the SNPs, the model parameters are hard to estimate and the estimates of the variances of the shared
and residual random effects in the model for the second phenotype are swapped. Overall, the estimates
of the effect of the SNP on the secondary phenotype are very similar to the model that assumes equal
variances. Results of these analyses are presented in Section B of the Supporting Information.

4.2. Glucose levels analysis

In previous analysis of glucose levels in the offspring and partners of the LSS, Mooijart [21] studied the
association between glucose and a polygenic score. The genetic score was defined as the total number
of risk alleles across 15 SNPs that are known to be associated with Type II diabetes. The generalized
estimating equation method was applied to take into account the familial relationships. The paper showed
that a higher number of Type II diabetes risk alleles is associated with a higher serum concentration of
glucose ( p-value = 0.016). A statistically significant association was found between the glucose level
and case-control status ( p-value < 0.001). However, the sampling process was not taken into account
in the analysis and thus the results might be biased. We applied the proposed method to estimate the
heritability of glucose levels and to test for the presence of an association between the glucose levels
and the polygenic score. In addition, we applied the naive approach that did not correct for case-control
status. We did not stratify according to sex in these analyses.

For this analysis, the polygenic score was standardized. Using the RA, the association between the
genetic score and the glucose level is estimated by 𝛽RA

1 = 0.630 with a standard error of stE = 0.023
(p-value = 0.015). The naive approach also yields a significant association between the genetic score and
glucose levels (𝛽NA

1 = 0.622, stE = 0.026, p − value = 0.020). By using the NA, we obtained for the
glucose levels a genetic variance of 𝜎2

GX
= 0.302 and a total variance of 𝜎2

T = 1.322, which corresponds
to a residual heritability of h2

NA = 0.228. Our RA yields a genetic variance of 𝜎2
GX

= 0.384 and a total
variance of 𝜎2

T = 1.457 that corresponds to a residual heritability of h2
RA = 0.263.
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5. Discussion

In this paper, we developed a new method for the proper analysis of secondary traits for multiple-cases
family designs. A key component in our proposed method is the joint modelling of the primary and
secondary phenotypes. We developed a multivariate probit model that can also capture the within families
dependencies. A retrospective likelihood approach has been followed to correct for the ascertainment
process. Thereby unbiased estimates of the association between genetic factors and secondary traits can
be obtained. Simulation results showed that our approach preserves the type I error at nominal level and
provides accurate estimates irrespective of the disease prevalence, the strength of the association between
the genetic variants and the primary phenotype, and the ascertainment mechanism. Another important
empirical finding is that the heritability estimates for the secondary traits can be severely underestimated
unless the sampling mechanism is taken into account. With respect to the analysis of the motivating
case study, for the SNPs, the differences between the effect sizes obtained by our proposed method and
the naive approach were small. The small differences obtained between the naive and the retrospective
approach are mainly because of the small effect sizes of the genetic markers selected on the primary
phenotype. Indeed, the three main factors influencing the magnitude of the bias when using the naive
approach are the correlation between the secondary phenotype and the primary phenotype, the strength
of the ascertainment, and the strength of the association between the genetic marker and the primary
phenotype.

Heritability is one of the properties that a trait needs to possess to be declared an endophenotype for a
specific disease. The other criteria are the trait is associated with the disease status in the population, the
trait manifests whether illness is active or in remission (state independent) and the trait and the disease
status co-segregate within a family [22]. The Leiden Family Lab (https://www.leidenfamilylab.nl) aims
to identify endophenotypes for social anxiety disorder. The study comprises families with at least two
cases with social anxiety. The methods presented in this paper will be used for the analyses of this study
to identify endophenotypes and are relevant for other family studies, as well.

In this paper, we proposed to include additional covariates in the model by using the likelihood condi-
tional on these covariates. Alternatively, the joint likelihood of the secondary phenotype, genotype and
covariate conditionally on the primary phenotype can be used. This alternative approach might be more
efficient [23]. However, this likelihood requires distributional assumptions for the covariates within fam-
ilies, which can be complex for related individuals. Moreover, maximization of the likelihood might
become time consuming. Ghosh et al. [24] propose a pseudo-likelihood and a profile approach to include
covariates in a secondary phenotype analysis for case-control data. This work needs to be extended to
family data. A Monte Carlo approach might be considered to compute the integrals (Tsonaka et al. [25]).

Typically, there are missing genotypes. In unrelated individuals, genotypes can be imputed based on
the haplotype structure obtained from a reference panel. For family data, the imputation should also take
into account the genotypes of other family members. Software exists that can perform such analysis, for
example, the Genotype Imputation Given Inheritance program [26]. However, for the computation of the
denominator in Equation (2), these imputed genotype probabilities have to be taken into account.

Because of the computational intensity of the proposed method, it is not yet possible to run full GWAs
analyses of secondary phenotypes. However, the proposed method can be used on a set of pre-selected
variants, for example, after an initial screening with the naive approach to the primary and secondary
phenotypes or when investigating pleiotropic effects. To reduce the computation time of the multivariate
integrals in the numerator and the denominator, a faster algorithm can be used than the one used in this
paper. The randomized quasi-Monte Carlo procedure, developed by Genz [27], is less accurate but faster
especially for large pedigrees. Development of less computational intensive methods is one of the topics
for future research.

With regard to pleiotropic effects, a criticism of probit random-effects models is that in the presence
of high dimensional random effects we cannot move from the subject-specific interpretation for the fixed
effects parameters to the population-level interpretation as in the random-intercepts case. When the out-
come is binary and families are relatively small, estimation of the intercept and variances terms can be
difficult, and consequently, coverage probabilities can be poor. Tsonaka et al. [6] showed efficiency gains
by using information on disease prevalence. Their methods need to be adapted to our setting of the anal-
ysis of two phenotypes. When the parameters of the primary phenotype model are not of interest and this
model is only used to correct for the ascertainment mechanism that is driven by the primary phenotype,
we showed that secondary phenotype analyses with the proposed method are robust to using the probit
instead of the logit link function.
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Future directions in the LSS and Leiden Family Lab Study will address the pending availability of
multiple omics and functional MRI data, respectively, and joint modelling of several glycans or voxels
is of interest. Extending our approach, in this case, is algebraically straightforward, but practical imple-
mentation may be challenging because of computational intensity especially with a large number of
secondary phenotypes. The use of composite likelihood approaches might be a solution and is our current
research topic.

Finally, an attractive alternative approach to properly analyse secondary traits is to apply inverse prob-
ability weighting. However, it is crucial to correctly specify the weights. Currently, we do not have
sufficient information to be able to estimate these weights for our studies. However, with access to elec-
tronic records for research, such as information from general practitioners to estimate the weights, it is
likely that inverse probability weighting approaches can be developed.
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